博碩士論文 109322010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:115 、訪客IP:3.21.159.223
姓名 陳品翰(Pin-Han Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 應用於鋼結構檢測之高機動型蚇蠖攀爬機器人設計分析及實作驗證
(Design analysis and practical verification of a high mobility inchworm climbing robot for steel structure inspection)
相關論文
★ 應用智慧標籤及數據驅動方法於水接觸結構物之結構評估★ 基於低功耗嵌入式系統及高精度MEMS感測器的智慧鋼索監測系統研發
★ Sensor Code-based Smart Tag Embedded in Concrete for Seepage Sensing Caused by Cracks★ 智慧型居家機器人用於地震後自動巡查及應變處置之研究
★ 利用UAV整合LoRa與磁導喚醒技術的物聯網架構研發★ 基於磁吸附與全向輪技術的鋼結構攀爬機器人開發與驗證
★ 基於微型機器學習的智能避障系統在外牆檢測自主移動機器人中的應用★ 基於ROS的遠端自動多螺栓 檢測機器人系統開發
★ 基於BERT語意分析模型的智慧型BIM資訊搜尋問答系統之研究★ 基於BIM與無線喚醒物聯網裝置之智慧化結構檢測系統開發
★ 利用微型機器學習與微控制器即時檢測室內地磚空心缺陷★ 結合智慧感測標籤與支持向量機快速判定混凝土裂縫位置
★ 混凝土缺陷自動修補機器人之研發★ 研發具邊緣運算能力之無線振動量測裝置應用於橋梁鋼索特徵頻率偵測
★ 結合智慧感測標籤與機器學習方法判別混凝土內部鋼筋鏽蝕可能性之研究★ 應用於攀爬檢測機器人之輕量級即時多目標螺栓缺陷影像檢測系統之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-1以後開放)
摘要(中) 依據台灣交通部於2020年頒布之「公路橋梁檢測及補強規範」及「公路養護規範」修訂規定,公路養護機關應辦理橋梁定期、重大事故或災害後之檢測等程序,這意味著人們對於定期檢查的危機意識提升,至於傳統的橋梁結構物檢測方式,例如人員經常要身處於危險的工作環境,包含高空作業或封閉狹窄的檢修通道等,這些都帶來諸多檢測不便,況且過度依賴大型輔助設備及必須施作多種防護設備皆產生額外施工成本,近年來又因人力不足導致管理效率不彰與各地方政府的財政收入水平參差不齊等,為了解決以上傳統檢測之困難,防止因為疏於定期檢測作業所造成不必要之人為災害發生。隨著科技與通訊技術等迅速地發展,本團隊能運用遠端操作機器人來監測各項環境數據, 打破傳統土木領域思維,整合人與機器人協同合作的時代。

本研究的核心宗旨是導入工程界與商業化作為出發點,於初期開發階段會將重心放在設計分析,後期則以實作驗證的方式並應用於鋼結構物為媒介之新型橋梁檢測攀爬機器人-HMICRobot。從國際相關研究資料中,研擬多種攀爬形式,其中2足仿生蚇蠖機器人最符合實際攀爬需求與法律限制,以此架構下依序優化設計出7個模型版本,HMICRobot是目前最終實體化版本,滿足大部分三維平面空間的攀爬場域。此外,透過機構優化、機構材料應用、機械虛擬樣機開發工具(ADAMS多體動力學軟體)與機電整合,為HMICRobot設計了5種應用於鋼構橋梁攀爬路徑與靜力平衡分析做扣合,因屬初代實體化機種,先行排除動態效應的影響,因此有利於開發階段及早發覺設計瑕疵。藉由實驗階段將攀爬機器人導入封閉場域並架設鋼板模擬鋼構橋梁內部情況進行測試,驗證攀爬附著力及扭力參數數值之可行性評估。另外,HMICRobot與其他類似的攀爬機器人不同之處為整合足式(機動性高)和輪式(速度快)的優點,一來提升地面上的移動速度,二來是具備模式切換能力,可以輕鬆地運用滾輪和手臂去接觸牆面,增加攀爬機器人之攀爬組合與高機動性,使它成為一部可搭載檢測設備之載具與證實本研究開發已能夠以操作方式完成攀爬任務。
摘要(英) With the rapid development of technology and communication technology, the team can use remote-operated robots to monitor various environmental data, break the traditional thinking in the field of civil engineering, and integrate the era of human-robot collaboration. According to the revised regulations of the "Highway and Bridge Inspection and Reinforcement Specifications" and "Highway Maintenance Specifications" promulgated by the Ministry of Communications of Taiwan in 2020, the highway maintenance agency should conduct regular bridge inspections, major accidents, or disasters. The crisis awareness of inspection has been improved. As for the traditional detection methods of bridge structures, for example, personnel are often in dangerous working environments, including high-altitude