參考文獻 |
Aksoy, A., D. C. Dowell, and C. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137, 1805-1824, https://doi.org/10.1175/2008MWR2691.1
Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 2884–2903, https://doi.org/10.1175/15200493(2001)129<2884:AEAKFF>2.0.CO;2.
Arakawa, A., Lamb, V.R., 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics: Advances in Research and Applications, 17, 173–265, https://doi.org/10.1016/B978-0-12-460817-7.50009-4
Bannister, RN, Chipilski, HG, Martinez-Alvarado, O., 2020: Techniques and challenges in the assimilation of atmospheric water observations for numerical weather prediction towards convective scales. Q J R Meteorol Soc., 146, 1– 48. https://doi.org/10.1002/qj.3652
Berenguer, M., and Zawadzki, I., 2008: A Study of the Error Covariance Matrix of Radar Rainfall Estimates in Stratiform Rain, Weather and Forecasting, 23(6), 1085-1101, https://doi.org/10.1175/2008WAF2222134.1
Bick, T., and Coauthors, 2016: Assimilation of 3D radar reflectivities with an ensemble Kalman filter on the convective scale. Q. J. R. Meteorol. Soc., 142, 1490–1504, https://doi.org/10.1002/qj.2751.
Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with the ensemble transform Kalman filter Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420–436, https://doi.org/10.1175/15200493(2001)129<0420:ASWTET>2.0.CO;2.
Buehner, M ., 2012: Evaluation of a spatial/spectral covariance localization approach for atmospheric data assimilation. Mon. Weather Rev., 140, 617–636, https://doi.org/10.1175/MWR-D-10-05052.1
Chang, W., K.-S., Chung, L. Fillion and S.-J. Baek, 2014: Radar Data Assimilation in the Canadian High-Resolution Ensemble Kalman Filter System: Performance and Verification with Real Summer Cases. Mon. Wea. Rev., 142, 2118-2138, https://doi.org/10.1175/MWR-D-13-00291.1
Chen, F., and Dudhia, J., 2001: Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity, Mon. Wea. Rev., 129(4), 569-585. https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2
Chen, X. C., K. Zhao, J. Z. Sun, B. W. Zhou, and W. C. Lee, 2016: Assimilating surface observations in a four-dimensional Variational Doppler radar data assimilation system to improve the analysis and forecast of a squall line case. Adv. Atmos. Sci., 33(10), 1106– 1119.
Cheng, H.-W., 2017: Impact of the radar data assimilation on heavy rainfall prediction associated with a multi-scale weather (Meiyu) system: a case study of SoWMEX IOP#8 M. S. dissertation. Department of Atmospheric Physics, National Central University, Taoyuan, Taiwan, 68 pp.
Cheng, H.-W., S.-C. Yang, and C.-S. Chen, 2019: Impact of Doppler radar network in Taiwan on the convective-scale data assimilation and precipitation prediction: The extreme precipitation event during 1-3 June 2017. AOGS 16th Annual Meeting, Singapore, Asia Oceanic GeoScience Society, AS30–A029.
——, ——, Y. C. Liou, and C. Sen Chen, 2020: An investigation of the sensitivity of predicting a severe rainfall event in northern Taiwan to the upstream condition with a WRF-based radar data assimilation system. Sci. Online Lett. Atmos., 16, 97–103, https://doi.org/10.2151/SOLA.2020-017.
