博碩士論文 107626601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:18.117.105.184
姓名 阮梁清海(Luong Thanh Hang Nguyen)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 颱風條件下白帽覆蓋率之推算:以颱風杜鵑(2015)為例
(ON THE DETERMINATION OF WHITECAP COVERAGE UNDER TYPHOON CONDITION: A CASE STUDY OF TYPHOON DUJUAN (2015))
相關論文
★ 西北太平洋長期波候變遷之研究★ 近岸海洋波浪對海面粗糙度之影響
★ 濁水溪河口懸浮沉積物輸送之調查研究★ 低掠角微波雷達海面背向散射強度受波浪影響程度之探討
★ 澎湖海域潮流之數值模擬及其發電潛能評估★ 台灣沿海表面風之週期特性
★ 微波雷達與CCD影像分析於潮間帶地形測量之應用★ The directional spreading of surface wave in the shallow water zone
★ Resuspension of bottom sediment on Inner shelf - A case study of North-western coast of Taiwan★ 平緩海灘表層含水量變化特性研究
★ Development of S-band and Coherent-on-Receive Marine Radar for Ocean Surface Wave and Current Measurement★ 內陸棚及河口混合與擴散特性觀測研究
★ 臺灣海峽海洋塑料垃圾的輸運★ 有限項目的連續水質監測 應用於探討觀新藻礁區水體環境即時變化
★ 海岸帶地區海表拖曳係數與海表粗糙度(均方傾度)之相依關係★ 應用微波雷達監測海流之演算法流程改善
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 波浪破裂引起的白浪對海洋過程很重要,包括波浪增長限制、湍流、界面區域的海洋-大氣相互作用。本研究提出了一種利用白帽耗散和斷裂波峰長度理論的數值估計來估計颱風條件下白帽覆蓋率(WCC)的方法。結果,模擬的 WCC 在強風條件下飽和。WCC-颱風內部的風速關係存在較大的空間變異性。 WCC 最小值出現在颱風中心的平靜風區,而大約 30% 的最高 WCC 值分佈在風速為 50m/s 的颱風眼牆附近。颱風杜娟四個像限的比較表明,颱風杜娟左後象限的WCC在20-30m/s的中等風速下最高,從10%增加到20%,波浪非常年輕和陡峭。在 30m/s 風速下,右後象限為 18%,左前象限為 17%,右前象限為 14%,以下排名下降。在颱風眼牆較大40m/s的極端風速下,WCC飽和度為60%,最高的尾部為右後象限。斷裂強度參數 b 在我們的估計中起著至關重要的作用,可以將其視為常數或函數。應用b作為波浪陡度的函數使得WCC在寬風速範圍內的聚類更加緊密,而b的常數提供了與經驗模型相似的WCC-風速趨勢,並且b = 0.04是一個合適的常數。
摘要(英) Wave breaking-induced whitecaps are critical to oceanic processes that include wave growth limitation, turbulence, and oceanic-atmosphere interaction in the interfacial region. This study proposes a method for the estimate of the whitecap coverage (WCC) under typhoon conditions by using numerical estimates of white-capping dissipation and breaking crest length theory. As a result, the simulated WCC saturates under strong wind conditions. There is a large spatial variability of the WCC – wind speed relationship inside the typhoon. The minimum WCC values are found in the calm wind regions of the typhoon center, while the highest WCC values of approximately 30% are distributed near the typhoon eyewall with strong winds of 50 m/s. The comparison among four quadrants of Typhoon Dujuan shows the WCC in the rear-left quadrant of Typhoon Dujuan is highest under moderate winds of 20 - 30 m/s, increasing from 10% to 20%, where waves are very young and steep. The following rankings descend for the rear-right quadrant of 18%, front-left quadrant of 17%, and front-right quadrant of 14% at 30 m/s wind speed. Under extreme wind speed of larger than 40 m/s in the typhoon eyewall, the WCC saturates at 60%, and the highest tail is for the rear-right quadrant. The breaking strength parameter b plays a crucial role in our estimates which could be treated as a constant or a function. The application of b as a function of wave steepness brings a tighter clustering of WCC over the wide range of wind speed, while the constant of b provides a similar trend of WCC-wind speed the with the empirical model, and b = 0.04 is an appropriate constant.
