博碩士論文 110621011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.216.161.159
姓名 劉景岳(Lawrence Jing-Yueh Liu)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 利用快速更新多重尺度雷達資料同化分析北台灣對流發展
(Analyzing the convection development over northern Taiwan using a multi-scale radar data assimilation system with rapid update cycles)
相關論文
★ 利用WRF-LETKF同化系統探討掩星折射率觀測對於強降水事件預報之影響★ 改善區域系集卡爾曼濾波器在颱風同化及預報中的spin-up問題-2008年颱風辛樂克個案研究
★ LETKF加速就位法於颱風同化預報之應用★ 利用系集重新定位法改善颱風路徑預報-2011年南瑪都颱風個案研究
★ 利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善定量降水即時預報:莫拉克颱風(2009)★ 利用系集資料同化系統估算區域大氣化學耦合模式中trace物種之排放與吸收:以CO2為例
★ OSSE實驗架構下利用系集預報敏感度工具探討觀測對於颱風路徑預報及結構之影響★ 利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善短期定量降雨預報: SoWMEX IOP8 個案分析
★ 利用系集重新定位法改善對流尺度定量降水即時預報:2009年莫拉克颱風個案研究★ LAPS 短時(0-6小時)系集降水機率預報之評估與應用
★ 利用辛樂克颱風(2008)建立的觀測系統模擬實驗評估系集奇異向量在颱風系集預報之應用★ 雷達資料同化於多重尺度天氣系統(梅雨)的強降雨預報影響:SoWMEX IOP#8 個案研究
★ 基於高解析度系集卡爾曼濾波器之渦旋初始化及其對於颱風強度預報之影響:2010年梅姬颱風個案研究★ 系集轉換卡爾曼漸進式平滑器在資料同化之應用
★ 不同微物理方案在雲可解析模式的系集預報分析: SoWMEX-IOP8 個案★ 利用正交向量改善系集卡爾曼濾波器之系集空間及其對同化與預報之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-9-30以後開放)
摘要(中) 台灣北部於2018年9月8日受到鋒面系統、熱帶性低氣壓與午後熱對流的多重尺度天氣系統,造成當日有不同特性的強降雨事件發生。本研究利用WRF-LETKF雷達資料同化系統(WRF-LETKF Radar Assimilation System, WLRAS)建立每15分鐘一筆之快速更新分析場(Rapid Update Analysis),並以此探討當日一系列降雨事件的生成因素。除了使用標準的對流尺度局地化法於WLRAS,在本研究中更使用逐次協方差局地化法(Successive Covariance Localization; SCL)進行多重尺度修正,以強調各種尺度間交互作用的重要性。此外,本研究也分別額外使用地面測站資料並搭配「無降雨」資料(“No-rain” data)建立分析場以測試近地面特性對於此個案的影響。
由於資料品質會影響多重尺度分析的表現,本研究利用RAKIT對雷達資料進行更完整的資料檢定,並以此探討SCL的最佳同化策略。利用最佳的實驗組我們進一步討論大尺度調整對鋒面及地面風場結構的重要性,以及這些特性如何影響台北盆地內的局地深對流發展。對於鋒面系統所在區域,最重要的是鋒前西南風與鋒面上環流,大尺度修正可以使其建立結構更完整且位置正確的鋒面系統。然而,相較於單一對流尺度修正,SCL對於二次環流掌握不足,使鋒面對流胞強度無法完整呈現。對於局地對流胞,經由大尺度動力場的修正,強對流可以更容易維持在雪山山脈的山頂,而後造成冷池在台北盆地快速激發局地雷雨胞。結果顯示,即便不額外使用地面測站風場資料,使用SCL所獲得的四維分析場便可以建立適合對流發展的低層環境。相較而言,SCL方法可以提供環境的動力結構,使多重尺度的交互作用得以展現。而地面風場資料則可修正部分環境近地面風場結構。本研究顯示對流尺度的高時空解析度分析場建立除須考慮局地對流胞本身動力及熱力結構,亦須描述環境的動力場以完整顯示局地對流發展的成因。
摘要(英) The occurrence of the heavy rainfall event over northern Taiwan on 8 September 2018 involves different weather systems, including a front, a tropical depression, and afternoon thunderstorms. This study investigates the establishment of a series of precipitation events by performing rapid update analyses with the WRF-LETKF Radar Assimilation System (WLRAS). In addition to using a standard convective-scale localization for radar observation, we apply a multi-scale correction scheme, the Successive Covariance Localization approach (SCL), to emphasize the importance of interaction between different scales. Moreover, we also assimilate the surface station data and the “no-rain” type of radar observation to improve the near-surface analysis.
