博碩士論文 109621016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:44.220.251.57
姓名 賴鵬翔(Peng-Xiang Lai)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱
(Applying the ensemble singular vector to study the forecast sensitivity of the heavy rainfall event on 2nd June 2017)
相關論文
★ 利用WRF-LETKF同化系統探討掩星折射率觀測對於強降水事件預報之影響★ 改善區域系集卡爾曼濾波器在颱風同化及預報中的spin-up問題-2008年颱風辛樂克個案研究
★ LETKF加速就位法於颱風同化預報之應用★ 利用系集重新定位法改善颱風路徑預報-2011年南瑪都颱風個案研究
★ 利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善定量降水即時預報:莫拉克颱風(2009)★ 利用系集資料同化系統估算區域大氣化學耦合模式中trace物種之排放與吸收:以CO2為例
★ OSSE實驗架構下利用系集預報敏感度工具探討觀測對於颱風路徑預報及結構之影響★ 利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善短期定量降雨預報: SoWMEX IOP8 個案分析
★ 利用系集重新定位法改善對流尺度定量降水即時預報:2009年莫拉克颱風個案研究★ LAPS 短時(0-6小時)系集降水機率預報之評估與應用
★ 利用辛樂克颱風(2008)建立的觀測系統模擬實驗評估系集奇異向量在颱風系集預報之應用★ 雷達資料同化於多重尺度天氣系統(梅雨)的強降雨預報影響:SoWMEX IOP#8 個案研究
★ 基於高解析度系集卡爾曼濾波器之渦旋初始化及其對於颱風強度預報之影響:2010年梅姬颱風個案研究★ 系集轉換卡爾曼漸進式平滑器在資料同化之應用
★ 不同微物理方案在雲可解析模式的系集預報分析: SoWMEX-IOP8 個案★ 利用正交向量改善系集卡爾曼濾波器之系集空間及其對同化與預報之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-30以後開放)
摘要(中) 於2017年6月1日至2日,在八小時內梅雨鋒面為台灣北部帶來超過600毫米的累積雨量。與此同時,系集降雨預報在此區域有極大不確定性。因此,為了瞭解影響此區域降水預報的初始擾動分布,我們採用系集奇異向量(ESV)進行敏感度分析,並將校驗區域與時間選擇於6月2日00 UTC的北部沿海區域。根據初始奇異向量結果,於6月1日12 UTC中國東南沿海的梅雨鋒面附近,沿鋒面的風切會影響在12小時後在台灣北部地區東北風與低層噴流的關係,並進一步導致鋒面位置與走向的差異。 為了進一步驗證,我們將系集以初始奇異向量進擾動並預報,結果顯示12小時預報的差異與最終奇異向量(FESV)吻合,並且當進行正負向擾動時,分別可以有效使雨帶靠近以及遠離台灣北部。然而,當使用較大校驗區域時,由於樣本誤差以及模式非線性的發展,會使FESV與擾動預報的結果有所差異。
因此,我們嘗試建立局地系集奇異向量方法,針對相同的校驗區域逐個計算每個小區域的初始敏感度。整體來說,在這個案中局地與全域奇異向量法結果相近,但可有效減少模糊的訊號,且擾動預報上仍能有效改變降雨的分布。簡而言之,局地奇異向量法可正確地找出初始敏感度的分布,並且兩種方法皆可有效與系集預報結合並且幫助局地分析。
摘要(英) The ensemble forecast for the heavy rainfall event on 2nd June 2017 which precipitated over 600 mm during 8 hours is found to have large uncertainty over northern Taiwan. To investigate the distribution of fast-growing initial perturbations that affect the rainfall distribution, the ensemble singular vector (ESV) sensitivity analysis is conducted, and the verification region is defined along the northern coast of Taiwan at 060200 UTC. The fastest-growing mode represented by the initial ensemble singular vector (IESV) is defined as the wind shift line located near southeastern China offshore, which affects the interaction between the northeasterly and the low-level barrier-jet 12 hours later in northern Taiwan shown by the final ensemble singular vector (FESV). By comparing the unperturbed forecast with the ones perturbed by the IESV, the FESV agrees with the evolution of initial perturbations under the non-linear model dynamic to a great extent and causes variations in the position of the convection line, which allows the rain band being effectively moved close to and away from land with the positive and negative perturbed forecast, respectively. However, the ESV under a global perspective may be less robust when applied to complex mesoscale systems inside a broader final verification region with sampling error problems or strong model nonlinearity.
