參考文獻 |
[1] Alias, R., 2013, ′Structural and Dielectric Properties of Glass – Ceramic
Substrate with Varied Sintering Temperatures′, in B. Ertuğ (ed.), Sintering
Applications, IntechOpen, London. 10.5772/54037.
[2] A. K. Jonscher, "The ′universal′ dielectric response. I," in IEEE Electrical
Insulation Magazine, vol. 6, no. 2, pp. 16-22, March-April 1990, doi:
10.1109/57.50801.
[3] Dong-Ok Kim, Hyo-Ki Hong, Dong-Bum Seo, Tran Nam Trung, Chan-Cuk
Hwang, Zonghoon Lee, Eui-Tae Kim, Novel high-k gate dielectric properties of
ultrathin hydrocarbon films for next-generation metal-insulator-semiconductor
devices, Carbon, Volume 158, 2020, Pages 513-518, ISSN 0008-6223,
[4] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim,
“The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, no. 1, pp.
109–162, 2009.
[5] “Vibrations in sp2 Nanocarbons,” Raman Spectroscopy in Graphene Related
Systems. pp. 53–72, 31-Jan-2011.
[6] R. Beams, L. G. Canc, and L. Novotny, “Raman characterization of defects and
dopants in graphene,” J. Phys. Condens. Matter, vol. 27, p. 083002, 2015.
[7] Yazdi, G.; Iakimov, T.; Yakimova, R.Epitaxial Graphene on SiC: A Review of
Growth and Characterization. Crystals 2016, 6 (5), 53
[8] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183-
191
[9] T.O. Terasawa, K. Saiki, Growth of graphene on Cu by plasma enhanced
chemical vapor deposition, Carbon 50 (2012) 869-874.
[10] Y.S. Kim, J.H. Lee, Y.D. Kim, S.-K. Jerng, K. Joo, E. Kim, J. Jung, E. Yoon, Y.D.
Park, S. Seo, S.-H. Chun, Methane as an effective hydrogen source for singlelayer graphene synthesis on Cu foil by plasma enhanced chemical vapor
deposition, Nanoscale 5 (2013) 1221-1226.
[11] D.A. Boyd, W.-H. Lin, C.-C. Hsu, M.L. Teague, C.-C. Chen, Y.-Y. Lo, W.-Y.
Chan, W.-B. Su, T.-C. Cheng, C.-S. Chang, C.-I. Wu, N.-C. Yeh, Single-step
deposition of high-mobility graphene at reduced temperatures, Nat. Commun. 6
(2015) 1e8.
93
[12] C.-C. Yen, Y.-C. Chang, H.-C. Tsai, W.-Y. Woon, Nucleation and growth
dynamics of graphene grown through low power capacitive coupled radio
frequency plasma enhanced chemical vapor deposition, Carbon 154 (2019) 420-
427.
[13] I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, S. Smirnov, Role
of hydrogen in chemical vapor deposition growth of large single-crystal
graphene, ACS Nano 5 (2011) 6069-6076.
[14] J.L. Qi, W.T. Zheng, X.H. Zheng, X. Wang, H.W. Tian, Relatively low
temperature synthesis of graphene by radio frequency plasma enhanced chemical
vapor deposition, Appl. Surf. Sci. 257 (2011) 6531-6534.
[15] M.M. Lucchese, F. Stavale, E.H.M. Ferreira, C. Vilani, M.V.O. Moutinho,
R.B. Capaz, C.A. Achete, A. Jorio, Quantifying ion-induced defects and Raman
relaxation length in graphene, Carbon 48 (2010) 1592e1597.
[16] L.G. Cancado, A. Jorio, E.H.M.M. Ferreira, F. Stavale, C.A. Achete, R.B.
Capaz, M.V.O.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, L.G.
Cançado, A. Jorio, E.H.M.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz,
M.V.O.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Quantifying
defects in graphene via Raman spectroscopy at different excitation energies,
Nano Lett. 11 (2011) 3190-3196.
[17] A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K.S.
Novoselov, C. Casiraghi, Probing the nature of defects in graphene by Raman
spectroscopy, Nano Lett. 12 (2012) 3925e3930. [20] A. Eckmann, A. Felten, I.
Verzhbitskiy, R. Davey, C. Casiraghi, Raman study on defective graphene:
effect of the excitation energy, type, and amount of defects, Phys. Rev. B. 88
(2013) 1-11.
[18] A. Mohanta, B. Lanfant, M. Asfaha, M. Leparoux, Methane dissociation
process in inductively coupled Ar/H2/CH4 plasma for graphene nano-flakes
production, Appl. Phys. Lett. 110 (2017) 1-5
[19] Abhilash Harpale, Marco Panesi, and Huck Beng Chew,” Plasma-graphene
interaction and its effects on nanoscale patterning.“ phys. Rev. B 93,
035416 – Published 11 January 2016
[20] Reece, Timothy. (2007). Characterization of Metalferroelectric-InsulatorSemiconductor Structures Based on Ferroelectric Langmuir-Blodgett
94
Polyvinylidene Fluoride Copolymer Films for Nondestructive Random Access
Memory Applications.
[21] Hoffmann, M., Fengler, F.P.G., Herzig, M. et al. Unveiling the double-well
energy landscape in a ferroelectric layer. Nature 565, 464–467 (2019).
https://doi.org/10.1038/s41586-018-0854-z
[22] H. Li and G. Subramanyam, "Capacitance of thin-film ferroelectrics under
different drive signals," in IEEE Transactions on Ultrasonics, Ferroelectrics,
and Frequency Control, vol. 56, no. 9, pp. 1861-1867, September 2009,
doi: 10.1109/TUFFC.2009.1262.
