參考文獻 |
Andreas, E. L., & Monahan, E. C. (2000). The role of whitecap bubbles in air-sea heat and moisture exchange. Journal of Physical Oceanography, 30(2), 433–442. https://doi.org/10.1175/1520-0485(2000)030<0433:TROWBI>2.0.CO;2
Alves, J. H. G. M., & Banner, M. L. (2003). Performance of a saturation-based dissipation-rate source term in modeling the fetch-limited evolution of wind waves. Journal of Physical Oceanography, 33(6), 1274–1298. https://doi.org/10.1175/1520-0485(2003)033<1274:POASDS>2.0.CO;2
Anguelova, M. D., & Webster, F. (2006). Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps. Journal of Geophysical Research: Oceans, 111(3). https://doi.org/10.1029/2005JC003158
Anguelova, M.D., Bettenhausen, M.H., Johnston, W.F., Gaiser, P.W., 2009. Validation of satellite-based estimates of whitecap coverage: 1–8.
Anguelova, M. D., & Hwang, P. A. (2016). Using energy dissipation rate to obtain active whitecap fraction. Journal of Physical Oceanography, 46(2), 461–481. https://doi.org/10.1175/JPO-D-15-0069.1
Anguelova, M.D., Bettenhausen, M.H., 2019. Whitecap Fraction From Satellite Measurements: Algorithm Description. J. Geophys. Res. Ocean. 124, 1827–1857. https://doi.org/10.1029/2018JC014630
Anguelova, M.D., 2020. Recent Advances in the Study of Oceanic Whitecaps. Recent Adv. Study Ocean. Whitecaps 153–174. https://doi.org/10.1007/978-3-030-36371-0
Banner, M. L., & Peirson, W. L. (2007). Wave breaking onset and strength for two-dimensional deep-water wave groups. Journal of Fluid Mechanics, 585, 93–115. https://doi.org/10.1017/S0022112007006568
Booij, N., Ris, R.C., Holthuijsen, L.H., 1999. A third-generation wave model for coastal regions, 1. Model description and validation. J. Geophys. Res. 104 (C4), 7649–7666.
Callaghan, A., DeLeeuw, G., Cohen, L., O’Dowd, C.D., 2008. Relationship of oceanic whitecap coverage to wind speed and wind history. Geophys. Res. Lett. 35, 1–5. https://doi.org/10.1029/2008GL036165
Callaghan, A. H., G. B. Deane, and M. D. Stokes (2017). On the imprint of surfactant-driven stabilization of laboratory breaking wave foam with comparison to oceanic whitecaps, J. Geophys. Res. Oceans,122, 6110–6128, doi:10.1002/2017JC012809
Callaghan, A.H., 2018. On the relationship between the energy dissipation rate of surface-breaking waves and oceanic whitecap coverage. J. Phys. Oceanogr. 48, 2609–2626. https://doi.org/10.1175/JPO-D-17-0124.1
Chen, C., Shiotani, S., & Sasa, K. (2013). Numerical ship navigation based on weather and ocean simulation. Ocean Engineering, 69, 44–53. https://doi.org/10.1016/j.oceaneng.2013.05.019
Chen, J., Jiang, C., Wu, Z., Long, Y., Deng, B., & Liu, X. (2019). Numerical investigation of fresh and saltwater distribution in the pearl river estuary during a typhoon using a fully coupled atmosphere-wave-ocean model. Water (Switzerland), 11(4). https://doi.org/10.3390/w11040646
Chen, W., 2017. Simulation of Typhoon-Induced Storm Tides and Wind Waves for the Northeastern Coast of Taiwan Using a Tide – Surge – Wave Coupled Model. Water. https://doi.org/10.3390/w9070549
Chen, Y.C., Li, J.L.F., Lee, W.L., Diner, D.J., Garay, M.J., Jiang, J.H., Wang, Y.H., Yu, J.Y., Kalashnikova, O.V., 2020. Evaluation of sea salt aerosols in climate systems: global climate modeling and observation-based analyses. Environ. Res. Lett. 15. https://doi.org/10.1088/1748-9326/ab751c
Donelan, M.A., Hamilton, J., Hui, W.H., 1985. Directional spectra of wind- generated waves. Philos. Trans. R. Soc. Lond., A 315, 509–562.
