參考文獻 |
Andrew, B., and V. Christopher, 2011: Precedding of the International Workshop on Satellite Analysis of Tropical Cyclones. Precedding of the International Workshop on Satellite Analysis of Tropical Cyclones, Hawaii, USA, World Meteorological Organization
Balaguru, K., G. R. Foltz, L. R. Leung, and K. A. Emanuel, 2016: Global warming-induced upper-ocean freshening and the intensification of super typhoons. Nat Commun, 7, 13670 DOI: 10.1038/ncomms13670.
Buck, A. L., 1981: New Equations for Computing Vapor Pressure and Enhancement Factor. J Appl. Meteorol. Climatol., 20, 1527-1532 DOI: 10.1175/1520-0450(1981)020<1527:Nefcvp>2.0.Co;2.
Carrasco, C. A., C. W. Landsea, and Y. L. Lin, 2014: The Influence of Tropical Cyclone Size on Its Intensification. Wea. Forecasting, 29, 582-590 DOI: 10.1175/Waf-D-13-00092.1.
Carton, J. A., and B. S. Giese, 2008: A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 2999-3017 DOI: 10.1175/2007MWR1978.1.
Chang, Y. T., I. I. Lin, H. C. Huang, Y.-C. Liao, and C.-C. Lien, 2020: The Association of Typhoon Intensity Increase with Translation Speed Increase in the South China Sea. Sustainability, 12 DOI: 10.3390/su12030939.
Chassignet, E. P., H. E. Hurlburt, O. M. Smedstad, G. R. Halliwell, P. J. Hogan, A. J. Wallcraftet al.R. Bleck, 2007: The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system. J. Mar. Syst. , 65, 60-83 DOI: 10.1016/j.jmarsys.2005.09.016.
Chu, J. H., C. R. Sampson, A. S. Levine, and E. Fukada, 2002: The Joint Typhoon Warning Center Tropical Cyclone Best-Tracks, 1945-2000.
Cione, J. J., 2015: The Relative Roles of the Ocean and Atmosphere as Revealed by Buoy Air–Sea Observations in Hurricanes. Mon. Wea. Rev., 143, 904-913 DOI: 10.1175/MWR-D-13-00380.1.
D′Asaro, E. A., P. G. Black, L. R. Centurioni, Y. T. Chang, S. S. Chen, R. C. Fosteret al.C. C. Wu, 2014: Impact of Typhoons on the Ocean in the Pacific. Bull. Am. Meteorol. Soc., 95, 1405-1418 DOI: 10.1175/BAMS-D-12-00104.1.
Dee, D. P., S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashiet al.F. Vitart, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q.J.R. Meteorol. Soc., 137, 553-597 DOI: 10.1002/qj.828.
DeMaria, M., 1996: The Effect of Vertical Shear on Tropical Cyclone Intensity Change. J. Atmos. Sci., 53, 2076-2088 DOI: 10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2.
DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further Improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531-543 DOI: 10.1175/WAF862.1.
Department of Environment, C. C. a. E. M., and P. FSM National, Chuuk and Yap State authorities, 2019: Situation report: Typhoon Wutip.
Emanuel, K., C. DesAutels, C. Holloway, and R. Korty, 2004: Environmental Control of Tropical Cyclone Intensity. J. Atmos. Sci., 61, 843-858 DOI: 10.1175/1520-0469(2004)061<0843:Ecotci>2.0.Co;2.
Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665-669 DOI: Doi 10.1038/44326.
Frank, W. M., and E. A. Ritchie, 2001: Effects of Vertical Wind Shear on the Intensity and Structure of Numerically Simulated Hurricanes. Mon. Wea. Rev., 129, 2249-2269 DOI: 10.1175/1520-0493(2001)129<2249:Eovwso>2.0.Co;2.
Fu, L. L., E. J. Christensen, C. A. Yamarone, M. Lefebvre, Y. Ménard, M. Dorrer, and P. Escudier, 1994: TOPEX/POSEIDON mission overview. J. Geophys. Res., 99, 24369 DOI: 10.1029/94JC01761.
Gray, W. M., 1968: Global View of the Origin of Tropical Disturbances and Storms, 32.