[23] Shin-ichi Amma, Jiawei Luo, Carlo G. Pantano, Seong H. Kim,
Specular reflectance (SR) and attenuated total reflectance (ATR) infrared (IR)
spectroscopy of transparent flat glass surfaces: A case study for soda lime float
glass,Journal of Non-Crystalline Solids, Volume 428, 2015, Pages 189-196,
ISSN 0022-3093,
[24] Jo Hsueh Lee, Cheng-Hung Cheng, Bo-Rong Liao and Shi-Hsin Lin Chem.
“Multiferroic hydrogenated graphene bilayer” Chem. Phys., 2020,22, 7962-7968
[25] Axel Eckmann, Alexandre Felten, Artem Mishchenko, Liam Britnell, Ralph
Krupke, Kostya S. Novoselov, and Cinzia Casiraghi Nano Letters 2012 12 (8),
3925-3930 DOI: 10.1021/nl300901a
[26] Whitener, Keith. (2018). Review Article: Hydrogenated graphene: A user’s
guide. Journal of Vacuum Science & Technology A. 36. 05G401.
10.1116/1.5034433.
[27] C. Lin et al., Nano Lett. 15, 903 (2015)
[28] B. R. Matis, J. S. Burgess, F. A. Bulat, A. L. Friedman, B. H. Houston, and J. W.
Baldwin, ACS Nano 6, 17 (2012)
[29] M. Zhao, H. Xiao, S. Chen, T. Hu, J. Jia and H. Wu, RSC Advances, 2018, 8,
13148–13153
[30] M. Zhao, H. Xiao, S. Chen, T. Hu, J. Jia and H. Wu, RSC Advances, 2018, 8,
13148–13153
[31] Min Hyuk Park and Cheol Seong Hwang 2019 Rep. Prog. Phys. 82 124502
[32] Phys. Chem. Chem. Phys., 2020,22, 7962-7968
[33] H. O. Pierson, Handbook of Chemical Vapor Deposition, Noyes Publications,
Park Ridge (1992)
95
[34] X. Chen, et al., Large area CVD growth of graphene, Synthetic Met. (2015)
[35] Beams, R.; Gustavo Can� ado, L.; Novotny, L.Raman Characterization of
Defects and Dopants in Graphene. J. Phys. Condens. Matter 2015, 27 (8)
[36] Tao Xu, Litao Sun, 5 - Structural defects in graphene, Editor(s): Jan Stehr, Irina
Buyanova, Weimin Chen, In Woodhead Publishing Series in Electronic and
Optical Materials, Defects in Advanced Electronic Materials and Novel Low
Dimensional Structures, Woodhead Publishing, 2018, Pages 137 160, ISBN
9780081020531
[37] Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.;
Capaz, R. B.; Achete, C. A.; Jorio, A.Quantifying Ion-Induced Defects and
Raman Relaxation Length in Graphene. Carbon N. Y. 2010, 48 (5), 1592–1597.
[38] Eckmann, Axel & Felten, Alexandre & Mishchenko, Artem & Britnell, Liam &
Krupke, Ralph & Novoselov, Kostya & Casiraghi, Cinzia. (2012). Probing the
Nature of Defects in Graphene by Raman Spectroscopy. Nano letters. 12. 3925-
30. 10.1021/nl300901a.
[39] Keith E. Whitener, Woo K. Lee, Paul M. Campbell, Jeremy T. Robinson, Paul E.
Sheehan, Chemical hydrogenation of single-layer graphene enables completely
reversible removal of electrical conductivity, Carbon, Volume 72, 2014, Pages
348-353, ISSN 0008-6223,
[40] Tang J, Chen Q, Xu L, Zhang S, Feng L, Cheng L, Xu H, Liu Z, Peng R. Graphene
oxide-silver nanocomposite as a highly effective antibacterial agent with speciesspecific mechanisms. ACS Appl Mater Interfaces. 2013 May;5(9):3867-74. doi:
10.1021/am4005495. Epub 2013 Apr 29. PMID: 23586616.
[41] J. Mater. Chem., 2012,22, 10457-10459
[42] FTIR Spectroscopy - Theory and Fundamentals | JASCO (jascoinc.com)
[43] Ausili, Alessio & Sánchez, Marina & Gómez-Fernández, Juan. (2015).
Attenuated total reflectance infrared spectroscopy: A powerful method for the
simultaneous study of structure and spatial orientation of lipids and membrane
proteins. Biomedical Spectroscopy and Imaging. 4. 159-70. 10.3233/BSI150104.
[44] Shin-ichi Amma, Jiawei Luo, Carlo G. Pantano, Seong H. Kim,
Specular reflectance (SR) and attenuated total reflectance (ATR) infrared (IR)
spectroscopy of transparent flat glass surfaces: A case study for soda lime float
96
glass, Journal of Non-Crystalline Solids, Volume 428, 2015, Pages 189-196,
ISSN 0022-3093,
[45] https://www.agilent.com/en/support/atomic-spectroscopy/inductively-coupledplasma-optical-emission-spectroscopy-icp-oes/icp-oes-instruments/icp-oes-faq
[46] Alias, R., 2013, ′Structural and Dielectric Properties of Glass – Ceramic
Substrate with Varied Sintering Temperatures′, in B. Ertuğ (ed.), Sintering
Applications, IntechOpen, London. 10.5772/54037 |