First, the influence of radar data quality on the analysis using SCL is discussed. Using the quality-controlled radar data, we examine the optimal settings for SCL. With the optimized settings, the main focuses include the large-scale adjustment and its impact on the frontal wind structure, the importance of the surface wind structure, and how these factors further lead to the development of the local deep convections over the Taipei Basin. For the area with the frontal system, the magnitude of the prefrontal southwesterly flow and frontal circulation is essential. When the SCL method is applied in the radar assimilation, the large-scale adjustment can be achieved, which can help establish a well-structured frontal system with a more accurate position, but the intensity of convections is slightly underestimated due to insufficient secondary circulation. Through the adjusted large-scale dynamics, strong convection can be better maintained over the top of the Xueshan Range, and the resulting outflow of the cold pool further triggers the rapid development of the local thunderstorm over the Taipei Basin. Consequently, both the experiments using SCL and surface wind data can provide a suitable 4-D rapid update analysis field: The SCL can provide an environmental structure that facilitates the multiscale interaction, and the surface wind data can give a better representation of the near-surface environmental structure. This study suggests that to well represent the local convection development in a high-resolution convective scale data assimilation analysis, it is necessary to analyze not only the dynamic and thermodynamic structure of local convections but also the environment’s dynamic field.
關鍵字(中) ★ 資料同化
★ 雷達資料
★ 多重尺度修正
★ WRF-LETKF雷達資料同化系統
關鍵字(英) ★ Data assimilation
★ Radar data
★ Multi-scale Correction
★ WRF-LETKF Radar Assimilation System
論文目次 摘要 i
Abstract ii
Acknowledgement iv
List of Tables vi
List of Figures vi

1. Introduction 1
1.1 Preface 1
1.2 Literature Review: Radar Data Assimilation 2
1.3 Multiscale Correction Methods on Radar Data Assimilation 6
1.4 Case Overview 9
1.5 Objectives 10

2. Methodology 13
2.1 WRF-LETKF Radar Data Assimilation System 13
2.1.1 LETKF 13
2.1.2 Weather Research and Forecast (WRF) model 15
2.1.3 Radar Data Observation Operator 16
2.2 Radar Data Preprocessing 18
2.2.1 QPESUMS radar data from Central Weather Bureau (CWBQC) 18
2.2.2 Radar Kit (RAKIT) radar data quality control system (RAKITQC) 19
2.3 Strategies for the usage of observation data 19
2.3.1 Successive Covariance Localization 19
2.3.2 Adding No-Rain Data 21
2.3.3 Adding surface observation 22
2.4 Experiment Settings 22

3. Result – Investigation of the convection development 25
3.1 General performance of the WRF simulation without data assimilation 25
3.2 Impact of data assimilation on Large Scale Structure 27
3.3 Impact on Multiscale Interaction 30
3.4 Summary of the occurrence of the convective systems 36

4. Evaluation of the performance of WLRAS 39
4.1 Impact of long assimilation period 39
4.2 Impact of radar data quality 41
4.2.1 Analysis corrections with the CWBQC data 41
4.2.2 The importance of the data quality on radar data assimilation 42
4.3 Sensitivity tests on SCL 44
4.3.1 Convective scale approach 44
4.3.2 Small spread problem 45

5. Conclusions and Future work 50
5.1 Conclusions 50
5.2 Future work 53

References 54
Tables 65
Figures 68

Figures 67
參考文獻 Aksoy, A., D. C. Dowell, and C. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137, 1805-1824, https://doi.org/10.1175/2008MWR2691.1
Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 2884–2903, https://doi.org/10.1175/15200493(2001)129<2884:AEAKFF>2.0.CO;2.
