博碩士論文 108621011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:128 、訪客IP:3.137.173.98
姓名 林振澤(Chen-Tse Lin)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 混合型聖嬰海洋動力演化機制的研究
(The dynamical evolution of Mixed type of El Niño: An Oceanic View)
相關論文
★ Impacts of Equatorial Ocean Currents on El Niño Simulations in CMIP6 Models★ 充放電振盪機制在非典型聖嬰演化過程中所扮演的角色
★ The Dynamic of EP and CP El Niño under the Influence of Atlantic Multi-decadal Oscillation★ 多尺度氣候振盪影響ENSO 組合模態與台灣海峽風場的關聯性變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究透過簡單海洋同化模式(Simple Ocean Data Assimilation,簡稱為SODA)的再分析資料,深入分析不同種類聖嬰事件的動力機制。首先根據Niño3 (5°S-5°N, 150°-90°W)和Niño4 (5°S-5°N,160°E-150°W)指數,本研究將1950-2010聖嬰事件分為三類,其中包含海溫暖化接近東太平洋Niño3區域的東太平洋聖嬰事件、海溫暖化接近Niño4區域的中太平洋聖嬰事件,以及兼具以上兩種特徵的混合型聖嬰事件。根據發展期暖化的特徵,混合型聖嬰又可以進一步被分類為混合型-1和混合型-2聖嬰事件,其中混合型-1聖嬰事件有從東太平洋浮現並往中太平洋延伸的暖化發展,而混合型-2聖嬰事件則在中太平洋及東太平洋同時有相近的暖化特徵。
本研究進一步利用Bjerknes Feedback過程分析溫躍層、海表面溫度和表面風應力以測試其大氣與海洋的交互作用,其中溫躍層變化在混合型-1聖嬰事件發展期間從東太平洋區域浮現,然而西風應力距平僅在東太平洋事件持續向東發展;而混合型-2聖嬰事件中溫躍層變化在發展期僅分布於接近中太平洋區域,並在成熟期向東發展。進一步分析由聖嬰事件暖階段中,赤道區域的暖水堆積和向赤道兩側的南北向Discharge洋流;及冷階段中,赤道兩側的暖水堆積和向赤道的Recharge洋流相繼交替形成的Recharge Oscillator機制,並利用混合層熱含量收支方程分析海洋動力的暖化貢獻,其中混合型-1的洋流及暖水堆積於發展期在東太平洋浮現後開始向中太平洋發展,東太平洋區域則在向中太平洋發展後短暫的減弱,在成熟期後再度開始增強,赤道的暖水及Discharge洋流也在東太平洋溫躍層增厚後開始增強,並在成熟期達到最大值。熱含量收支方程中溫躍層回饋項及東西向洋流的暖化貢獻項皆可以看到由東太平洋浮現並向中太平洋發展的趨勢,並在成熟期於中太平洋有暖化的極值;混合型-2聖嬰事件暖水在發展期已在中太平洋浮現,該階段赤道區域則無明顯暖水堆積,而向東及Discharge洋流僅在成熟期於東太平洋增強。其熱含量收支方程中溫躍層回饋項及東西洋流暖化貢獻都於較早期有微弱的發展,僅在成熟期時向東太平洋擴張並增強。
根據目前整理出的四種聖嬰動力機制,本研究進一步分析近年2014-16聖嬰事件,該事件為一多年期且仍然可發展出強暖化的獨特聖嬰事件,相較於普遍認為其具有混合型聖嬰事件的發展,本研究分析其暖化型態發現該事件為由混合型-2聖嬰轉為東太平洋聖嬰的獨特事件。2014聖嬰事件發展期有相當強的動力及暖化快速發展,並在該階段過後快速減弱,至成熟期僅有微弱和逐漸向東擴張的暖化,進入2015後西風應力距平快速的增強,東太平洋的強暖化隨之開始浮現,轉為相當強的東太平洋聖嬰事件,而在成熟期過後暖化則快速的衰退。
摘要(英) In this study, the ocean dynamics processes in developing the Mixed type of El Niño event with surface warming developed in both eastern and central Pacific have been analyzed systematically by reanalysis data from Simple Ocean Data Assimilation (SODA). Following the Niño index method (Kug et al., 2008), El Niño events from 1950 to 2010 are classified into three types of El Niño including Eastern Pacific El Niño (EP), Central Pacific El Niño (CP) and Mixed type El Niño (MIX) by directly comparing Niño3 (5°S-5°N, 150°-90°W) and Niño4 (5°S-5°N,160°E-150°W) indices. According to different warming patterns in the developing phase, it could be found that MIX El Niño can be further divided into MIX-1 El Niño with its surface warming emerging from the eastern Pacific and developing toward the central Pacific, and MIX-2 El Niño features a similar warming pattern between central and eastern Pacific.