關鍵字(中) ★ 白帽覆蓋
★ 白帽消散
★ 颱風動力學
關鍵字(英) ★ Whitecap coverage
★ white-capping dissipation
★ typhoon dynamics
論文目次 TABLE OF CONTENTS
ABSTRACT i
ABSTRACT CHINESE ii
LIST OF FIGURES v
LIST OF TABLES ix
LIST OF SYMBOLS ix
CHAPTER I INTRODUCTION 1
1.1 Motivation 1
1.2 Literature Review 3
1.2.1 The role of whitecaps in the air-sea interaction 3
1.2.2 Measurements of whitecap coverage 4
1.2.3 Estimations of whitecap coverage 6
1.2.4 Wind wave characteristics under typhoon condition 9
1.3 Research aims 11
CHAPTER II RESEARCH METHODOLOGY 12
2.1 Data sources 12
2.1.1 Wind data 12
2.1.2 Directional wave spectrum 13
2.1.3 Sea salt aerosol reanalysis data 16
2.2 Estimations of whitecap coverage from wave dissipation 18
2.2.1 Dissipation term 18
2.2.2 Moments of the breaking crest length 23
2.2.3 Determination of whitecap coverage 24
2.2.4 Discussion on the breaking strength parameter 25
CHAPTER III RESULT AND DISCUSSION 29
3.1 Simulations of typhoon waves 29
3.1.1 Wind 29
3.1.2 Wave 30
3.2 Whitecap coverage in Typhoon Dujuan 34
3.2.1 Parameter b as a constant 34
3.2.2 Parameter b as a function of wave slope 42
3.3 Comparison with wave age and wave steepness 45
3.4 Validation using sea salt aerosol concentration 46
3.5 Whitecap coverage in four quadrants 47
CHAPTER IV CONCLUSION 53
REFERENCES 55
參考文獻 Andreas, E. L., & Monahan, E. C. (2000). The role of whitecap bubbles in air-sea heat and moisture exchange. Journal of Physical Oceanography, 30(2), 433–442. https://doi.org/10.1175/1520-0485(2000)030<0433:TROWBI>2.0.CO;2
Alves, J. H. G. M., & Banner, M. L. (2003). Performance of a saturation-based dissipation-rate source term in modeling the fetch-limited evolution of wind waves. Journal of Physical Oceanography, 33(6), 1274–1298. https://doi.org/10.1175/1520-0485(2003)033<1274:POASDS>2.0.CO;2
Anguelova, M. D., & Webster, F. (2006). Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps. Journal of Geophysical Research: Oceans, 111(3). https://doi.org/10.1029/2005JC003158
Anguelova, M.D., Bettenhausen, M.H., Johnston, W.F., Gaiser, P.W., 2009. Validation of satellite-based estimates of whitecap coverage: 1–8.
Anguelova, M. D., & Hwang, P. A. (2016). Using energy dissipation rate to obtain active whitecap fraction. Journal of Physical Oceanography, 46(2), 461–481. https://doi.org/10.1175/JPO-D-15-0069.1
Anguelova, M.D., Bettenhausen, M.H., 2019. Whitecap Fraction From Satellite Measurements: Algorithm Description. J. Geophys. Res. Ocean. 124, 1827–1857. https://doi.org/10.1029/2018JC014630
Anguelova, M.D., 2020. Recent Advances in the Study of Oceanic Whitecaps. Recent Adv. Study Ocean. Whitecaps 153–174. https://doi.org/10.1007/978-3-030-36371-0
Banner, M. L., & Peirson, W. L. (2007). Wave breaking onset and strength for two-dimensional deep-water wave groups. Journal of Fluid Mechanics, 585, 93–115. https://doi.org/10.1017/S0022112007006568
Booij, N., Ris, R.C., Holthuijsen, L.H., 1999. A third-generation wave model for coastal regions, 1. Model description and validation. J. Geophys. Res. 104 (C4), 7649–7666.