Arakawa, A., Lamb, V.R., 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics: Advances in Research and Applications, 17, 173–265, https://doi.org/10.1016/B978-0-12-460817-7.50009-4
Bannister, RN, Chipilski, HG, Martinez-Alvarado, O., 2020: Techniques and challenges in the assimilation of atmospheric water observations for numerical weather prediction towards convective scales. Q J R Meteorol Soc., 146, 1– 48. https://doi.org/10.1002/qj.3652
Berenguer, M., and Zawadzki, I., 2008: A Study of the Error Covariance Matrix of Radar Rainfall Estimates in Stratiform Rain, Weather and Forecasting, 23(6), 1085-1101, https://doi.org/10.1175/2008WAF2222134.1
Bick, T., and Coauthors, 2016: Assimilation of 3D radar reflectivities with an ensemble Kalman filter on the convective scale. Q. J. R. Meteorol. Soc., 142, 1490–1504, https://doi.org/10.1002/qj.2751.
Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420–436, https://doi.org/10.1175/15200493(2001)129<0420:ASWTET>2.0.CO;2.
Buehner, M ., 2012: Evaluation of a spatial/spectral covariance localization approach for atmospheric data assimilation. Mon. Weather Rev., 140, 617–636, https://doi.org/10.1175/MWR-D-10-05052.1
Chang, W., K.-S., Chung, L. Fillion and S.-J. Baek, 2014: Radar Data Assimilation in the Canadian High-Resolution Ensemble Kalman Filter System: Performance and Verification with Real Summer Cases. Mon. Wea. Rev., 142, 2118-2138, https://doi.org/10.1175/MWR-D-13-00291.1
Chen, F., and Dudhia, J., 2001: Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity, Mon. Wea. Rev., 129(4), 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
Chen, X. C., K. Zhao, J. Z. Sun, B. W. Zhou, and W. C. Lee, 2016: Assimilating surface observations in a four-dimensional Variational Doppler radar data assimilation system to improve the analysis and forecast of a squall line case. Adv. Atmos. Sci., 33(10), 1106– 1119.
Cheng, H.-W., 2017: Impact of the radar data assimilation on heavy rainfall prediction associated with a multi-scale weather (Meiyu) system: a case study of SoWMEX IOP#8 M. S. dissertation. Department of Atmospheric Physics, National Central University, Taoyuan, Taiwan, 68 pp.
Cheng, H.-W., S.-C. Yang, and C.-S. Chen, 2019: Impact of Doppler radar network in Taiwan on the convective-scale data assimilation and precipitation prediction: The extreme precipitation event during 1-3 June 2017. AOGS 16th Annual Meeting, Singapore, Asia Oceanic GeoScience Society, AS30–A029.
——, ——, Y. C. Liou, and C. Sen Chen, 2020: An investigation of the sensitivity of predicting a severe rainfall event in northern Taiwan to the upstream condition with a WRF-based radar data assimilation system. Sci. Online Lett. Atmos., 16, 97–103, https://doi.org/10.2151/SOLA.2020-017.