Duncan, J. H., 1981: An experimental investigation of breaking waves produced by a towed hydrofoil. Proc. Roy. Soc. London, A377, 331–348.
Drazen, D. A., Melville, W. K., & Lenain, L. (2008). Inertial scaling of dissipation in unsteady breaking waves. Journal of Fluid Mechanics, 611, 307–332. https://doi.org/10.1017/S0022112008002826
Drennan, W. M., Graber, H. C., Hauser, D., & Quentin, C. (2003). On the wave age dependence of wind stress over pure wind seas. Journal of Geophysical Research: Oceans, 108(3), 1–13. https://doi.org/10.1029/2000jc000715
Frouin, R., Iacobellis, S.F., Deschamps, P.Y., 2001. Influence of oceanic whitecaps on the global radiation budget. Geophys. Res. Lett. 28, 1523–1526. https://doi.org/10.1029/2000GL012657
Gemmrich, J. R., Banner, M. L., & Garrett, C. (2008). Spectrally resolved energy dissipation rate and momentum flux of breaking waves. Journal of Physical Oceanography, 38(6), 1296–1312. https://doi.org/10.1175/2007JPO3762.1
Goddijn-Murphy, L., Woolf, D. K., & Callaghan, A. H. (2011). Parameterizations and algorithms for oceanic whitecap coverage. Journal of Physical Oceanography, 41(4), 742–756. https://doi.org/10.1175/2010JPO4533.1
Holden, W.N., 2018. Typhoons, climate change, and climate injustice in the Philippines. Austrian J. South-East Asian Stud. 11, 117–139. https://doi.org/10.14764/10.ASEAS-2018.1-7
Holthuijsen, L.H., Herbers, T.H.C., 1986. Statistics of breaking waves observed as whitecaps in the open sea. Journal of Physical Oceanography, vol. 16, no. 2, pp. 290-297
Holthuijsen, L. H. (2007). Waves in Oceanic and Coastal Waters.
Holthuijsen, L. H., Powell, M. D., & Pietrzak, J. D. (2012). Wind and waves in extreme hurricanes. Journal of Geophysical Research: Oceans, 117(9). https://doi.org/10.1029/2012JC007983
Hu, K., & Chen, Q. (2011). Directional spectra of hurricane-generated waves in the Gulf of Mexico. Geophysical Research Letters, 38(19), 1–7. https://doi.org/10.1029/2011GL049145
Hwang, P. A. (2018). High-wind drag coefficient and whitecap coverage derived from microwave radiometer observations in tropical cyclones. Journal of Physical Oceanography, 48(10), 2221–2232. https://doi.org/10.1175/JPO-D-18-0107.1
Hwang, P. A. (2020). Whitecap observations by microwave radiometers: With discussion on surface roughness and foam contributions. Remote Sensing, 12(14), 1–9. https://doi.org/10.3390/rs12142277
Inness, A., Ades, M., Agustí-Panareda, A., Barr, J., Benedictow, A., Blechschmidt, A.M., Jose Dominguez, J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z., Massart, S., Parrington, M., Peuch, V.H., Razinger, M., Remy, S., Schulz, M., Suttie, M., 2019. The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. 19, 3515–3556. https://doi.org/10.5194/acp-19-3515-2019
Koepke, P., 1984. Effective reflectance of oceanic whitecaps. Appl. Opt. 23, 1816. https://doi.org/10.1364/ao.23.001816
Komen, G. J., Hasselmann, S., & Hasselmann, K. (1984). On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr., 14(8, Aug. 1984), 1271–1285. https://doi.org/10.1175/1520-0485(1984)014<1271:oteoaf>2.0.co;2
Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselman, and P. A. E. M. Janssen (1994). Dynamics and Modelling of Ocean Waves. 532 pp., Cambridge Univ. Press, New York.
