博碩士論文 109621018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:18.225.255.187
姓名 簡筱臻(Hsiao-Chen Chien)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 氣象環境對臺灣2018-2021冬春季節PM2.5濃度的影響
(Impact of meteorological environment on PM2.5 in Taiwan during the winter-spring season 2018-2021)
相關論文
★ 土地利用型態對地表能量收支與海陸風模擬的影響★ 探討邊界層參數化對氣象與空氣污染模擬結果的影響
★ 探討土地利用型態對珠江口沿岸地區氣象模擬的影響:高污染事件日之個案分析★ 探討台灣地區在春季期間經長程傳輸所觀測之一氧化碳濃度與綜觀天氣之關係
★ 探討地表參數對台灣地區氣象模擬的影響★ 探討區域尺度氣候變遷對台灣地區氣象場及汙染物濃度模擬的影響
★ 使用CMAQ-HDDM探討台灣地區臭氧之非線性 反應及估算高臭氧區的來源貢獻量: 2011年個案分析★ 地表水文循環過程與大氣耦合作用對土壤溼度以及氣象模擬的影響
★ 使用VVM探討陸氣交換過程對台灣地區高解析氣象模擬的影響--理想個案模擬★ 使用群集分析分類綜觀尺度天氣型態以探討台灣北部地區午後熱對流系統局部環流結構與系統發展特性
★ 台灣中部山區局部環流結構特性與其對空氣汙染物傳送過程的影響★ 開發適用於大氣邊界層觀測的無人機系統
★ 雲林地區細懸浮微粒的來源解析★ 臺灣中部山區埔里盆地之局部環流與邊界層結構特性
★ 臺灣背風渦旋特性分析及其對空氣污染物傳輸過程影響★ 探討地下水參數化對於臺灣地表水文過程之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 空氣污染問題除了人為排放影響外,氣象條件則在空氣污染的擴散、稀釋及傳輸上扮演著重要角色。過去研究主要關注綜觀至中小尺度天氣系統對空污問題的影響,而大尺度氣象環境對臺灣空污問題的影響則較少被討論。因此本研究藉由2018-2020十二月至隔年三月冬春季的觀測資料分析與WRF-CMAQ模式進行固定人為排放量的數值實驗,聚焦探討多尺度氣象環境對年際間PM2.5濃度的影響,目的在於增進對東亞大尺度氣象環境與臺灣空氣品質關聯的了解並提升中長期空品預報能力。
根據NOAA公布的ONI index,2018/19、2019/20及2020/21分別為聖嬰年、正常年與反聖嬰年。2020/21年因反聖嬰現象下西太平洋的相對低壓環流結構特徵明顯使臺灣綜觀東風分量增加,造成靜風天數增加、風速下降。同時東亞地區氣溫偏冷、水氣偏少,進而在探空觀測結果也顯示出大氣垂直結構穩定、邊界層不易發展的特性。2020/21年臺灣PM2.5濃度相較於過去兩年聖嬰與正常年時呈現高峰期遲滯且濃度增加的現象。由於模擬氣象場能有效掌握氣象特性,將空品模擬資料針對不同天氣型態進行分類討論後,其結果證明若三年間的排放量相同,則不同的氣象環境能顯著影響PM2.5濃度差異。若不考慮臺灣境內排放的話,臺灣冬春季期間PM2.5濃度的平均背景值約為4-6微克/立方公尺。2020/21年時,由於反聖嬰現象時中國東南方污染物濃度較高,伴隨著增強的氣壓梯度,使得臺灣在東北季風天氣下境外污染貢獻較過去2年多達約6微克/立方公尺。境內污染方面,模式中模擬的氣溫偏低、東風分量增加、低風速、邊界層高度低等穩定的大氣環境說明了在所有的天氣型態下境內PM2.5濃度累積也有較過去2年增加的現象。
摘要(英) In addition to the anthropogenic emissions, the meteorological conditions also play an important role in the diffusion, dilution and transport of air pollutants. Previous studies mainly focused on the relationship between meso-scale weather systems and air pollution problems. However, the influence of large-scale circulation systems to air pollution in Taiwan is less discussed. Therefore, the study focused on discussing the impact of multi-scale meteorological environments to inter-annual variability of PM2.5 concentration in Taiwan during the winter-spring season (DJFM) of 2018-2020 by data analysis and WRF-CMAQ modeling with fixed anthropogenic emissions. The objectives of the study are to gain a deeper understanding of the connections to large-scale environment and air quality and to enhance the ability of mid-term air quality forecast.