operations or closed narrow maintenance channels, which bring much inconvenience to detection and over-reliance on large-scale auxiliary equipment. The equipment and the various protective equipment that must be installed all generate additional construction costs. In recent years, management efficiency has been poor due to the lack of human resources, and the fiscal revenue levels of various local governments have been uneven—unnecessary manufactured disasters caused by regular inspection operations.

The core purpose of this research is to introduce the engineering community and commercialization as the starting point. In the initial development stage, the focus will be on design analysis, and in the later stage, it will be applied to a new bridge inspection and climbing robot mediated by steel structures through practical verification (HMICRobot). Various climbing forms are developed from relevant international research materials. Among them, the 2-legged bionic cockroach robot best meets the actual climbing needs and legal restrictions. Under this framework, 7 model versions are optimized and designed in sequence. HMICRobot is the current final entity. The modified version can satisfy most climbing fields in three-dimensional plane space. In addition, through mechanism optimization, mechanism material application, mechanical virtual prototyping development tool (ADAMS multi-body dynamics software), and electromechanical integration, five kinds of applications were designed for HMICRobot to be applied to steel structure bridge climbing paths and static balance analysis for buckles. Because it is the first generation of physical models, the influence of dynamic effects is excluded first, so it is conducive to early detection of design flaws in the development stage. In the experimental stage, the climbing robot was introduced into the closed field, and the steel plate was erected to simulate the internal conditions of the steel bridge for testing to verify the feasibility evaluation of the climbing adhesion and torque parameter values. In addition, the difference between HMICRobot and other similar climbing robots is that it integrates the advantages of foot type (high mobility) and wheel type (fast speed). Easily use the rollers and arms to touch the wall, increase the climbing combination and high mobility of the climbing robot, make it a vehicle that can be equipped with inspection equipment, and prove that this research and development has been able to complete the climbing task in an operational mode.