Several mechanisms have been found in two types of Mixed El Niño, which could lead to different physical performances. In Bjerknes feedback mechanism, the air-sea interaction of MIX El Niño shows that westly wind stress is confined over the central Pacific, shifting the surface warming in both two types of MIX El Niño further west. However, the thermocline anomaly in MIX-1 emerged from eastern Pacific and developed toward central Pacific, while the one in MIX-2 remained weak near central Pacific, then strengthened in eastern Pacific in mature phase. In recharge-discharge mechanism and Heat budget analysis also reveals that MIX-1 El Niño started the discharge process early, and ocean dynamical processes such as eastward currents and surface heat content shifted westward. On the other hand, MIX-2 El Niño only shows weak eastward currents and surface heat content in its developing phase and strengthened in eastern Pacific during the mature phase. However, MIX-2 showed almost no discharge development in mature phase.
Furthermore, as a special strong multi-year El Niño case and a popular topic for ENSO research these days, the 2014-16 event was analyzed following the method in this study. It began as MIX-2 El Niño with a strong 2014 developing phase warming, and turned into EP El Niño with a strong warming pattern in eastern Pacific after the year 2015.
關鍵字(中) ★ 混合型聖嬰事件 關鍵字(英) ★ Mixed type El Niño
★ Recharge Oscillator
★ Bjerknes feedback
論文目次 摘要 i
Abstract iv
致謝 vi
目次 vii
圖目錄 x
表格目錄 xiii
第一章、前言 1
1.1 研究動機 1
1.2 文章架構 4
第二章、資料與方法 5
2.1資料來源 5
2.2研究方法 7
2.2.1海表面溫度與距平資料 7
2.2.2聖嬰指數 8
2.2.3聖嬰事件定義與分類 8
2.2.4 Bjerknes feedback分析方法 11
2.2.5 Recharge Oscillator分析方法 12
2.2.6海洋混合層熱含量收支方程 14
第三章、比較聖嬰事件暖化差異 19
3.1不同聖嬰事件SSTA表現 19
3.2不同聖嬰事件副表層暖化 20
第四章、Bjerknes Feedback 25
4.1不同聖嬰事件中Bjerknes feedback發展差異 25
4.2 Bjerknes feedback線性迴歸分析 28
第五章、Recharge Oscillator 34
第六章、混合層熱含量收支方程 40
6.1分析不同發展階段差異 40
6.2 分析東西分布的發展差異 43
第七章、2014-2016聖嬰事件海洋動力機制分析 49
7.1 2014-2016聖嬰事件分類 49
7.2 2014/15及2015/16 Bjerknes Feedback發展 50
7.3 2014/15及2015/16 副表層暖化表現 51
7.4 2014/15及2015/16 Recharge Oscillator表現 52
7.5 混合層熱含量收支方程分析 53
第八章、結論 60
參考文獻 63
參考文獻 An, S. I., & Jin, F. F. (2004). Nonlinearity and Asymmetry of ENSO. Journal of Climate, 17(12), 2399–2412.
An, S. I., & Wang, B. (2001). Mechanisms of Locking of the El Niño and La Niña Mature Phases to Boreal Winter. Journal of Climate, 14(9), 2164–2176.
Ashok, K., Behera, S. K., Rao, S. A., Weng, H., & Yamagata, T. (2007). El Niño Modoki and its possible teleconnection. Journal of Geophysical Research, 112(C11).
Bayr, T., Dommenget, D., Martin, T., & Power, S. B. (2014). The eastward shift of the Walker Circulation in response to global warming and its relationship to ENSO variability. Climate Dynamics, 43(9–10), 2747–2763.
Chen, H., Hu, Z., Huang, B., & Sui, C. (2016). The Role of Reversed Equatorial Zonal Transport in Terminating an ENSO Event, Journal of Climate, 29(16), 5859-5877.
Chen, H., & Jin, F. (2020). Fundamental Behavior of ENSO Phase Locking, Journal of Climate, 33(5), 1953-1968.
Duhaut, T. H. A., & Straub, D. N. (2006). Wind Stress Dependence on Ocean Surface Velocity: Implications for Mechanical Energy Input to Ocean Circulation. Journal of Physical Oceanography, 36(2), 202–211.
Fang, S.-W., & Yu, J.-Y. (2020). A control of ENSO transition complexity by tropical Pacific mean SSTs through tropical-subtropical interaction. Geophysical Research Letters, 47, e2020GL087933.
Huang, B., Xue, Y., Wang, H., Wang, W., & Kumar, A. (2011). Mixed layer heat budget of the El Niño in NCEP climate forecast system. Climate Dynamics, 39(1–2), 365–381.