Liu, H., Xie, L., Pietrafesa, L.J., Bao, S., 2007. Sensitivity of wind waves to hurricane wind characteristics. Ocean Model. 18, 37–52. https://doi.org/10.1016/j.ocemod.2007.03.004
Michell, J. H. (1893), On the highest waves in water, Philos. Mag. Ser. 5, 365, 430–437.
Melville, W.K., 1996. The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech. 28, 279–321. https://doi.org/10.1146/annurev.fl.28.010196.001431
Melville, W. K., & Matusov, P. (2002). Distribution of breaking waves at the ocean surface. 417(March).
Monahan E C 1971 Oceanic Whitecaps; Journal of Physical Oceanography, 1, pp. 139–144. https://doi.org/10.1175/1520-0485(1971)001<0139:OW>2.0.CO;2
Monahan E.C., Spiel D.E., Davidson K.L. (1986) A Model of Marine Aerosol Generation Via Whitecaps and Wave Disruption. In: Monahan E.C., Niocaill G.M. (eds) Oceanic Whitecaps. Oceanographic Sciences Library, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4668-2_16
Monahan, E.C., 2002. Oceanic whitecaps: Sea surface features detectable via satellite that are indicators of the magnitude of the air-sea gas transfer coefficient. Proc. Indian Acad. Sci. Earth Planet. Sci. 111, 315–319. https://doi.org/10.1007/BF02701977
Monahan, E. C., and D. K. Woolf, 1989: Comments on "Variations of whitecap coverage with wind stress and water temperature." J. Phys. Oceanogr., 19, 706–709, doi:10.1175/1520-0485(1989)019<0706:COOWCW>2.0.CO;2.
Moon, I.-J., Kim, M., Joh, M., Ahn, J., Shim, J.-S., & Jung, J. (2016). Recent record-breaking high ocean waves induced by typhoons in the seas adjacent to Korea. Journal of Coastal Research, 75(sp1), 1397–1401. https://doi.org/10.2112/si75-280.1
Morcrette, J.J., Boucher, O., Jones, L., Salmond, D., Bechtold, P., Beljaars, A., Benedetti, A., Bonet, A., Kaiser, J.W., Razinger, M., Schulz, M., Serrar, S., Simmons, A.J., Sofiev, M., Suttie, M., Tompkins, A.M., Untch, A., 2009. Aerosol analysis and forecast in the european centre for medium-range weather forecasts integrated forecast system: Forward modeling. J. Geophys. Res. Atmos. 114, 1–17. https://doi.org/10.1029/2008JD011235
Phillips, O. M. (1985). Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. Journal of Fluid Mechanics, 156, 505–531. https://doi.org/10.1017/S0022112085002221
Phillips, O.M., Posner, F.L., Hansen, J.P., 2001. High range resolution radar measurements ofthe speed distribution ofbreaking events in wind-generated ocean waves: surface impulse and wave energy dissipation. J. Phys. Oceanogr. 31, 450–460.
Plant, J. (1982). A Relationship Between Wind Stress and Wave Slope. Journal of Geophysical Research, 87(1), 1961–1967.
Romero, L., Kendall Melville, W., & Kleiss, J. M. (2012). Spectral energy dissipation due to surface wave breaking. Journal of Physical Oceanography, 42(9), 1421–1444. https://doi.org/10.1175/JPO-D-11-072.1
S. Basart (BSC), A. Benedictow (MetNo), A.-M. Blechschmidt (IUP-UB), S. Chabrillat (BIRA-IASB), Y. Christophe (BIRA-IASB), H. Clark (CNRS-LA), E. Cuevas (AEMET), H. Flentje (DWD), K. M. Hansen (AU), U. Im (AU), J. Kapsomenakis (AA), B. Langerock (BIRA-IAS, C.Z. (AA), 2016. Validation report of the CAMS near-real time global atmospheric composition service System evolution and performance statistics.