According to Ocean Nino index from NOAA, the winter seasons in 2018/19, 2019/20, and 2020/21 were affected by El Nino, neutral and La Nina circulations, respectively. In 2020/21, cyclonic anomaly was obviously found in 2020/21 winter in area of Taiwan which leads to frequent occurrence of the easterly prevailing wind. Moreover, weaker wind speed, cooler environmental temperature and more stable atmospheric structure were observed in western Taiwan. The observation air quality data revealed a worsened PM2.5 concentration in February and March of 2021 instead in January like past years shown. After classifying the simulated data according to different synoptic weather types, the results prove that different meteorological environments indeed influence the PM2.5 concentration under the same anthropogenic emission. Without considering the domestic emission, the average background PM2.5 concentration is approximately 4-6 μg/m3. Under the La Nina, the long-range-transport pollutants from China which accumulated more along the coast transported with the north-south orientation moved airmass to Taiwan under northeasterly synoptic weather type. The long-range transported PM2.5 concentration increased 6 μg/m3 than past two years. Meanwhile, the domestic PM2.5 contribution was also degraded in winter-spring season of 2021 due to the increased easterly wind, weakened wind flow and enhanced atmospheric stability under all synoptic weather types influenced by La Nina environment.
關鍵字(中) ★ 細懸浮微粒
★ 聖嬰-南方震盪
關鍵字(英) ★ PM2.5
★ ENSO
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 xiii
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機與目的 6
第二章 資料來源與研究方法 7
2-1 資料來源 7
2-2 研究方法 9
2-3 模式介紹與設定 10
3-2-1 WRF氣象模式 10
3-2-2 CMAQ空氣品質模式 12
第三章 觀測資料分析 14
3-1 臺灣各空品區空品概況分析 14
3-2 近三年系統環流結構特徵 21
3-3 觀測氣象場分析 28
第四章 數值實驗模擬結果分析與討論 41
4-1 WRF模式與觀測結果比較 41
4-2 模擬結果討論 45
第五章 結論與未來展望 61
5-1 結論 61
5-2 未來展望 63
參考文獻 64
參考文獻 梁婉琪(2022)。局地大氣剖面特徵及其對空氣品質的影響。國立中央大學碩士論文。
An, Z., Huang, R. J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi, Z., Han, Y., Gu, Z., & Ji, Y. (2019). Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes. Proc Natl Acad Sci U S A, 116(18), 8657-8666. https://doi.org/10.1073/pnas.1900125116
Bae, M., Kim, B.-U., Kim, H. C., Kim, J., & Kim, S. (2021). Role of emissions and meteorology in the recent PM2.5 changes in China and South Korea from 2015 to 2018. Environmental Pollution, 270. https://doi.org/10.1016/j.envpol.2020.116233
Binkowski, F. S., & Roselle, S. J. (2003). Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component 1. Model description. Journal of Geophysical Research: Atmospheres, 108(D6). https://doi.org/https://doi.org/10.1029/2001JD001409
Cai, Z., Jiang, F., Chen, J., Jiang, Z., & Wang, X. (2018). Weather Condition Dominates Regional PM2.5 Pollutions in the Eastern Coastal Provinces of China during Winter. Aerosol and Air Quality Research, 18(4), 969-980. https://doi.org/10.4209/aaqr.2017.04.0140
Chang, L., Xu, J., Tie, X., & Wu, J. (2016). Impact of the 2015 El Nino event on winter air quality in China. Scientific Reports, 6, 34275. https://doi.org/10.1038/srep34275
Cheng, F. Y., & Hsu, C. H. (2019). Long-term variations in PM2.5 concentrations under changing meteorological conditions in Taiwan [Article]. Scientific Reports, 9, 12, Article 6635. https://doi.org/10.1038/s41598-019-43104-x
Cheng, F. Y., Chin, S. C., & Liu, T. H. (2012). The role of boundary layer schemes in meteorological and air quality simulations of the Taiwan area [Article]. Atmospheric Environment, 54, 714-727. https://doi.org/10.1016/j.atmosenv.2012.01.029