Therefore, we attempt to construct the local ESV which is computed sequentially redefining the initial domain with a local patch for each grid with the same final verification region. The local FESV can perform a similar sensitivity to global FESV but has IESV with a less ambiguous signal. The perturbed forecast from the local IESV also has a good agreement with the global FESV, which effectively adjusts the rainband as well. The local ESV provides a useful way to properly distribute initial sensitive perturbations. Finally, both global and local ESV has the potential to be incorporated with the ensemble forecast and local analysis framework.
關鍵字(中) ★ 敏感度分析
★ 系集奇異向量
★ 系集預報
★ 梅雨鋒面
關鍵字(英) ★ Sensitivity Analysis
★ Ensemble Singular Vector
★ Ensemble Forecast
★ Mei-Yu Front
論文目次 摘要 i
Abstract ii
Acknowledgement iii
Table of Contents iv
List of Tables vi
List of Figures vii
1. Introduction 1
1.1 Background and Literature Review 1
1.2 Motivation and Objectives 3
2. Methodology 5
2.1 WRF Model 5
2.2 Ensemble Forecast 6
2.3 Sensitivity Analysis 6
2.1.1 Evolution of Perturbations 6
2.1.2 Singular Vector (SV) 7
2.1.3 Ensemble Singular Vector (ESV) 8
2.4 Pre-conditioning 9
3. Global Ensemble Singular Vector (GESV) 11
3.1 Overview of 2017 Mei-Yu Associated Heavy Rainfall Event 11
3.2 Experimental Setup 12
3.2.1 Data and Model 12
3.2.2 Moisture Total Energy Norm 13
3.3 Results of Sensitivity Analysis 14
3.4 Perturbed Simulation with IESV1 18
3.4.1 IESV1 Non-linear Evolution 18
3.4.2 Front Position and Rainfall Distribution 21
3.5 The Choice of Norms 23
4. Local Ensemble Singular Vector (LESV) 25
4.1 Formulation of LESV 25
4.2 Comparison between LESV and GESV 27
4.2.1 Evolution of ESV1 27
4.2.2 IESV1l Non-linear Evolution 28
4.3 Discussion 29
5. Conclusion and Future Work 33
5.1 Conclusion 33
5.2 Future Work 36
Reference 37
Appendix 43
I. Fraction Skill Score (FSS) 43
II. Frontogenesis 44
Tables 45
Figures 48
參考文獻 Ancell, B., and G. J. Hakim, 2007: Comparing Adjoint- and Ensemble-Sensitivity Analysis with Applications to Observation Targeting. Mon. Wea. Rev., 135, 4117-4134, https://doi.org/10.1175/2007mwr1904.1.
Barkmeijer, J., R. Buizza, T. N. Palmer, K. Puri, and J. F. Mahfouf, 2001: Tropical singular vectors computed with linearized diabatic physics. Quart. J. Roy. Meteor. Soc., 127, 685-708, https://doi.org/10.1002/qj.49712757221.
Bishop, C. H., and Z. Toth, 1999: Ensemble Transformation and Adaptive Observations. J. Atmos. Sci., 56, 1748-1765,
https://doi.org/10.1175/1520-0469(1999)056<1748:Etaao>2.0.Co;2.
Buizza, R., and A. Montani, 1999: Targeting Observations Using Singular Vectors. J. Atmos. Sci., 56, 2965-2985,
https://doi.org/10.1175/1520-0469(1999)056<2965:Tousv>2.0.Co;2.
Buizza, R., J. Tribbia, F. Molteni, and T. Palmer, 1993: Computation of optimal unstable structures for a numerical weather prediction model. Tellus, 45, 388-407,
https://doi.org/10.3402/tellusa.v45i5.14901.