Callaghan, A., DeLeeuw, G., Cohen, L., O’Dowd, C.D., 2008. Relationship of oceanic whitecap coverage to wind speed and wind history. Geophys. Res. Lett. 35, 1–5. https://doi.org/10.1029/2008GL036165
Callaghan, A. H., G. B. Deane, and M. D. Stokes (2017). On the imprint of surfactant-driven stabilization of laboratory breaking wave foam with comparison to oceanic whitecaps, J. Geophys. Res. Oceans,122, 6110–6128, doi:10.1002/2017JC012809
Callaghan, A.H., 2018. On the relationship between the energy dissipation rate of surface-breaking waves and oceanic whitecap coverage. J. Phys. Oceanogr. 48, 2609–2626. https://doi.org/10.1175/JPO-D-17-0124.1
Chen, C., Shiotani, S., & Sasa, K. (2013). Numerical ship navigation based on weather and ocean simulation. Ocean Engineering, 69, 44–53. https://doi.org/10.1016/j.oceaneng.2013.05.019
Chen, J., Jiang, C., Wu, Z., Long, Y., Deng, B., & Liu, X. (2019). Numerical investigation of fresh and saltwater distribution in the pearl river estuary during a typhoon using a fully coupled atmosphere-wave-ocean model. Water (Switzerland), 11(4). https://doi.org/10.3390/w11040646
Chen, W., 2017. Simulation of Typhoon-Induced Storm Tides and Wind Waves for the Northeastern Coast of Taiwan Using a Tide – Surge – Wave Coupled Model. Water. https://doi.org/10.3390/w9070549
Chen, Y.C., Li, J.L.F., Lee, W.L., Diner, D.J., Garay, M.J., Jiang, J.H., Wang, Y.H., Yu, J.Y., Kalashnikova, O.V., 2020. Evaluation of sea salt aerosols in climate systems: global climate modeling and observation-based analyses. Environ. Res. Lett. 15. https://doi.org/10.1088/1748-9326/ab751c
Donelan, M.A., Hamilton, J., Hui, W.H., 1985. Directional spectra of wind- generated waves. Philos. Trans. R. Soc. Lond., A 315, 509–562.
Duncan, J. H., 1981: An experimental investigation of breaking waves produced by a towed hydrofoil. Proc. Roy. Soc. London, A377, 331–348.
Drazen, D. A., Melville, W. K., & Lenain, L. (2008). Inertial scaling of dissipation in unsteady breaking waves. Journal of Fluid Mechanics, 611, 307–332. https://doi.org/10.1017/S0022112008002826
Drennan, W. M., Graber, H. C., Hauser, D., & Quentin, C. (2003). On the wave age dependence of wind stress over pure wind seas. Journal of Geophysical Research: Oceans, 108(3), 1–13. https://doi.org/10.1029/2000jc000715
Frouin, R., Iacobellis, S.F., Deschamps, P.Y., 2001. Influence of oceanic whitecaps on the global radiation budget. Geophys. Res. Lett. 28, 1523–1526. https://doi.org/10.1029/2000GL012657
Gemmrich, J. R., Banner, M. L., & Garrett, C. (2008). Spectrally resolved energy dissipation rate and momentum flux of breaking waves. Journal of Physical Oceanography, 38(6), 1296–1312. https://doi.org/10.1175/2007JPO3762.1
Goddijn-Murphy, L., Woolf, D. K., & Callaghan, A. H. (2011). Parameterizations and algorithms for oceanic whitecap coverage. Journal of Physical Oceanography, 41(4), 742–756. https://doi.org/10.1175/2010JPO4533.1
Holden, W.N., 2018. Typhoons, climate change, and climate injustice in the Philippines. Austrian J. South-East Asian Stud. 11, 117–139. https://doi.org/10.14764/10.ASEAS-2018.1-7
Holthuijsen, L.H., Herbers, T.H.C., 1986. Statistics of breaking waves observed as whitecaps in the open sea. Journal of Physical Oceanography, vol. 16, no. 2, pp. 290-297
Holthuijsen, L. H. (2007). Waves in Oceanic and Coastal Waters.