Coniglio, M. C., Hwang, J. Y., and Stensrud, D. J., 2010: Environmental Factors in the Upscale Growth and Longevity of MCSs Derived from Rapid Update Cycle Analyses. Mon. Wea. Rev., 138(9), 3514-3539, https://doi.org/10.1175/2010MWR3233.1
Do, P.-N., Chung, K.-S., Lin, P.-L., Ke, C.-Y., and Ellis, S. M., 2022: Assimilating Retrieved Water Vapor and Radar Data from NCAR S-PolKa: Performance and Validation Using Real Cases. Mon. Wea. Rev., 150(5), 1177–1199. https://doi.org/10.1175/mwr-d-21-0292.1
Dowell, D. C., Alexander, C. R., James, E. P., Weygandt, S. S., Benjamin, S. G., Manikin, G. S., Blake, B. T., Brown, J. M., Olson, J. B., Hu, M., Smirnova, T. G., Ladwig, T., Kenyon, J. S., Ahmadov, R., Turner, D. D., Duda, J. D., and Alcott, T. I., 2022: The High-Resolution Rapid Refresh (HRRR): An Hourly Updating Convection-Allowing Forecast Model. Part 1: Motivation and System Description, Weather and Forecasting, https://doi.org/10.1175/WAF-D-21-0151.1
Dowell, D. C., L. J. Wicker, and C. Snyder, 2011: Ensemble Kalman filter assimilation of radar observations of the 8 may 2003 Oklahoma city supercell: Influences of reflectivity observations on storm-scale analyses. Mon. Wea. Rev., 139, 272–294, https://doi.org/10.1175/2010MWR3438.1.
Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 1982-2005, https://doi.org/10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2
Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, https://doi.org/10.1029/94jc00572.
Fabry F, Sun J. 2010: For how long should what data be assimilated for the mesoscale forecasting of convection and why? Part I: on the propagation of initial condition errors and their implications for data assimilation. Mon. Wea. Rev., 138, 242–255, https://doi.org/10.1175/2009MWR2883.1.
Gao, S., Sun, J., Min, J., Zhang, Y., and Ying, Z., 2018: A Scheme to Assimilate “No Rain” Observations from Doppler Radar. Weather and Forecasting, 33(1), 71-88, https://doi.org/10.1175/WAF-D-17-0108.1
Gao, J., and M. Xue, 2008: An efficient dual-resolution approach for ensemble data assimilation and tests with simulated Doppler radar data. Mon. Wea. Rev., 136, 945-963, https://doi.org/10.1175/2007MWR2120.1
Greybush, S. J., Kalnay, E., Miyoshi, T., Ide, K., and Hunt, B. R., 2011: Balance and Ensemble Kalman Filter Localization Techniques. Mon. Wea. Rev., 139(2), 511-522, https://doi.org/10.1175/2010MWR3328.1
Gustafsson, N, Janjić, T, Schraff, C, et al., 2018: Survey of data assimilation methods for convective-scale numerical weather prediction at operational centres. Q J R Meteorol Soc., 144, 1218– 1256, https://doi.org/10.1002/qj.3179
Hong, S., Noh, Y., & Dudhia, J., 2006: A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes, Mon. Wea. Rev., 134(9), 2318-2341, https://doi.org/10.1175/MWR3199.1
Houtekamer, P. L., and Zhang, F., 2016: Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation. Mon. Wea. Rev., 144(12), 4489-4532. https://doi.org/10.1175/MWR-D-15-0440.1
Hsiao, L., Huang, X., Kuo, Y., Chen, D., Wang, H., Tsai, C., Yeh, T., Hong, J., Fong, C., and Lee, C., 2015: Blending of Global and Regional Analyses with a Spatial Filter: Application to Typhoon Prediction over the Western North Pacific Ocean. Weather and Forecasting, 30(3), 754-770, https://doi.org/10.1175/WAF-D-14-00047.1
Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Phys. D Nonlinear Phenom., 230, 112–126, https://doi.org/10.1016/j.physd.2006.11.008.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D., 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.
Janjić, T., and Coauthors, 2018: On the representation error in data assimilation. Q. J. R. Meteorol. Soc., 144, 1257–1278, https://doi.org/10.1002/qj.3130.
Jung, Y., G. Zhang, and M. Xue, 2008a: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 2228-2245, https://doi.org/10.1175/2007MWR2083.1
──, M. Xue, G. Zhang, and J. M. Straka, 2008b: Assimilation of simulated polarimetric radar data for a convective storm using the ensemble Kalman filter. Part II: Impact of polarimetric data on storm analysis. Mon. Wea. Rev., 136, 2246-2260, https://doi.org/10.1175/2007MWR2288.1
Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181, https://doi.org/10.1175/1520-0450(2004)043,0170:TKCPAU.2.0.CO;2.
Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, New York, NY, USA, 340 pp.
Knight, C. A., and L. J. Miller, 1993: First radar echoes from cumulus clouds. Bull. Amer. Meteor. Soc., 74, 179–188, https://doi.org/10.1175/1520-0477(1993)074<0179:FREFCC>2.0.CO;2.
Kondo, K., T. Miyoshi, and H. L. Tanaka 2013: Parameter sensitivities of the dual-localization approach in the local ensemble transform Kalman filter. SOLA, 9, 174–177, doi:10.2151/sola.2013-039.
Le Dimet, F.-X. and Talagrand, O., 1986: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A, 38A, 97-110, https://doi.org/10.1111/j.1600-0870.1986.tb00459.x
Lin, K-J, S-C Yang*, S. Chen, 2022: Improving Analysis and Prediction of Tropical Cyclones by Assimilating Radar and GNSS-R Wind Observations: Observing System Simulation Experiments, Wea. Forecasting
Liu, C.-Y., 2021: Investigating how to use radar data assimilation to improve the multiscale heavy rainfall system in northern Taiwan. Report of College Student Research Scholarship, Ministry of Science and Technology (Report No. MOST 109-2813-C-008-037-M).
Luo, Y.-Q., 2017: The extension of IBM_VDRAS system and its case study-07/07/2017 afternoon thunderstorm case. M. S. dissertation. Department of Atmospheric Physics, National Central University, Taoyuan, Taiwan, 95 pp.
Lorenc, A. C., 1981: A Global Three-Dimensional Multivariate Statistical Interpolation Scheme. Mon. Wea. Rev., 109(4), 701-721, https://doi.org/10.1175/1520-0493(1981)109<0701:AGTDMS>2.0.CO;2
Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP—a comparison with 4D-Var. Q.J.R. Meteorol. Soc., 129, 3183-3203, https://doi.org/10.1256/qj.02.132
Miyoshi, T., and K. Kondo, 2013: A multi-scale localization approach to an ensemble Kalman filter. SOLA, 9, 170–173, doi:10.2151/sola.2013-038.
Necker, T, Geiss, S, Weissmann, M, Ruiz, J, Miyoshi, T, Lien, G-Y., 2020: A convective-scale 1,000-member ensemble simulation and potential applications. Q J R Meteorol Soc., 146, 1423– 1442, https://doi.org/10.1002/qj.3744
Ott E., B. R. Hunt, I. Szunyogh, A. V. Zimin, E. J. Kostelich, M. Corrazza, E. Kalnay, D. J. Patil, and J. A. Yorke, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415–428, https://doi.org/10.3402/tellusa.v56i5.14462
Pagé C, Fillion L, Zwack P., 2007: Diagnosing summertime mesoscale vertical motion: implications for atmospheric data assimilation. Mon. Wea. Rev., 135, 2076–2094, https://doi.org/10.1175/MWR3371.1.
Patil, D., B. R. Hunt, E. Kalnay, J. A. Yorke, and E. Ott, 2001: Local low dimensionality at atmospheric dynamics. Phys. Rev. Lett., 86, 5878–5881,
Periáñez, Á., H. Reich, R. Potthast, 2014: Optimal Localization for Ensemble Kalman Filter Systems, Journal of the Meteorological Society of Japan. 92(6), 585-597, https://doi.org/10.2151/jmsj.2014-605
Sasaki, 1958: An Objective Analysis Based on the Variational Method. Journal of the Meteorological Society of Japan, 36(3), 77-88, https://doi.org/10.2151/jmsj1923.36.3_77
Schraff, C., Reich, H., Rhodin, A., Schomburg, A., Stephan, K., Periáñez, A. and Potthast, R., 2016: Kilometre-scale ensemble data assimilation for the COSMO model (KENDA). Q.J.R. Meteorol. Soc., 142, 1453-1472, https://doi.org/10.1002/qj.2748
Shao, Y.-M., 2015: Applying the local ensemble transform Kalman filter radar data assimilation system to improve short-term quantitative rainfall forecast: A case study with SoMEX IOP8. M. S. dissertation. Department of Atmospheric Physics, National Central University, Taoyuan, Taiwan, 95 pp.