Chen, G. T.-J., and C.-C. Yu, 1988: Study of low-level jet and extremely heavy rainfall over northern Taiwan in the mei-yu season. Mon. Wea. Rev., 116, 884-891, https://doi.org/10.1175/1520-0493(1988)116<0884:Sollja>2.0.Co;2.
Chen, G. T.-J., and H.-C. Chou, 1993: General characteristics of squall lines observed in TAMEX. Mon. Wea. Rev., 121, 726-733,
https://doi.org/10.1175/1520-0493(1993)121<0726:GCOSLO>2.0.CO;2.
Chen, Y.-L., Y.-X. Zhang, and N. B.-F. Hui, 1989: Analysis of a surface front during the early summer rainy season over Taiwan. Mon. Wea. Rev., 117, 909-931,
https://doi.org/10.1175/1520-0493(1989)117<0909:Aoasfd>2.0.Co;2.
Chen, Y.-L., X. A. Chen, and Y.-X. Zhang, 1994: A diagnostic study of the low-level jet during TAMEX IOP 5. Mon. Wea. Rev., 122, 2257-2284,
https://doi.org/10.1175/1520-0493(1994)122<2257:Adsotl>2.0.Co;2.
Chen, Y.-L., Y.-J. Chu, C.-S. Chen, C.-C. Tu, J.-H. Teng, and P.-L. Lin, 2018: Analysis and simulations of a heavy rainfall event over northern Taiwan during 11–12 June 2012. Mon. Wea. Rev., 146, 2697-2715, https://doi.org/10.1175/mwr-d-18-0001.1.
Dudhia, J., 1989: Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci., 46, 3077-3107, https://doi.org/10.1175/1520-0469(1989)046<3077:Nsocod>2.0.Co;2.
Ehrendorfer, M., R. M. Errico, and K. D. Raeder, 1999: Singular-vector perturbation growth in a primitive equation model with moist physics. J. Atmos. Sci., 56, 1627-1648, https://doi.org/10.1175/1520-0469(1999)056<1627:SVPGIA>2.0.CO;2.
Enomoto, T., S. Yamane, and W. Ohfuchi, 2015: Simple Sensitivity Analysis Using Ensemble Forecasts. J. Meteorol. Soc. Jpn., 93, 199-213,
https://doi.org/10.2151/jmsj.2015-011.
Enomoto, T., W. Ohfuchi, H. Nakamura, and M. A. Shapiro, 2007: Remote effects of tropical storm Cristobal upon a cut-off cyclone over Europe in August 2002. Meteor. Atmos. Phys., 96, 29-42, https://doi.org/10.1007/s00703-006-0219-2.
Gelaro, R., R. Buizza, T. N. Palmer, and E. Klinker, 1998: Sensitivity analysis of forecast errors and the construction of optimal perturbations using singular vectors. J. Atmos. Sci., 55, 1012-1037,
https://doi.org/10.1175/1520-0469(1998)055<1012:SAOFEA>2.0.CO;2.
He, H., J. W. McGinnis, Z. Song, and M. Yanai, 1987: Onset of the Asian summer monsoon in 1979 and the effect of the Tibetan Plateau. Mon. Wea. Rev., 115, 1966-1995, https://doi.org/10.1175/1520-0493(1987)115<1966:Ootasm>2.0.Co;2.
Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Wea. Rev., 134, 2318-2341,
https://doi.org/10.1175/mwr3199.1.
Jou, B. J.-D., and S.-M. Deng, 1992: Structure of a low-level jet and its role in triggering and organizing moist convection over Taiwan: A TAMEX case study. Terr. Atmos. Oceanic Sci, 3, 39-58, https://www.researchgate.net/publication/279694020.
Kain, J. S., 2004: The Kain–Fritsch Convective Parameterization: An Update. J. Appl. Meteor., 43, 170-181,
https://doi.org/10.1175/1520-0450(2004)043<0170:Tkcpau>2.0.Co;2.
Kalnay, E., 2003: Atmospheric modeling, data assimilation and predictability. Cambridge university press.