Coniglio, M. C., Hwang, J. Y., and Stensrud, D. J., 2010: Environmental Factors in the Upscale Growth and Longevity of MCSs Derived from Rapid Update Cycle Analyses. Mon. Wea. Rev., 138(9), 3514-3539, https://doi.org/10.1175/2010MWR3233.1
Do, P.-N., Chung, K.-S., Lin, P.-L., Ke, C.-Y., and Ellis, S. M., 2022: Assimilating Retrieved Water Vapor and Radar Data from NCAR S-PolKa: Performance and Validation Using Real Cases. Mon. Wea. Rev., 150(5), 1177–1199. https://doi.org/10.1175/mwr-d-21-0292.1
Dowell, D. C., Alexander, C. R., James, E. P., Weygandt, S. S., Benjamin, S. G., Manikin, G. S., Blake, B. T., Brown, J. M., Olson, J. B., Hu, M., Smirnova, T. G., Ladwig, T., Kenyon, J. S., Ahmadov, R., Turner, D. D., Duda, J. D., and Alcott, T. I., 2022: The High-Resolution Rapid Refresh (HRRR): An Hourly Updating Convection-Allowing Forecast Model. Part 1: Motivation and System Description, Weather and Forecasting, https://doi.org/10.1175/WAF-D-21-0151.1
Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 may 2003 Oklahoma city supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272–294, https://doi.org/10.1175/2010MWR3438.1.
Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 1982-2005, https://doi.org/10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2
Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, https://doi.org/10.1029/94jc00572.
Fabry F, Sun J. 2010: For how long should what data be assimilated for the mesoscale forecasting of convection and why? Part I: on the propagation of initial condition errors and their implications for data assimilation. Mon. Wea. Rev., 138, 242–255, https://doi.org/10.1175/2009MWR2883.1.
Gao, S., Sun, J., Min, J., Zhang, Y., and Ying, Z., 2018: A Scheme to Assimilate “No Rain” Observations from Doppler Radar. Weather and Forecasting, 33(1), 71-88, https://doi.org/10.1175/WAF-D-17-0108.1
Gao, J., and M. Xue, 2008: An efficient dual-resolution approach for ensemble data assimilation and tests with simulated Doppler radar data. Mon. Wea. Rev., 136, 945-963, https://doi.org/10.1175/2007MWR2120.1
Greybush, S. J., Kalnay, E., Miyoshi, T., Ide, K., and Hunt, B. R., 2011: Balance and Ensemble Kalman Filter Localization Techniques. Mon. Wea. Rev., 139(2), 511-522, https://doi.org/10.1175/2010MWR3328.1
Gustafsson, N, Janjić, T, Schraff, C, et al., 2018: Survey of data assimilation methods for convective-scale numerical weather prediction at operational centres. Q J R Meteorol Soc., 144, 1218– 1256, https://doi.org/10.1002/qj.3179
Hong, S., Noh, Y., & Dudhia, J., 2006: A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes, Mon. Wea. Rev., 134(9), 2318-2341, https://doi.org/10.1175/MWR3199.1
Houtekamer, P. L., and Zhang, F., 2016: Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation. Mon. Wea. Rev., 144(12), 4489-4532. https://doi.org/10.1175/MWR-D-15-0440.1
Hsiao, L., Huang, X., Kuo, Y., Chen, D., Wang, H., Tsai, C., Yeh, T., Hong, J., Fong, C., and Lee, C., 2015: Blending of Global and Regional Analyses with a Spatial Filter: Application to Typhoon Prediction over the Western North Pacific Ocean. Weather and Forecasting, 30(3), 754-770, https://doi.org/10.1175/WAF-D-14-00047.1
Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Phys. D Nonlinear Phenom., 230, 112–126, https://doi.org/10.1016/j.physd.2006.11.008.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D., 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.
Janjić, T., and Coauthors, 2018: On the representation error in data assimilation. Q. J. R. Meteorol. Soc., 144, 1257–1278, https://doi.org/10.1002/qj.3130.
Jung, Y., G. Zhang, and M. Xue, 2008a: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 2228-2245, https://doi.org/10.1175/2007MWR2083.1
──, M. Xue, G. Zhang, and J. M. Straka, 2008b: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part II: Impact of polarimetric data on storm analysis. Mon. Wea. Rev., 136, 2246-2260, https://doi.org/10.1175/2007MWR2288.1
Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181, https://doi.org/10.1175/1520-0450(2004)043,0170:TKCPAU.2.0.CO;2.
Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, New York, NY, USA, 340 pp.