Skamarock, W. C., and Coauthors, 2019: A description of the Advanced Research WRF Model version 4. NCAR Tech. Note NCAR/TN-556+STR, 145 pp., https://doi.org/10.5065/1dfh-6p97
Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 1663-1677, https://doi.org/10.1175//2555.1
Sodhi, J. S., & Fabry, F., 2022: Benefits of Smoothing Backgrounds and Radar Reflectivity Observations for Multiscale Data Assimilation with an Ensemble Kalman Filter at Convective Scales: A Proof-of-Concept Study, Mon. Wea. Rev., 150(3), 589-601, https://doi.org/10.1175/MWR-D-21-0130.1
Sugimoto, S., N. A. Crook, J. Sun, Q. Xiao, and D. M. Barker, 2009: An examination of WRF 3DVAR radar data assimilation on its capability in retrieving unobserved variables and forecasting precipitation through Observing System Simulation Experiments. Mon. Wea. Rev., 137, 4011-4029, https://doi.org/10.1175/2009MWR2839.1
Sun, J., M. Chen, and Y. Wang, 2010: A Frequent-updating analysis system based on radar, surface, and mesoscale model data for the Beijing 2008 Forecast Demonstration Project. Wea. Forecasting, 25, 1715–1735, https://doi.org/10.1175/2010WAF2222336.1
──, 2005: Initialization and numerical forecasting of a supercell storm observed during STEPS. Mon. Wea. Rev., 133, 793–813, https://doi.org/10.1175/MWR2887.1
──, and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642–1661, https://doi.org/10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2
── and Wang, H., 2013: Radar data assimilation with WRF 4DVar. Part II: comparison with 3D-Var for a squall line over the US Great Plains, Mon. Weather Rev., 11, 2245–2264, https://doi.org/10.1175/MWR-D-12-00169.1
Tai, S.-L., Y.-C. Liou, J. Sun, and S.-F. Chang, 2017: The development of a terrain-resolving scheme for the forward model and its adjoint in the four-dimensional Variational Doppler Radar Analysis System (VDRAS). Mon. Wea. Rev., 145, 289–306, https://doi.org/10.1175/MWR-D-16-0092.1
Tao, W.–K., J. Simpson, and M. McCumber, 1989: An Ice–Water Saturation Adjustment. Mon. Wea. Rev., 117, 231-235, https://doi.org/10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2
Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 1789-1807, https://doi.org/10.1175/MWR2898.1
Tsai, C. C., S. C. Yang, and Y. C. Liou, 2014: Improving quantitative precipitation nowcasting with a local ensemble transform Kalman filter radar data assimilation system: Observing system simulation experiments. Tellus, Ser. A Dyn. Meteorol. Oceanogr., 66, https://doi.org/10.3402/tellusa.v66.21804.
Wang, X., Chipilski, H. G., Bishop, C. H., Satterfield, E., Baker, N., & Whitaker, J. S., 2021: A Multiscale Local Gain Form Ensemble Transform Kalman Filter (MLGETKF), Mon. Wea. Rev., 149(3), 605-622. https://doi.org/10.1175/MWR-D-20-0290.1
Wang, H., J. Sun, S. Fan, and X. Y. Huang, 2013: Indirect assimilation of radar reflectivity with WRF 3D-Var and its impact on prediction of four summertime convective events. J. Appl. Meteor. Climatol., 52, 889–902, https://doi.org/10.1175/JAMC-D-12-0120.1.
Weng, Y., and Zhang, F., 2012: Assimilating Airborne Doppler Radar Observations with an Ensemble Kalman Filter for Convection-Permitting Hurricane Initialization and Prediction: Katrina (2005), Mon. Wea. Rev.,140(3), 841-859, https://doi.org/10.1175/2011MWR3602.1
Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data assimilation. Mon. Wea. Rev., 140, 3078–3089, https://doi.org/10.1175/MWR-D-11-00276.1.