Kim, H. M., and B.-J. Jung, 2009: Influence of moist physics and norms on singular vectors for a tropical cyclone. Mon. Wea. Rev., 137, 525-543,
https://doi.org/10.1175/2008MWR2739.1.
Kuo, Y.-H., and G. T.-J. Chen, 1990: The Taiwan Area Mesoscale Experiment (TAMEX): An overview. Bull. Amer. Meteor. Soc., 71, 488-503,
https://doi.org/10.1175/1520-0477(1990)071<0488:Ttamea>2.0.Co;2.
Lacarra, J.-F., and O. Talagrand, 1988: Short-range evolution of small perturbations in a barotropic model. Tellus, 40, 81-95, https://doi.org/10.3402/tellusa.v40i2.11784.
Langland, R. H., M. A. Shapiro, and R. Gelaro, 2002: Initial Condition Sensitivity and Error Growth in Forecasts of the 25 January 2000 East Coast Snowstorm. Mon. Wea. Rev., 130, 957-974,
https://doi.org/10.1175/1520-0493(2002)130<0957:Icsaeg>2.0.Co;2.
Li, J., Y.-L. Chen, and W.-C. Lee, 1997: Analysis of a heavy rainfall event during TAMEX. Mon. Wea. Rev., 125, 1060-1082,
https://doi.org/10.1175/1520-0493(1997)125<1060:Aoahre>2.0.Co;2.
Lin, P.-L., Y.-L. Chen, C.-S. Chen, C.-L. Liu, and C.-Y. Chen, 2011: Numerical experiments investigating the orographic effects on a heavy rainfall event over the northwestern coast of Taiwan during TAMEX IOP 13. Meteor. Atmos. Phys., 114, 35-50,
https://doi.org/10.1007/s00703-011-0155-7.
Lin, Y.-J., T.-C. C. Wang, R. W. Pasken, H. Shen, and Z.-S. Deng, 1990: Characteristics of a subtropical squall line determined from TAMEX dual-Doppler data. Part II: Dynamic and thermodynamic structures and momentum budgets. J. Atmos. Sci., 47, 2382-2399,
https://doi.org/10.1175/1520-0469(1990)047<2382:Coassl>2.0.Co;2.
Lupo, K. M., R. D. Torn, and S.-C. Yang, 2020: Evaluation of stochastic perturbed parameterization tendencies on convective-permitting ensemble forecasts of heavy rainfall events in New York and Taiwan. Wea. Forecasting, 35, 5-24, https://doi.org/10.1175/WAF-D-19-0064.1.
Matsueda, M., M. Kyouda, Z. Toth, H. L. Tanaka, and T. Tsuyuki, 2011: Predictability of an Atmospheric Blocking Event that Occurred on 15 December 2005. Mon. Wea. Rev., 139, 2455-2470, https://doi.org/10.1175/2010mwr3551.1.
Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663-16682,
https://doi.org/10.1029/97JD00237.
Nishii, K., and H. Nakamura, 2010: Three-dimensional evolution of ensemble forecast spread during the onset of a stratospheric sudden warming event in January 2006. Quart. J. Roy. Meteor. Soc., 136, 894-905, https://doi.org/10.1002/qj.607.
Puri, K., J. Barkmeijer, and T. N. Palmer, 2001: Ensemble prediction of tropical cyclones using targeted diabatic singular vectors. Quart. J. Roy. Meteor. Soc., 127, 709-731, https://doi.org/10.1002/qj.49712757222.
Rabier, F., E. Klinker, P. Courtier, and A. Hollingsworth, 1996: Sensitivity of forecast errors to initial conditions. Quart. J. Roy. Meteor. Soc., 122, 121-150,
https://doi.org/10.1002/qj.49712252906.
Tao, W.-K., J. Simpson, and M. McCumber, 1989: An Ice-Water Saturation Adjustment. Mon. Wea. Rev., 117, 231-235,
https://doi.org/10.1175/1520-0493(1989)117<0231:Aiwsa>2.0.Co;2.
Teng, J.-H., C.-S. Chen, T.-C. C. Wang, and Y.-L. Chen, 2000: Orographic effects on a squall line system over Taiwan. Mon. Wea. Rev., 128, 1123-1138,
https://doi.org/10.1175/1520-0493(2000)128<1123:Oeoasl>2.0.Co;2.