Holthuijsen, L. H., Powell, M. D., & Pietrzak, J. D. (2012). Wind and waves in extreme hurricanes. Journal of Geophysical Research: Oceans, 117(9). https://doi.org/10.1029/2012JC007983
Hu, K., & Chen, Q. (2011). Directional spectra of hurricane-generated waves in the Gulf of Mexico. Geophysical Research Letters, 38(19), 1–7. https://doi.org/10.1029/2011GL049145
Hwang, P. A. (2018). High-wind drag coefficient and whitecap coverage derived from microwave radiometer observations in tropical cyclones. Journal of Physical Oceanography, 48(10), 2221–2232. https://doi.org/10.1175/JPO-D-18-0107.1
Hwang, P. A. (2020). Whitecap observations by microwave radiometers: With discussion on surface roughness and foam contributions. Remote Sensing, 12(14), 1–9. https://doi.org/10.3390/rs12142277
Inness, A., Ades, M., Agustí-Panareda, A., Barr, J., Benedictow, A., Blechschmidt, A.M., Jose Dominguez, J., Engelen, R., Eskes, H., Flemming, J., Huijnen, V., Jones, L., Kipling, Z., Massart, S., Parrington, M., Peuch, V.H., Razinger, M., Remy, S., Schulz, M., Suttie, M., 2019. The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. 19, 3515–3556. https://doi.org/10.5194/acp-19-3515-2019
Koepke, P., 1984. Effective reflectance of oceanic whitecaps. Appl. Opt. 23, 1816. https://doi.org/10.1364/ao.23.001816
Komen, G. J., Hasselmann, S., & Hasselmann, K. (1984). On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr., 14(8, Aug. 1984), 1271–1285. https://doi.org/10.1175/1520-0485(1984)014<1271:oteoaf>2.0.co;2
Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselman, and P. A. E. M. Janssen (1994). Dynamics and Modelling of Ocean Waves. 532 pp., Cambridge Univ. Press, New York.
Liu, H., Xie, L., Pietrafesa, L.J., Bao, S., 2007. Sensitivity of wind waves to hurricane wind characteristics. Ocean Model. 18, 37–52. https://doi.org/10.1016/j.ocemod.2007.03.004
Michell, J. H. (1893), On the highest waves in water, Philos. Mag. Ser. 5, 365, 430–437.
Melville, W.K., 1996. The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech. 28, 279–321. https://doi.org/10.1146/annurev.fl.28.010196.001431
Melville, W. K., & Matusov, P. (2002). Distribution of breaking waves at the ocean surface. 417(March).
Monahan E C 1971 Oceanic Whitecaps; Journal of Physical Oceanography, 1, pp. 139–144. https://doi.org/10.1175/1520-0485(1971)001<0139:OW>2.0.CO;2
Monahan E.C., Spiel D.E., Davidson K.L. (1986) A Model of Marine Aerosol Generation Via Whitecaps and Wave Disruption. In: Monahan E.C., Niocaill G.M. (eds) Oceanic Whitecaps. Oceanographic Sciences Library, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4668-2_16
Monahan, E.C., 2002. Oceanic whitecaps: Sea surface features detectable via satellite that are indicators of the magnitude of the air-sea gas transfer coefficient. Proc. Indian Acad. Sci. Earth Planet. Sci. 111, 315–319. https://doi.org/10.1007/BF02701977
Monahan, E. C., and D. K. Woolf, 1989: Comments on "Variations of whitecap coverage with wind stress and water temperature." J. Phys. Oceanogr., 19, 706–709, doi:10.1175/1520-0485(1989)019<0706:COOWCW>2.0.CO;2.
Moon, I.-J., Kim, M., Joh, M., Ahn, J., Shim, J.-S., & Jung, J. (2016). Recent record-breaking high ocean waves induced by typhoons in the seas adjacent to Korea. Journal of Coastal Research, 75(sp1), 1397–1401. https://doi.org/10.2112/si75-280.1
Morcrette, J.J., Boucher, O., Jones, L., Salmond, D., Bechtold, P., Beljaars, A., Benedetti, A., Bonet, A., Kaiser, J.W., Razinger, M., Schulz, M., Serrar, S., Simmons, A.J., Sofiev, M., Suttie, M., Tompkins, A.M., Untch, A., 2009. Aerosol analysis and forecast in the european centre for medium-range weather forecasts integrated forecast system: Forward modeling. J. Geophys. Res. Atmos. 114, 1–17. https://doi.org/10.1029/2008JD011235
Phillips, O. M. (1985). Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. Journal of Fluid Mechanics, 156, 505–531. https://doi.org/10.1017/S0022112085002221
Phillips, O.M., Posner, F.L., Hansen, J.P., 2001. High range resolution radar measurements ofthe speed distribution ofbreaking events in wind-generated ocean waves: surface impulse and wave energy dissipation. J. Phys. Oceanogr. 31, 450–460.
Plant, J. (1982). A Relationship Between Wind Stress and Wave Slope. Journal of Geophysical Research, 87(1), 1961–1967.