Izumo, T. (2005). The equatorial undercurrent, meridional overturning circulation, and their roles in mass and heat exchanges during El Niño events in the tropical Pacific ocean. Ocean Dynamics, 55(2), 110–123.
Jansen, M. F., Dommenget, D., & Keenlyside, N. (2009). Tropical Atmosphere–Ocean Interactions in a Conceptual Framework. Journal of Climate, 22(3), 550–567.
Jin, F. F. (1997). An Equatorial Ocean Recharge Paradigm for ENSO. Part I: Conceptual Model. Journal of the Atmospheric Sciences, 54(7), 811–829.
Jin, F.-F., and S.-I. An, (1999): Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys. Res. Lett., 26, 2989–2992.
Kao, H. Y., & Yu, J. Y. (2009). Contrasting Eastern-Pacific and Central-Pacific Types of ENSO. Journal of Climate, 22(3), 615–632.
Kim, J., & Yu, J. (2020). Understanding Reintensified Multiyear El Niño Events. Geophysical Research Letters, 47(12).
Kug, J. S., Jin, F. F., & An, S. I. (2009). Two Types of El Niño Events: Cold Tongue El Niño and Warm Pool El Niño. Journal of Climate, 22(6), 1499–1515.
Lengaigne, M., & Vecchi, G. A. (2009). Contrasting the termination of moderate and extreme El Niño events in coupled general circulation models. Climate Dynamics, 35(2–3), 299–313.
Levine, A. F. Z., & McPhaden, M. J. (2016). How the July 2014 easterly wind burst gave the 2015–2016 El Niño a head start. Geophysical Research Letters, 43(12), 6503–6510.
Lian, T., Chen, D., & Tang, Y. (2017). Genesis of the 2014–2016 El Niño events. Science China Earth Sciences, 60(9), 1589–1600.
McCreary, J. P. (1983). A Model of Tropical Ocean-Atmosphere Interaction. Monthly Weather Review, 111(2), 370–387.
McPhaden, M. J., et al. (1998), The Tropical Ocean-Global Atmosphere observing system: A decade of progress, J. Geophys. Res., 103( C7), 14169– 14240
Quinn, W. H., Neal, V. T., & Antunez De Mayolo, S. E. (1987b). El Niño occurrences over the past four and a half centuries. Journal of Geophysical Research, 92(C13), 14449.
Rebert, J. P., Donguy, J. R., Eldin, G., & Wyrtki, K. (1985). Relations between sea level, thermocline depth, heat content, and dynamic height in the tropical Pacific Ocean. Journal of Geophysical Research, 90(C6), 11719.
Ren, H. L., & Jin, F. F. (2013). Recharge Oscillator Mechanisms in Two Types of ENSO. Journal of Climate, 26(17), 6506–6523.
Ren, H., Zuo, J., & Deng, Y. (2018). Statistical predictability of Niño indices for two types of ENSO. Climate Dynamics, 52, 5361-5382.
Suarez, M. J., & Schopf, P. S. (1988). A Delayed Action Oscillator for ENSO. Journal of the Atmospheric Sciences, 45(21), 3283–3287.
Wang, C. (2018). A review of ENSO theories. National Science Review, 5(6), 813–825.
Yan, Z., Wu, B., Li, T., Collins, M., Clark, R., Zhou, T., Murphy, J., & Tan, G. (2020). Eastward shift and extension of ENSO-induced tropical precipitation anomalies under global warming. Science Advances, 6(2).
Yeh, S. W., Kug, J. S., & An, S. I. (2014). Recent progress on two types of El Niño: Observations, dynamics, and future changes. Asia-Pacific Journal of Atmospheric Sciences, 50(1), 69–81.
Yu, J. Y., & Fang, S. W. (2018). The Distinct Contributions of the Seasonal Footprinting and Charged-Discharged Mechanisms to ENSO Complexity. Geophysical Research Letters, 45(13), 6611-6618.
Yu, J. Y., & Kim, S. T. (2012). Identifying the types of major El Niño events since 1870. International Journal of Climatology, 33(8), 2105–2112.
Zhang, Q., Kumar, A., Xue, Y., Wang, W., & Jin, F. F. (2007). Analysis of the ENSO Cycle in the NCEP Coupled Forecast Model. Journal of Climate, 20(7), 1265–1284.
Zhang, Z., & Li, G. (2021). Time-Spatial Features of Mix El Niño. Atmosphere, 12(4), 476.
Zhu, J., Liu, Y., Xie, R., & Chang, H. (2018). A Comparative Analysis of the Impacts of Two Types of El Niño on the Central and Eastern Pacific ITCZ. Atmosphere, 9(7), 266.
指導教授 王儷樵(Li-Chiao Wang) 審核日期 2022-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明