關鍵字(中) ★ 攀爬機器人
★ 仿生
★ ADAMS
★ 鋼結構
★ 3D列印技術
★ 無人巡檢載具
關鍵字(英) ★ Climbing robot
★ Bionic
★ ADAMS
★ Steel structure
★ 3D printing technology
★ Unmanned inspection vehicle
論文目次 摘要 I
ABSTRACT II
致謝 IV
目錄 V
表目錄 VIII
圖目錄 X
一、 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 3
1-3 論文架構 6
二、 文獻回顧 7
三、 研究方法 13
3-1 攀爬機器人開發流程 13
3-1-1 攀爬機器人設計概念 16
3-1-2 機構設計 18
3-1-3 攀爬機器人尺寸與工作空間之要求 22
3-2 技術規格的挑選 26
3-2-1 電磁鐵附著力測試 26
3-2-2 機構零部件之材料應用 29
3-2-3 硬體設計 32
3-2-4 能源與線路規劃 36
3-3控制方式與建立機器人操作介面 39
3-4 力平衡方法 41
3-4-1靜力平衡分析 41
3-4-2翻轉彎矩及摩擦滑移分析 43
3-4-3電磁鎖定裝置位置 45
3-5 機器人運動學建模 47
3-5-1機器人的連桿描述及關節變量 47
3-5-2 D-H參數方法 47
3-5-3機器人正逆運動學 50
3-6 仿真模擬分析 53
3-6-1 ADAMS多體動力學軟體應用簡介 53
3-6-2 ADAMS求解器算法 53
3-6-3利用ADAMS分析攀爬機器人運動時的扭力峰值 54
3-6-4 ADAMS碰撞力定義 56
3-6-5 ADAMS/VIEW套件操作 56
四、 實驗規劃與設計 61
4-1 整體實驗說明 61
4-2 腳墊設計之實際附著力試驗(CASE 1.) 63
4-3 單關節控制執行模式切換實驗(CASE 2.) 65
4-4 單關節控制執行標準上板之攀爬實驗(CASE 3.) 66
4-5 單關節控制執行L型薄鋼板路徑之攀爬實驗(CASE 4.) 67
4-6 單關節控制執行側向直角攀爬實驗(CASE 5.) 69
4-7 單關節控制執行倒吊攀爬實驗(CASE 6.) 70
五、 實驗與分析結果討論 72
5-1 機構材料模擬桿件受力之分析結果 72
5-2 腳墊設計之實際附著力試驗(CASE 1.) 79
5-3 單關節控制執行模式切換實驗(CASE 2.) 81
5-4 單關節控制執行標準上板之攀爬實驗(CASE 3.) 83
5-5 單關節控制執行L型薄鋼板路徑之攀爬實驗(CASE 4.) 84
5-6 單關節控制執行側向直角攀爬實驗(CASE 5.) 90
5-7 單關節控制執行倒吊攀爬實驗(CASE 6.) 90
5-8 實驗影片(CASE 2. ~ CASE 6.) 91
5-9 設計方案及攀爬機器人比較 92
六、 結論與未來建議 96
6-1 結論 96
6-2 未來建議 97
七、 參考文獻 98
參考文獻 1. Syrykh, N.V. and V.G. Chashchukhin, Wall-Climbing Robots with Permanent-Magnet Contact Devices: Design and Control Concept of the Contact Devices. Journal of Computer and Systems Sciences International, 2019. 58(5): p. 818-827.
2. Brusell, A., G. Andrikopoulos, and G. Nikolakopoulos, A Survey on Pneumatic Wall-Climbing Robots. 2016.
3. Zhou, X., Climbot: A modular bio-inspired biped climbing robot. 2018.
4. Lu, X., et al., Design and analysis of a climbing robot for pylon maintenance. Industrial Robot, 2018. 45.
5. Nguyen, S.T. and H.M. La. Development of a Steel Bridge Climbing Robot. in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2019.
6. Sirken, A., et al. Bridge risk investigation diagnostic grouped exploratory (BRIDGE) bot. in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017. IEEE.
7. Nguyen, S.T., et al., Multi-directional Bicycle Robot for Steel Structure Inspection. 2021.
8. Bandyopadhyay, T., et al. Magneto: A versatile multi-limbed inspection robot. in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2018. IEEE.
9. Minor, M., et al., Design, implementation, and evaluation of an under-actuated miniature biped climbing robot. Vol. 3. 2000. 1999-2005 vol.3.
10. Krosuri, S. and M. Minor, Design, Modeling, Control, and Evaluation of a Hybrid Hip Joint Miniature Climbing Robot. I. J. Robotic Res., 2005. 24: p. 1033-1053.
11. Gradetsky, V., et al., Structure of wall climbing robot control system. 2019. A3-1.
12. Grieco, J.C., et al. A six-legged climbing robot for high payloads. in Proceedings of the 1998 IEEE International Conference on Control Applications (Cat. No. 98CH36104). 1998. IEEE.