Hersbach, H., B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz‐Sabateret al.J. N. Thépaut, 2020: The ERA5 global reanalysis. Q.J.R. Meteorol. Soc., 146, 1999-2049 DOI: 10.1002/qj.3803.
Holliday, C. R., and A. H. Thompson, 1979: Climatological Characteristics of Rapidly Intensifying Typhoons. Mon. Wea. Rev., 107, 1022-1034 DOI: 10.1175/1520-0493(1979)107<1022:Ccorit>2.0.Co;2.
Huang, H. C., J. Boucharel, I. I. Lin, F. F. Jin, C. C. Lien, and I. F. Pun, 2017: Air-sea fluxes for Hurricane Patricia (2015): Comparison with supertyphoon Haiyan (2013) and under different ENSO conditions. J. Geophys. Res.: Oceans, 122, 6076-6089 DOI: 10.1002/2017JC012741.
Huang, P., I. I. Lin, C. Chou, and R. H. Huang, 2015: Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming. Nat Commun, 6, 7188 DOI: 10.1038/ncomms8188.
Kaplan, J., and M. DeMaria, 2003: Large-Scale Characteristics of Rapidly Intensifying Tropical Cyclones in the North Atlantic Basin. Wea. Forecasting, 18, 1093-1108 DOI: 10.1175/1520-0434(2003)018<1093:Lcorit>2.0.Co;2.
Knaff, J. A., C. R. Sampson, and M. DeMaria, 2005: An Operational Statistical Typhoon Intensity Prediction Scheme for the Western North Pacific. Wea. Forecasting, 20, 688-699 DOI: 10.1175/WAF863.1.
Knaff, J. A., M. DeMaria, C. R. Sampson, J. E. Peak, J. Cummings, and W. H. Schubert, 2013: Upper Oceanic Energy Response to Tropical Cyclone Passage. Journal of Climate, 26, 2631-2650 DOI: 10.1175/JCLI-D-12-00038.1.
Ko, D. S., S. Y. Chao, C.-C. Wu, and I. I. Lin, 2014: Impacts of typhoon megi (2010) on the South China Sea. J. Geophys. Res.: Oceans, 119, 4474-4489 DOI: 10.1002/2013JC009785.
Leipper, D., and D. Volgenau, 1972: Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr., 2, 218-224.
Lin, I. I., 2012: Typhoon-induced phytoplankton blooms and primary productivity increase in the western North Pacific subtropical ocean: TYPHOON-INDUCED BLOOMS AND PRODUCTIVITY. J. Geophys. Res.: Oceans, 117, n/a-n/a DOI: 10.1029/2011JC007626.
Lin, I. I., I. F. Pun, and C. C. Wu, 2009a: Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part II: Dependence on Translation Speed. Mon. Wea. Rev., 137, 3744-3757 DOI: 10.1175/2009mwr2713.1.
Lin, I. I., C. C. Wu, I. F. Pun, and D. S. Ko, 2008: Upper-Ocean Thermal Structure and the Western North Pacific Category 5 Typhoons. Part I: Ocean Features and the Category 5 Typhoons’ Intensification. Mon. Wea. Rev., 136, 3288-3306 DOI: 10.1175/2008MWR2277.1.
Lin, I. I., C. H. Chen, I. F. Pun, W. T. Liu, and C. C. Wu, 2009b: Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nargis (2008): WARM OCEAN ANOMALY AND CYCLONE NARGIS. Geophys. Res. Lett., 36, n/a-n/a DOI: 10.1029/2008GL035815.
Lin, I. I., P. Black, J. F. Price, C. Y. Yang, S. S. Chen, C. C. Lienet al.E. A. D′Asaro, 2013: An ocean coupling potential intensity index for tropical cyclones. Geophys. Res. Lett., 40, 1878-1882 DOI: 10.1002/grl.50091.
Lin, I. I., R. F. Rogers, H. C. Huang, Y. C. Liao, D. Herndon, J. Y. Yuet al.C.-C. Lien, 2021: A Tale of Two Rapidly-Intensifying Supertyphoons: Hagibis (2019) and Haiyan (2013). Bull. Am. Meteor. Soc., 1-59 DOI: 10.1175/BAMS-D-20-0223.1.