Salisbury, D. J., Anguelova, M. D., & Brooks, I. M. (2013). On the variability of whitecap fraction using satellite-based observations. Journal of Geophysical Research: Oceans, 118(11), 6201–6222. https://doi.org/10.1002/2013JC008797
Saincher, S., & Banerjee, J. (2016). Influence of wave breaking on the hydrodynamics of wave energy converters: A review. Renewable and Sustainable Energy Reviews, 58(October 2017), 704–717. https://doi.org/10.1016/j.rser.2015.12.301
Schwendeman, M., Thomson, J., Gemmrich, J.R., 2014. Wave breaking dissipation in a Young Wind Sea. J. Phys. Oceanogr. 44, 104–127. https://doi.org/10.1175/JPO-D-12-0237.1
Schwendeman, M., & Thomson, J. (2015). Observations of whitecap coverage and the relation to wind stress, wave slope, and turbulent dissipation. Journal of Geophysical Research: Oceans, 775–791. https://doi.org/10.1002/2015JC011107.Received
Stanislaw R. Massel. (1967). Ocean Waves Breaking and Marine Aerosol Fluxes. In Angewandte Chemie International Edition, 6(11), 951–952. (Vol. 13, Issue April).
Stogryn, A. (1972), The emissivity of sea foam at microwave frequencies, J. Geophys. Res., 77, 1658–1666.
Stramska, M., Petelski, T., 2003. Observations of oceanic whitecaps in the north polar waters of the Atlantic. J. Geophys. Res. Ocean. 108, 1–10. https://doi.org/10.1029/2002jc001321
Sullivan, P. P., Edson, J. B., Hristov, T., & McWilliams, J. C. (2008). Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. Journal of the Atmospheric Sciences, 65(4), 1225–1245. https://doi.org/10.1175/2007JAS2427.1
Thomson, J., Gemmrich, J. R., & Jessup, A. T. (2009). Energy dissipation and the spectral distribution of whitecaps. Geophysical Research Letters, 36(11), 4–7. https://doi.org/10.1029/2009GL038201
van der Westhuysen, A. J., Zijlema, M., & Battjes, J. A. (2007). Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water. Coastal Engineering, 54(2), 151–170. https://doi.org/10.1016/j.coastaleng.2006.08.006
Wada, A., Tomita, H., Kako, S., 2020. Comparison of the third-generation Japanese ocean flux data set J-OFURO3 with numerical simulations of Typhoon Dujuan (2015) traveling south of Okinawa. J. Oceanogr. 76, 419–437. https://doi.org/10.1007/s10872-020-00554-6
Wang, H., Yang, Y., Dong, C., Su, T., Sun, B., & Zou, B. (2018). Validation of an improved statistical theory for sea surface whitecap coverage using satellite remote sensing data. Sensors (Switzerland), 18(10). https://doi.org/10.3390/s18103306
Wu J. (1986) Whitecaps, Bubbles, and Spray. In: Monahan E.C., Niocaill G.M. (eds) Oceanic Whitecaps. Oceanographic Sciences Library, vol 2. Springer, Dordrecht. http://doi.org/10.1007/978-94-009-4668-2_11
Xu, Y., He, H., Song, J., Hou, Y., & Li, F. (2017). Observations and modeling of typhoon waves in the South China Sea. Journal of Physical Oceanography, 47(6), 1307–1324. https://doi.org/10.1175/JPO-D-16-0174.1
Ye, P., Zhang, X., Shi, G., Chen, S., Huang, Z., Tang, W., 2020. TKRM: A formal knowledge representation method for typhoon events. Sustain. 12. https://doi.org/10.3390/su12052030 |