13. Viegas, C. and M. Tavakoli. A single DOF arm for transition of climbing robots between perpendicular planes. in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2014.
14. Tavakoli, M., et al., Magnetic omnidirectional wheels for climbing robots. 2013. 266-271.
15. Ward, P., et al., Optimal design of a magnetic adhesion for climbing robots. 2013. 375-382.
16. Khan, M.B., et al., iCrawl: An Inchworm-Inspired Crawling Robot. 2020. 8: p. 200655-200668.
17. Nguyen, S., et al., A Practical Climbing Robot for Steel Bridge Inspection. 2020. 9322-9328.
18. Bui, H.-D. and H.M.J.a.p.a. La, Control and Navigation Framework for a Hybrid Steel Bridge Inspection Robot. 2021.
19. Malley, M.J., Army Ant Inspired Adaptive Self-Assembly with Soft, Climbing Robots. 2020, Harvard University.
20. Zhang, W., W. Zhang, and Z. Sun, A reconfigurable soft wall-climbing robot actuated by electromagnet. International Journal of Advanced Robotic Systems, 2021. 18: p. 172988142199228.
21. Nguyen, S.T. and H.M. La, Roller chain-like robot for steel bridge inspection. 2019.
22. Siyuan, W., Research status and future development of wall-climbing robot. 2021. 122-130.
23. Peidró, A., et al., Design of compact switchable magnetic grippers for the HyReCRo structure-climbing robot. 2019. 59: p. 199-212.
24. Romao, J., et al., InchwormClimber: A light-weight biped climbing robot with a switchable magnet adhesion unit. 2015.
25. Lee, J.-Y., J. An, and C.K.J.A.m.t. Chua, Fundamentals and applications of 3D printing for novel materials. 2017. 7: p. 120-133.
26. Hwang, Y., Y. Minami, and M. Ishikawa, Virtual Torque Sensor for Low-Cost RC Servo Motors Based on Dynamic System Identification Utilizing Parametric Constraints. Sensors, 2018. 18: p. 3856.
27. Zhang, L. and X. Shen. Research and development of real-time monitoring system based on WebSocket technology. in Proceedings 2013 international conference on mechatronic sciences, electric engineering and computer (MEC). 2013. IEEE.
28. Zhang, B., et al., Dynamic simulation analysis of humanoid robot walking system based on ADAMS. 2019. 24(1): p. 58-63.
29. Zhao, Y. and H. Wang. Kinematics simulation analysis and trajectory planning of a moving robot based on ADAMS. 2017.
30. Han, L., et al., The development status of ship wall-climbing robot. 2021. 231-237.
31. Chen, R., A Gecko-Inspired Electroadhesive Wall-Climbing Robot. Potentials, IEEE, 2015. 34: p. 15-19.
32. Wang, W., K. Wang, and H.J.P.i.N.S. Zhang, Crawling gait realization of the mini-modular climbing caterpillar robot. 2009. 19(12): p. 1821-1829.
33. Yuan, Y.-Y., et al. Design and implementation of an inchworm robot. in 2016 International Conference on Advanced Robotics and Intelligent Systems (ARIS). 2016. IEEE.
34. Ning, J., C. Ti, and Y.J.J.R.A. Liu, Inchworm inspired pneumatic soft robot based on friction hysteresis. 2017. 1(1): p. 54-63.
35. Han, I.H., et al., A miniaturized wall-climbing segment robot inspired by caterpillar locomotion. 2017. 12(4): p. 046003.
36. Moreira, F., et al., An inchworm-inspired robot based on modular body, electronics and passive friction pads performing the two-anchor crawl gait. 2018. 15(5): p. 820-826.
37. Eto, H. and H. Asada, Development of a Wheeled Wall-Climbing Robot with a Shape-Adaptive Magnetic Adhesion Mechanism. 2020. 9329-9335.
指導教授 林子軒(Tzu-Hsuan Lin) 審核日期 2022-9-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明