Chuang, M. T., Lee, C. T., & Hsu, H. C. (2018). Quantifying PM2.5 from long-range transport and local pollution in Taiwan during winter monsoon: An efficient estimation method [Article]. Journal of Environmental Management, 227, 10-22. https://doi.org/10.1016/j.jenvman.2018.08.066
Fosu, B. O., Wang, S. Y. S., Wang, S.-H., Gillies, R. R., & Zhao, L. (2017). Greenhouse gases stabilizing winter atmosphere in the Indo-Gangetic plains may increase aerosol loading. Atmospheric Science Letters, 18(4), 168-174. https://doi.org/10.1002/asl.739
Fuzzi, S., Baltensperger, U., Carslaw, K., Decesari, S., Denier van der Gon, H., Facchini, M. C., Fowler, D., Koren, I., Langford, B., Lohmann, U., Nemitz, E., Pandis, S., Riipinen, I., Rudich, Y., Schaap, M., Slowik, J. G., Spracklen, D. V., Vignati, E., Wild, M., . . . Gilardoni, S. (2015). Particulate matter, air quality and climate: lessons learned and future needs. Atmospheric Chemistry and Physics, 15(14), 8217-8299. https://doi.org/10.5194/acp-15-8217-2015
Grif, S. M., Huang, W. S., Lin, C. C., Chen, Y. C., Chang, K. E., Lin, T. H., Wang, S. H., & Lin, N. H. (2020). Long-range air pollution transport in East Asia during the first week of the COVID-19 lockdown in China [Article]. Science of the Total Environment, 741, 9, Article 140214. https://doi.org/10.1016/j.scitotenv.2020.140214
Ha, K.-J., Heo, K.-Y., Lee, S.-S., Yun, K.-S., & Jhun, J.-G. (2012). Variability in the East Asian Monsoon: a review. Meteorological Applications, 19(2), 200-215. https://doi.org/10.1002/met.1320
Hori, M. E., & Ueda, H. (2006). Impact of global warming on the East Asian winter monsoon as revealed by nine coupled atmosphere-ocean GCMs. Geophysical Research Letters, 33(3). https://doi.org/10.1029/2005gl024961
Hsu, C. H., & Cheng, F. Y. (2019). Synoptic Weather Patterns and Associated Air Pollution in Taiwan [Article]. Aerosol and Air Quality Research, 19(5), 1139-1151. https://doi.org/10.4209/aaqr.2018.09.0348
Hung, W. T., Lu, C. H., Wang, S. H., Chen, S. P., Tsai, F., & Chou, C. C. K. (2019). Investigation of long-range transported PM2.5 events over Northern Taiwan during 2005-2015 winter seasons [Article]. Atmospheric Environment, 217, 15, Article 116920. https://doi.org/10.1016/j.atmosenv.2019.116920
Jeong, J. I., & Park, R. J. (2017). Winter monsoon variability and its impact on aerosol concentrations in East Asia. Environ Pollut, 221, 285-292. https://doi.org/10.1016/j.envpol.2016.11.075
Lai, H.-C., & Lin, M.-C. (2020). Characteristics of the upstream flow patterns during PM2.5 pollution events over a complex island topography. Atmospheric Environment, 227. https://doi.org/10.1016/j.atmosenv.2020.117418
Le, T., Wang, Y., Liu, L., Yang, J., Yung, Y. L., Li, G., & Seinfeld, J. H. (2020). Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science, 369(6504), 702-706. https://doi.org/doi:10.1126/science.abb7431
Lee, D., Wang, S. Y., Zhao, L., Kim, H. C., Kim, K., & Yoon, J.-H. (2020). Long-term increase in atmospheric stagnant conditions over northeast Asia and the role of greenhouse gases-driven warming. Atmospheric Environment, 241. https://doi.org/10.1016/j.atmosenv.2020.117772
Li, Z., Lau, W. K. M., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., Liu, J., Qian, Y., Li, J., Zhou, T., Fan, J., Rosenfeld, D., Ming, Y., Wang, Y., Huang, J., Wang, B., Xu, X., Lee, S. S., Cribb, M., . . . Brasseur, G. P. (2016). Aerosol and monsoon climate interactions over Asia. Reviews of Geophysics, 54(4), 866-929. https://doi.org/10.1002/2015rg000500