Wu, P. Y., S. C. Yang, C. C. Tsai, and H. W. Cheng, 2020: Convective-scale sampling error and its impact on the ensemble radar data assimilation system: A case study of a heavy rainfall event on 16 June 2008 in Taiwan. Mon. Wea. Rev., 148, 3631–3652, https://doi.org/10.1175/MWR-D-19-0319.1.
Wu, Y. J., 2019: The improvement of a 4DVar data assimilation system (IBM_VDRAS) and its applications in analyzing heavy rainfall processes over complex terrain: A case study in Northern Taiwan. M. S. dissertation. Department of Atmospheric Physics, National Central University, Taoyuan, Taiwan, 124 pp.
Xiao, Q., Y.-H. Kuo, J. Sun, W.-C. Lee, E. Lim, Y.-R. Guo, and D. M. Barker, 2005: Assimilation of Doppler radar observations with a regional 3DVAR system: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl.Meteor., 44, 768-788, https://doi.org/10.1175/JAM2248.1
──, and J. Sun, 2007: Multiple-radar data assimilation and short-range quantitative precipitation forecasting of a squall line observed during IHOP_2002. Mon. Wea. Rev., 135, 3381-3404, https://doi.org/10.1175/MWR3471.1
Xue, M., M. Tong, and K. K. Droegemeier, 2006: An OSSE framework based on the ensemble square root Kalman filter for evaluating the impact of data from radar networks on thunderstorm analysis and forecasting. J. Atmos. Oceanic Technol., 23, 46-66, https://doi.org/10.1175/JTECH1835.1
Yang, S.-C., Chen, S.-H., Kondo, K., Miyoshi, T., Liou, Y.-C., Teng, Y.-L., and Chang, H.-L., 2017: Multilocalization data assimilation for predicting heavy precipitation associated with a multiscale weather system, J. Adv. Model. Earth Syst., 9, 1684– 1702, doi:10.1002/2017MS001009
Yang, S. C., Z. M. Huang, C. Y. Huang, C. C. Tsai, and T. K. Yeh, 2020: A case study on the impact of ensemble data assimilation with GNSS-zenith total delay and radar data on heavy rainfall prediction. Mon. Wea. Rev., 148, 1075–1098, https://doi.org/10.1175/MWR-D-18-0418.1.
Yang, X., 2005: Analysis blending using a spatial filter in grid-point model coupling. HIRLAM Newsletter, No. 48, Article 10, HIRLAM Programme, de Bilt, Netherlands, 49–55. [Available online at http://www.hirlam.org/index.php/meeting-reports-and-presentations/doc_download/517-hirlam-newsletter-no-48-article10-yang.]
Yeh, H. L., Yang, S. C., Terasaki, K., Miyoshi, T., and Liou, Y. C. 2022: Including observation error correlation for ensemble radar radial wind assimilation and its impact on heavy rainfall prediction. Quarterly Journal of the Royal Meteorological Society. https://doi.org/10.1002/qj.4302
Ying, Y., 2019: A Multiscale Alignment Method for Ensemble Filtering with Displacement Errors, Mon. Wea. Rev., 147(12), 4553-4565, https://doi.org/10.1175/MWR-D-19-0170.1
Ying, Y., 2020: Assimilating Observations with Spatially Correlated Errors Using a Serial Ensemble Filter with a Multiscale Approach, Mon. Wea. Rev., 148(8), 3397-3412, https://doi.org/10.1175/MWR-D-19-0387.1
Zhang, F., Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, 2009: Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 2105–2125, https://doi.org/10.1175/2009MWR2645.1.
Zhu, L., Wan, Q., Shen, X., Meng, Z., Zhang, F., Weng, Y., Sippel, J., Gao, Y., Zhang, Y., and Yue, J., 2016: Prediction and Predictability of High-Impact Western Pacific Landfalling Tropical Cyclone Vicente (2012) through Convection-Permitting Ensemble Assimilation of Doppler Radar Velocity, Mon. Wea. Rev., 144(1), 21-43, https://doi.org/10.1175/MWR-D-14-00403.1 |