Knight, C. A., and L. J. Miller, 1993: First radar echoes from cumulus clouds. Bull. Amer. Meteor. Soc., 74, 179–188, https://doi.org/10.1175/1520-0477(1993)074<0179:FREFCC>2.0.CO;2.
Kondo, K., T. Miyoshi, and H. L. Tanaka 2013: Parameter sensitivities of the dual-localization approach in the local ensemble transform Kalman filter. SOLA, 9, 174–177, doi:10.2151/sola.2013-039.
Le Dimet, F.-X. and Talagrand, O., 1986: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A, 38A, 97-110, https://doi.org/10.1111/j.1600-0870.1986.tb00459.x
Lin, K-J, S-C Yang*, S. Chen, 2022: Improving Analysis and Prediction of Tropical Cyclones by Assimilating Radar and GNSS-R Wind Observations: Observing System Simulation Experiments, Wea. Forecasting
Liu, C.-Y., 2021: Investigating how to use radar data assimilation to improve the multiscale heavy rainfall system in northern Taiwan. Report of College Student Research Scholarship, Ministry of Science and Technology (Report No. MOST 109-2813-C-008-037-M).
Luo, Y.-Q., 2017: The extension of IBM_VDRAS system and its case study-07/07/2017 afternoon thunderstorm case. M. S. dissertation. Department of Atmospheric Physics, National Central University, Taoyuan, Taiwan, 95 pp.
Lorenc, A. C., 1981: A Global Three-Dimensional Multivariate Statistical Interpolation Scheme. Mon. Wea. Rev., 109(4), 701-721, https://doi.org/10.1175/1520-0493(1981)109<0701:AGTDMS>2.0.CO;2
Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—a comparison with 4D-Var. Q.J.R. Meteorol. Soc., 129, 3183-3203, https://doi.org/10.1256/qj.02.132
Miyoshi, T., and K. Kondo, 2013: A multi-scale localization approach to an ensemble Kalman filter. SOLA, 9, 170–173, doi:10.2151/sola.2013-038.
Necker, T, Geiss, S, Weissmann, M, Ruiz, J, Miyoshi, T, Lien, G-Y., 2020: A convective-scale 1,000-member ensemble simulation and potential applications. Q J R Meteorol Soc., 146, 1423– 1442, https://doi.org/10.1002/qj.3744
Ott E., B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corrazza, E. Kalnay, D. J. Patil, and J. A. Yorke, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415–428, https://doi.org/10.3402/tellusa.v56i5.14462
Pagé C, Fillion L, Zwack P., 2007: Diagnosing summertime mesoscale vertical motion: implications for atmospheric data assimilation. Mon. Wea. Rev., 135, 2076–2094, https://doi.org/10.1175/MWR3371.1.
Patil, D., B. R. Hunt, E. Kalnay, J. A. Yorke, and E. Ott, 2001: Local low dimensionality at atmospheric dynamics. Phys. Rev. Lett., 86, 5878–5881,
Periáñez, Á., H. Reich, R. Potthast, 2014: Optimal Localization for Ensemble Kalman Filter Systems, Journal of the Meteorological Society of Japan. 92(6), 585-597, https://doi.org/10.2151/jmsj.2014-605
Sasaki, 1958: An Objective Analysis Based on the Variational Method. Journal of the Meteorological Society of Japan, 36(3), 77-88, https://doi.org/10.2151/jmsj1923.36.3_77
Schraff, C., Reich, H., Rhodin, A., Schomburg, A., Stephan, K., Periáñez, A. and Potthast, R., 2016: Kilometre-scale ensemble data assimilation for the COSMO model (KENDA). Q.J.R. Meteorol. Soc., 142, 1453-1472, https://doi.org/10.1002/qj.2748
Shao, Y.-M., 2015: Applying the local ensemble transform Kalman filter radar data assimilation system to improve short-term quantitative rainfall forecast: A case study with SoMEX IOP8. M. S. dissertation. Department of Atmospheric Physics, National Central University, Taoyuan, Taiwan, 95 pp.