Lin, C., Liu, S., Chou, C., Huang, S., Liu, C., Kuo, C., & Young, C. (2005). Long-range transport of aerosols and their impact on the air quality of Taiwan. Atmospheric Environment, 39(33), 6066-6076. https://doi.org/10.1016/j.atmosenv.2005.06.046
Misaki, T., Ohsawa, T., Konagaya, M., Shimada, S., Takeyama, Y., & Nakamura, S. (2019). Accuracy Comparison of Coastal Wind Speeds between WRF Simulations Using Different Input Datasets in Japan. Energies, 12(14). https://doi.org/10.3390/en12142754
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D., Duda, M. G., … Powers, J. G. (2008). A Description of the Advanced Research WRF Version 3 (No. NCAR/TN-475+STR). University Corporation for Atmospheric Research. doi:10.5065/D68S4MVH
Wang, L., Zhang, N., Liu, Z., Sun, Y., Ji, D., & Wang, Y. (2014). The Influence of Climate Factors, Meteorological Conditions, and Boundary-Layer Structure on Severe Haze Pollution in the Beijing-Tianjin-Hebei Region during January 2013. Advances in Meteorology, 2014, 1-14. https://doi.org/10.1155/2014/685971
Wang, S.-H., Hung, W.-T., Chang, S.-C., & Yen, M.-C. (2016). Transport characteristics of Chinese haze over Northern Taiwan in winter, 2005–2014. Atmospheric Environment, 126, 76-86. https://doi.org/10.1016/j.atmosenv.2015.11.043
Wang, X., Zhong, S., Bian, X., & Yu, L. (2019). Impact of 2015–2016 El Niño and 2017–2018 La Niña on PM2.5 concentrations across China. Atmospheric Environment, 208, 61-73. https://doi.org/10.1016/j.atmosenv.2019.03.035
Wang, S. S., Li, S. W., Xing, J., Yang, J., Dong, J. X., Qin, Y., & Sahu, S. K. (2022). Evaluation of the influence of El Nino-Southern Oscillation on air quality in southern China from long-term historical observations [Article]. Frontiers of Environmental Science & Engineering, 16(2), 14, Article 26. https://doi.org/10.1007/s11783-021-1460-0
Wie, J., & Moon, B. K. (2017). ENSO-related PM10 variability on the Korean Peninsula. Atmospheric Environment, 167, 426-433. https://doi.org/10.1016/j.atmosenv.2017.08.052
Wu, B., & Wang, J. (2002). Winter Arctic Oscillation, Siberian High and East Asian Winter Monsoon. Geophysical Research Letters, 29(19), 3-1-3-4. https://doi.org/10.1029/2002gl015373
Xie, B., Yang, Y., Wang, P., & Liao, H. (2022). Impacts of ENSO on wintertime PM2.5 pollution over China during 2014–2021. Atmospheric and Oceanic Science Letters, 15(4), 100189.
Xu, M., Xu, H., & Ma, J. (2016). Responses of the East Asian winter monsoon to global warming in CMIP5 models. International Journal of Climatology, 36(5), 2139-2155. https://doi.org/10.1002/joc.4480
Zhao, S. Y., Zhang, H., & Xie, B. (2018). The effects of El Nino-Southern Oscillation on the winter haze pollution of China [Article]. Atmospheric Chemistry and Physics, 18(3), 1863-1877. https://doi.org/10.5194/acp-18-1863-2018
Zhai, S., Jacob, D. J., Wang, X., Shen, L., Li, K., Zhang, Y., Gui, K., Zhao, T., & Liao, H. (2019). Fine particulate matter (PM<sub>2.5</sub>) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology. Atmospheric Chemistry and Physics, 19(16), 11031-11041. https://doi.org/10.5194/acp-19-11031-2019
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., & Zhang, Q. (2018). Trends in China′s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmospheric Chemistry and Physics, 18(19), 14095-14111. https://doi.org/10.5194/acp-18-14095-2018
指導教授 鄭芳怡(Fang-Yi Cheng) 審核日期 2022-9-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明