Mainelli, M., M. DeMaria, L. K. Shay, and G. Goni, 2008: Application of Oceanic Heat Content Estimation to Operational Forecasting of Recent Atlantic Category 5 Hurricanes. Wea. Forecasting, 23, 3-16 DOI: 10.1175/2007WAF2006111.1.
Mertz, F., 2013: Global ocean gridded L4 sea surface heights and derived variables reprocessed (1993-ongoing).
Mohapatra, M., and M. Sharma, 2015: Characteristics of surface wind structure of tropical cyclones over the north Indian Ocean. J. Earth. Syst. Sci., 124, 1573-1598 DOI: 10.1007/s12040-015-0613-6.
Pandey, R. S., Y. A. Liou, and J. C. Liu, 2021: Season-dependent variability and influential environmental factors of super-typhoons in the Northwest Pacific basin during 2013–2017. Weather. Clim. Extremes, 31 DOI: 10.1016/j.wace.2021.100307.
Park, M. S., L. E. Russel, and A. H. Patrick, 2012: Vertical Wind Shear and Ocean Heat Content as Environmental Modulators of Western North Pacific Tropical Cyclone Intensification and Decay. Trop. cyclone res. rev., 1, 448-457.
Peng, M. S., E. A. Hendricks, B. Fu, and T. Li, 2010: Quantifying Environmental Control on Tropical Cyclone Intensity Change. Mon. Wea. Rev., 138, 3243-3271 DOI: 10.1175/2010mwr3185.1.
Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279-283 DOI: 10.1038/nature01481.
Price, J. F., 1981: Upper Ocean Response to a Hurricane. J. Phys. Oceanogr., 11, 153-175 DOI: 10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.
Price, J. F., 2009: Metrics of hurricane-ocean interaction: vertically-integrated or vertically-averaged ocean temperature? Ocean Sci., 5, 351-368 DOI: 10.5194/os-5-351-2009.
Price, J. F., B. T. Sanford, and Z. G. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233-260.
Pun, I. F., J. A. Knaff, and C. R. Sampson, 2021: Uncertainty of Tropical Cyclone Wind Radii on Sea Surface Temperature Cooling. J. Geophys. Res.: Atmosphere, 126 DOI: 10.1029/2021JD034857.
Pun, I. F., I. I. Lin, C.-C. Lien, and C.-C. Wu, 2018: Influence of the Size of Supertyphoon Megi (2010) on SST Cooling. Mon. Wea. Rev., 146, 661-677 DOI: 10.1175/MWR-D-17-0044.1.
Pun, I. F., I. I. Lin, C.-R. Wu, D. S. Ko, and W. T. Liu, 2007: Validation and Application of Altimetry-Derived Upper Ocean Thermal Structure in the Western North Pacific Ocean for Typhoon-Intensity Forecast. IEEE Trans. Geosci. Remote Sensing, 45, 1616-1630 DOI: 10.1109/TGRS.2007.895950.
Pun, I. F., Y. T. Chang, I. I. Lin, T. Y. Tang, and R. C. Lien, 2011: Typhoon-Ocean Interaction in the Western North Pacific: Part 2. Oceanog., 24, 32-41 DOI: 10.5670/oceanog.2011.92.
Pun, I. F., J. C. L. Chan, I. I. Lin, K. T. F. Chan, J. F. Price, D. S. Ko, C. C. Lien, L. Wu, and H. C. Huang, 2019: Rapid Intensification of Typhoon Hato (2017) over Shallow Water. Sustainability, 11, 3709.
Pun, I. F., J. F. Price, and S. R. Jayne, 2016: Satellite-Derived Ocean Thermal Structure for the North Atlantic Hurricane Season. Mon. Wea. Rev., 144, 877-896 DOI: 10.1175/Mwr-D-15-0275.1.
Rogers, R. F., S. Aberson, M. M. Bell, D. J. Cecil, J. D. Doyle, T. B. Kimberlainet al.C. Velden, 2017: Rewriting the Tropical Record Books: The Extraordinary Intensification of Hurricane Patricia (2015). Bull. Am. Meteor. Soc., 98, 2091-2112 DOI: 10.1175/BAMS-D-16-0039.1.
Shay, L. K., G. J. Goni, and P. G. Black, 2000: Effects of a Warm Oceanic Feature on Hurricane Opal. Mon. Wea. Rev., 128, 18.