Skamarock, W. C., and Coauthors, 2019: A description of the Advanced Research WRF Model version 4. NCAR Tech. Note NCAR/TN-556+STR, 145 pp., https://doi.org/10.5065/1dfh-6p97
Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 1663-1677, https://doi.org/10.1175//2555.1
Sodhi, J. S., & Fabry, F., 2022: Benefits of Smoothing Backgrounds and Radar Reflectivity Observations for Multiscale Data Assimilation with an Ensemble Kalman Filter at Convective Scales: A Proof-of-Concept Study, Mon. Wea. Rev., 150(3), 589-601, https://doi.org/10.1175/MWR-D-21-0130.1
Sugimoto, S., N. A. Crook, J. Sun, Q. Xiao, and D. M. Barker, 2009: An examination of WRF 3DVAR radar data assimilation on its capability in retrieving unobserved variables and forecasting precipitation through Observing System Simulation Experiments. Mon. Wea. Rev., 137, 4011-4029, https://doi.org/10.1175/2009MWR2839.1
Sun, J., M. Chen, and Y. Wang, 2010: A Frequent-updating analysis system based on radar, surface, and mesoscale model data for the Beijing 2008 Forecast Demonstration Project. Wea. Forecasting, 25, 1715–1735, https://doi.org/10.1175/2010WAF2222336.1
──, 2005: Initialization and numerical forecasting of a supercell storm observed during STEPS. Mon. Wea. Rev., 133, 793–813, https://doi.org/10.1175/MWR2887.1
──, and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642–1661, https://doi.org/10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2
── and Wang, H., 2013: Radar data assimilation with WRF 4DVar. Part II: comparison with 3D-Var for a squall line over the US Great Plains, Mon. Weather Rev., 11, 2245–2264, https://doi.org/10.1175/MWR-D-12-00169.1
Tai, S.-L., Y.-C. Liou, J. Sun, and S.-F. Chang, 2017: The development of a terrain-resolving scheme for the forward model and its adjoint in the four-dimensional Variational Doppler Radar Analysis System (VDRAS). Mon. Wea. Rev., 145, 289–306, https://doi.org/10.1175/MWR-D-16-0092.1
Tao, W.–K., J. Simpson, and M. McCumber, 1989: An Ice–Water Saturation Adjustment. Mon. Wea. Rev., 117, 231-235, https://doi.org/10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2
Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 1789-1807, https://doi.org/10.1175/MWR2898.1
Tsai, C. C., S. C. Yang, and Y. C. Liou, 2014: Improving quantitative precipitation nowcasting with a local ensemble transform Kalman filter radar data assimilation system: Observing system simulation experiments. Tellus, Ser. A Dyn. Meteorol. Oceanogr., 66, https://doi.org/10.3402/tellusa.v66.21804.
Wang, X., Chipilski, H. G., Bishop, C. H., Satterfield, E., Baker, N., & Whitaker, J. S., 2021: A Multiscale Local Gain Form Ensemble Transform Kalman Filter (MLGETKF), Mon. Wea. Rev., 149(3), 605-622. https://doi.org/10.1175/MWR-D-20-0290.1
Wang, H., J. Sun, S. Fan, and X. Y. Huang, 2013: Indirect assimilation of radar reflectivity with WRF 3D-Var and its impact on prediction of four summertime convective events. J. Appl. Meteor. Climatol., 52, 889–902, https://doi.org/10.1175/JAMC-D-12-0120.1.
Weng, Y., and Zhang, F., 2012: Assimilating Airborne Doppler Radar Observations with an Ensemble Kalman Filter for Convection-Permitting Hurricane Initialization and Prediction: Katrina (2005), Mon. Wea. Rev.,140(3), 841-859, https://doi.org/10.1175/2011MWR3602.1
Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 3078–3089, https://doi.org/10.1175/MWR-D-11-00276.1.