Romero, L., Kendall Melville, W., & Kleiss, J. M. (2012). Spectral energy dissipation due to surface wave breaking. Journal of Physical Oceanography, 42(9), 1421–1444. https://doi.org/10.1175/JPO-D-11-072.1
S. Basart (BSC), A. Benedictow (MetNo), A.-M. Blechschmidt (IUP-UB), S. Chabrillat (BIRA-IASB), Y. Christophe (BIRA-IASB), H. Clark (CNRS-LA), E. Cuevas (AEMET), H. Flentje (DWD), K. M. Hansen (AU), U. Im (AU), J. Kapsomenakis (AA), B. Langerock (BIRA-IAS, C.Z. (AA), 2016. Validation report of the CAMS near-real time global atmospheric composition service System evolution and performance statistics.
Salisbury, D. J., Anguelova, M. D., & Brooks, I. M. (2013). On the variability of whitecap fraction using satellite-based observations. Journal of Geophysical Research: Oceans, 118(11), 6201–6222. https://doi.org/10.1002/2013JC008797
Saincher, S., & Banerjee, J. (2016). Influence of wave breaking on the hydrodynamics of wave energy converters: A review. Renewable and Sustainable Energy Reviews, 58(October 2017), 704–717. https://doi.org/10.1016/j.rser.2015.12.301
Schwendeman, M., Thomson, J., Gemmrich, J.R., 2014. Wave breaking dissipation in a Young Wind Sea. J. Phys. Oceanogr. 44, 104–127. https://doi.org/10.1175/JPO-D-12-0237.1
Schwendeman, M., & Thomson, J. (2015). Observations of whitecap coverage and the relation to wind stress, wave slope, and turbulent dissipation. Journal of Geophysical Research: Oceans, 775–791. https://doi.org/10.1002/2015JC011107.Received
Stanislaw R. Massel. (1967). Ocean Waves Breaking and Marine Aerosol Fluxes. In Angewandte Chemie International Edition, 6(11), 951–952. (Vol. 13, Issue April).
Stogryn, A. (1972), The emissivity of sea foam at microwave frequencies, J. Geophys. Res., 77, 1658–1666.
Stramska, M., Petelski, T., 2003. Observations of oceanic whitecaps in the north polar waters of the Atlantic. J. Geophys. Res. Ocean. 108, 1–10. https://doi.org/10.1029/2002jc001321
Sullivan, P. P., Edson, J. B., Hristov, T., & McWilliams, J. C. (2008). Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. Journal of the Atmospheric Sciences, 65(4), 1225–1245. https://doi.org/10.1175/2007JAS2427.1
Thomson, J., Gemmrich, J. R., & Jessup, A. T. (2009). Energy dissipation and the spectral distribution of whitecaps. Geophysical Research Letters, 36(11), 4–7. https://doi.org/10.1029/2009GL038201
van der Westhuysen, A. J., Zijlema, M., & Battjes, J. A. (2007). Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water. Coastal Engineering, 54(2), 151–170. https://doi.org/10.1016/j.coastaleng.2006.08.006
Wada, A., Tomita, H., Kako, S., 2020. Comparison of the third-generation Japanese ocean flux data set J-OFURO3 with numerical simulations of Typhoon Dujuan (2015) traveling south of Okinawa. J. Oceanogr. 76, 419–437. https://doi.org/10.1007/s10872-020-00554-6
Wang, H., Yang, Y., Dong, C., Su, T., Sun, B., & Zou, B. (2018). Validation of an improved statistical theory for sea surface whitecap coverage using satellite remote sensing data. Sensors (Switzerland), 18(10). https://doi.org/10.3390/s18103306
Wu J. (1986) Whitecaps, Bubbles, and Spray. In: Monahan E.C., Niocaill G.M. (eds) Oceanic Whitecaps. Oceanographic Sciences Library, vol 2. Springer, Dordrecht. http://doi.org/10.1007/978-94-009-4668-2_11
Xu, Y., He, H., Song, J., Hou, Y., & Li, F. (2017). Observations and modeling of typhoon waves in the South China Sea. Journal of Physical Oceanography, 47(6), 1307–1324. https://doi.org/10.1175/JPO-D-16-0174.1
Ye, P., Zhang, X., Shi, G., Chen, S., Huang, Z., Tang, W., 2020. TKRM: A formal knowledge representation method for typhoon events. Sustain. 12. https://doi.org/10.3390/su12052030
指導教授 錢樺(Hwa Chien) 審核日期 2022-6-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明