Shay, L. K., B. Jaimes, and E. W. Uhlhorn, 2015: Enthalpy and Momentum Fluxes during Hurricane Earl Relative to Underlying Ocean Features. Mon. Wea. Rev., 143, 111-131 DOI: 10.1175/mwr-d-13-00277.1.
Shay, L. K., P. G. Black, A. J. Mariano, J. D. Hawkins, and R. L. Elsberry, 1992: Upper ocean response to Hurricane Gilbert. J. Geophys. Res., 97, 20227 DOI: 10.1029/92JC01586.
Shen, L. Z., C. C. Wu, and F. Judt, 2021: The Role of Surface Heat Fluxes on the Size of Typhoon Megi (2016). J. Atmos. Sci., 78, 1075-1093 DOI: 10.1175/JAS-D-20-0141.1.
Sitkowski, M., J. Kossin, and C. Rozoff, 2011: Intensity and Structure Changes during Hurricane Eyewall Replacement Cycles. Mon. Wea. Rev., 139, 3829-3847 DOI: 10.1175/MWR-D-11-00034.1.
Taburet, G., and P. Marie-Isabelle, 2021: Quality information document. Copernicus.
Tory, K. J., and R. A. Dare, 2015: Sea Surface Temperature Thresholds for Tropical Cyclone Formation. Journal of Climate, 28, 8171-8183 DOI: 10.1175/JCLI-D-14-00637.1.
Tsuboki, K., M. K. Yoshioka, T. Shinoda, M. Kato, S. Kanada, and A. Kitoh, 2015: Future increase of supertyphoon intensity associated with climate change: Increase of super-typhoon intensity. Geophys. Res. Lett., 42, 646-652 DOI: 10.1002/2014GL061793.
Walker, N. D., R. R. Leben, C. T. Pilley, M. Shannon, D. C. Herndon, I. F. Pun, C. L. Gentemann, 2014: Slow translation speed causes rapid collapse of northeast Pacific Hurricane Kenneth over cold core eddy: Northeast Pacific Hurricane Collapses. Geophys. Res. Lett., 41, 7595-7601 DOI: 10.1002/2014GL061584.
Wang, B., and J. C. L. Chan, 2002: How Strong ENSO Events Affect Tropical Storm Activity over the Western North Pacific. Journal of Climate, 15, 1643-1658 DOI: 10.1175/1520-0442(2002)015<1643:Hseeat>2.0.Co;2.
Wang, B., and X. Zhou, 2007: Climate variation and prediction of rapid intensification in tropical cyclones in the western North Pacific. Meteorol. Atmos. Phys., 99, 1-16 DOI: 10.1007/s00703-006-0238-z.
Wang, S., and R. Toumi, 2019: Impact of Dry Midlevel Air on the Tropical Cyclone Outer Circulation. J. Atmos. Sci, 76, 1809-1826 DOI: 10.1175/jas-d-18-0302.1.
Wang, Y., and C. C. Wu, 2004: Current understanding of tropical cyclone structure and intensity changes ? a review. Meteorol. Atmos. Phys., 87, 257-278 DOI: 10.1007/s00703-003-0055-6.
Wong, M. L. M., and J. C. L. Chan, 2004: Tropical Cyclone Intensity in Vertical Wind Shear. J Atmos Sci, 61, 1859-1876 DOI: 10.1175/1520-0469(2004)061<1859:TCIIVW>2.0.CO;2.
Wu, C. C., W. T. Tu, I. F. Pun, I. I. Lin, and M. S. Peng, 2016: Tropical cyclone-ocean interaction in Typhoon Megi (2010)-A synergy study based on ITOP observations and atmosphere-ocean coupled model simulations: Coupled Model Simulation for Megi (2010). J. Geophys. Res.: Atmospheres, 121, 153-167 DOI: 10.1002/2015JD024198.
Wu, L., H. Su, R. G. Fovell, B. Wang, J. T. Shen, B. H. Kahn, S. M. Hristova-Veleva, B. H. Lambridgtsen, E. J. Fetzer, and J. H. Jiang, 2012: Relationship of environmental relative humidity with North Atlantic tropical cyclone intensity and intensification rate. Geophys. Res. Lett., 39 DOI: 10.1029/2012gl053546. |