Wu, P. Y., S. C. Yang, C. C. Tsai, and H. W. Cheng, 2020: Convective-scale sampling error and its impact on the ensemble radar data assimilation system: A case study of a heavy rainfall event on 16 June 2008 in Taiwan. Mon. Wea. Rev., 148, 3631–3652, https://doi.org/10.1175/MWR-D-19-0319.1.
Wu, Y. J., 2019: The improvement of a 4DVar data assimilation system (IBM_VDRAS) and its applications in analyzing heavy rainfall processes over complex terrain: A case study in Northern Taiwan. M. S. dissertation. Department of Atmospheric Physics, National Central University, Taoyuan, Taiwan, 124 pp.
Xiao, Q., Y.-H. Kuo, J. Sun, W.-C. Lee, E. Lim, Y.-R. Guo, and D. M. Barker, 2005: Assimilation of Doppler radar observations with a regional 3DVAR system: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl.Meteor., 44, 768-788, https://doi.org/10.1175/JAM2248.1
──, and J. Sun, 2007: Multiple-radar data assimilation and short-range quantitative precipitation forecasting of a squall line observed during IHOP_2002. Mon. Wea. Rev., 135, 3381-3404, https://doi.org/10.1175/MWR3471.1
Xue, M., M. Tong, and K. K. Droegemeier, 2006: An OSSE framework based on the ensemble square root Kalman filter for evaluating the impact of data from radar networks on thunderstorm analysis and forecasting. J. Atmos. Oceanic Technol., 23, 46-66, https://doi.org/10.1175/JTECH1835.1
Yang, S.-C., Chen, S.-H., Kondo, K., Miyoshi, T., Liou, Y.-C., Teng, Y.-L., and Chang, H.-L., 2017: Multilocalization data assimilation for predicting heavy precipitation associated with a multiscale weather system, J. Adv. Model. Earth Syst., 9, 1684– 1702, doi:10.1002/2017MS001009
Yang, S. C., Z. M. Huang, C. Y. Huang, C. C. Tsai, and T. K. Yeh, 2020: A case study on the impact of ensemble data assimilation with GNSS-zenith total delay and radar data on heavy rainfall prediction. Mon. Wea. Rev., 148, 1075–1098, https://doi.org/10.1175/MWR-D-18-0418.1.
Yang, X., 2005: Analysis blending using a spatial filter in grid-point model coupling. HIRLAM Newsletter, No. 48, Article 10, HIRLAM Programme, de Bilt, Netherlands, 49–55. [Available online at http://www.hirlam.org/index.php/meeting-reports-and-presentations/doc_download/517-hirlam-newsletter-no-48-article10-yang.]
Yeh, H. L., Yang, S. C., Terasaki, K., Miyoshi, T., and Liou, Y. C. 2022: Including observation error correlation for ensemble radar radial wind assimilation and its impact on heavy rainfall prediction. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.4302
Ying, Y., 2019: A Multiscale Alignment Method for Ensemble Filtering with Displacement Errors, Mon. Wea. Rev., 147(12), 4553-4565, https://doi.org/10.1175/MWR-D-19-0170.1
Ying, Y., 2020: Assimilating Observations with Spatially Correlated Errors Using a Serial Ensemble Filter with a Multiscale Approach, Mon. Wea. Rev., 148(8), 3397-3412, https://doi.org/10.1175/MWR-D-19-0387.1
Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 2105–2125, https://doi.org/10.1175/2009MWR2645.1.
Zhu, L., Wan, Q., Shen, X., Meng, Z., Zhang, F., Weng, Y., Sippel, J., Gao, Y., Zhang, Y., and Yue, J., 2016: Prediction and Predictability of High-Impact Western Pacific Landfalling Tropical Cyclone Vicente (2012) through Convection-Permitting Ensemble Assimilation of Doppler Radar Velocity, Mon. Wea. Rev., 144(1), 21-43, https://doi.org/10.1175/MWR-D-14-00403.1
指導教授 楊舒芝(Shu-Chih Yang) 審核日期 2022-9-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明