Torn, R. D., and G. J. Hakim, 2008: Ensemble-Based Sensitivity Analysis. Mon. Wea. Rev., 136, 663-677, https://doi.org/10.1175/2007mwr2132.1.
Tu, C.-C., Y.-L. Chen, P.-L. Lin, and Y. Du, 2019: Characteristics of the marine boundary layer jet over the South China Sea during the early summer rainy season of Taiwan. Mon. Wea. Rev., 147, 457-475,
https://doi.org/10.1175/mwr-d-18-0230.1.
Tu, C.-C., Y.-L. Chen, P.-L. Lin, and P.-H. Lin, 2020: The relationship between the boundary layer moisture transport from the South China Sea and heavy rainfall over Taiwan. Terr. Atmos. Oceanic Sci., 31, 159-176,
https://doi.org/10.3319/tao.2019.07.01.01.
Tu, C.-C., Y.-L. Chen, P.-L. Lin, and M.-Q. Huang, 2022: Analysis and Simulations of a Heavy Rainfall Event Associated with the Passage of a Shallow Front over Northern Taiwan on 2 June 2017. Mon. Wea. Rev., 150, 505-528,
https://doi.org/10.1175/mwr-d-21-0113.1.
Wang, C.-C., B.-K. Chiou, G. T.-J. Chen, H.-C. Kuo, and C.-H. Liu, 2016: A numerical study of back-building process in a quasistationary rainband with extreme rainfall over northern Taiwan during 11–12 June 2012. Atmos. Chem. Phys., 16, 12359-12382, https://doi.org/10.5194/acp-16-12359-2016.
Wang, C.-C., M.-S. Li, C.-S. Chang, P.-Y. Chuang, S.-H. Chen, and K. Tsuboki, 2021: Ensemble-based sensitivity analysis and predictability of an extreme rainfall event over northern Taiwan in the Mei-Yu season: The 2 June 2017 case. Atmos. Res., 259, 105684, https://doi.org/10.1016/j.atmosres.2021.105684.
Wang, T.-C. C., Y.-J. Lin, R. W. Pasken, and H. Shen, 1990: Characteristics of a subtropical squall line determined from TAMEX dual-Doppler data. Part I: Kinematic structure. J. Atmos. Sci., 47, 2357-2381,
https://doi.org/10.1175/1520-0469(1990)047<2357:Coassl>2.0.Co;2.
Xu, W., E. J. Zipser, Y.-L. Chen, C. Liu, Y.-C. Liou, W.-C. Lee, and B. J.-D. Jou, 2012: An orography-associated extreme rainfall event during TiMREX: Initiation, storm evolution, and maintenance. Mon. Wea. Rev., 140, 2555-2574,
https://doi.org/10.1175/mwr-d-11-00208.1.
Yang, S.-C., E. Kalnay, and T. Enomoto, 2015: Ensemble singular vectors and their use as additive inflation in EnKF. Tellus, 67, 26536,
https://doi.org/10.3402/tellusa.v67.26536.
Yeh, H.-C., and Y.-L. Chen, 2002: The role of offshore convergence on coastal rainfall during TAMEX IOP 3. Mon. Wea. Rev., 130, 2709-2730,
https://doi.org/10.1175/1520-0493(2002)130<2709:TROOCO>2.0.CO;2.
——, 2003: Numerical simulations of the barrier jet over northwestern Taiwan during the mei-yu season. Mon. Wea. Rev., 131, 1396-1407, https://doi.org/10.1175/1520-0493(2003)131<1396:Nsotbj>2.0.Co;2.
Zou, X., Y.-H. Kuo, and S. Low-Nam, 1998: Medium-range prediction of an extratropical oceanic cyclone: Impact of initial state. Mon. Wea. Rev., 126, 2737-2763, https://doi.org/10.1175/1520-0493(1998)126<2737:MRPOAE>2.0.CO;2
指導教授 楊舒芝(Shu-Chih Yang) 審核日期 2022-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明