博碩士論文 109426023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:117 、訪客IP:18.118.148.178
姓名 蘇聖翔(Sheng-Xiang Su)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 使用半透明太陽能板協助科技廠房達成綠能目標
相關論文
★ 半導體化學材料銷售策略分析-以跨國B化工公司為例★ TFT-LCD CELL製程P檢點燈不良解析流程改善之關聯法則應用
★ 金融風暴時期因應長鞭效應的策略 –以X公司為例★ 勞動生產力目標訂定之研究-DEA 資料包絡法應用
★ 應用田口方法導入低溫超薄ITO透明導電膜於電容式觸控面板之研究★ 多階不等效平行機台排程與訂單決策
★ 多準則決策之應用-以雷射半導體產業為例★ 專案管理模式進行品管圈活動-以半導體機台保養測機流程改善為例
★ 應用e8D降低不合格品之效益分析-以快速消費品製造為例★ 供應商評選模式之建構-以塑膠射出成型機製造為例
★ 應用協同規劃預測補貨於伺服器備品存貨改善之研究-以Q代工公司為例★ 船用五金拋光作業之生產規劃
★ 以SCOR模型探討汽車安全輔助系統供應鏈-以A公司採購作業改善為例★ 研發補助計畫執行成效評估之研究以「工業基礎技術專案計畫」為例
★ 運用生態效益發展永續之耳機產業★ 失效模式設計審查(DRBFM)之應用-以筆記型電腦為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
縱觀全球,現今最為嚴峻的議題即為氣候變遷。未來人類再生能源的使用必定會是重大的議題,然而現今太陽能板的發電效率過低,在技術成熟的過渡階段,使用半透明太陽能板對於人類而言是不可或缺的,在未能改善太陽能板發電效率的情況下,人類必須在有限的土地資源下,盡可能的最大化發電量且最小化用電量。本研究主要探討結合半透明太陽能電池與建築整合型太陽能板(Building Integrated Photovoltaic,BIPV)應用於高耗能科技廠房之最佳效益問題。目前國內太陽能板相關研究大多以不透明之太陽能板為基礎,估計該系統的發電量和投資回收期。然而在研究最大化發電量的同時,並沒有考慮到建築物本身之耗能問題,忽略了在提升發電量的同時可能造成耗能之提升。因此本研究將以最小化碳排放量為指標,並利用半透明太陽能板之可透光特性,探討不同透明度下,半透明太陽能板之最大化發電量問題和最小化耗能問題。此外,不同於傳統太陽能板,半透明太陽能板不僅能使用於屋頂,亦可代替原先建築的窗戶,增加了可鋪設面積。
本研究以最小化成本為目標,其中成本包含太陽能板年度總成本、碳稅成本以及購電成本,希望能透過半透明太陽能板可透光之特性,探討在太陽能板發電同時,找到發電量與建築物用電需求之最佳甜蜜點。影響發電量與用電需求的因素包含半透明太陽能板鋪設片數及透光度,而建築物可鋪設區域包含屋頂及四面牆。並以IC設計公司為研究對象,參考其廠房資訊、所在位置日射量及模擬該產業之用電量作為參數,使用python中gurobi套件執行非線性問題最佳化求解,最佳解包含各區域鋪設片數及各區太陽能板之最佳透明度。研究結果顯示,一年共730期數中,半透明太陽能板一共減少光照系統262,796.4度用電需求,等同於減少22%白天時段之光照用電。此外,由於鋪設半透明太陽能板,一年共可減少82,246公斤之碳排放量。而隨著碳稅的提高,最佳解之透明度將降低使太陽能板發電量提高,進而減少向電力公司購電產生之購電成本及碳排成本。
關鍵字:永續發展、太陽能、建築整合型太陽能板、能源規劃、半導體產業
摘要(英) Throughout the world, the most serious issue today is about the climate change. The use of renewable energy for human beings will definitely be a major issue in the near future. However, the energy conversion efficiency of solar PV is too low. In the transitional phase of mature solar PV technology, the use of semi-transparent solar PV is indispensable for human beings. In the case of low energy conversion efficiency and if we cannot improve it immediately, we must maximize generation of power and minimize consumption of power with limited land area. This study mainly discusses the optimal benefit of combining semi-transparent solar PV and Building Integrated Photovoltaic (BIPV) in high-energy-consuming high-tech workshop. At present, most of the related researches on solar panels are based on opaque solar PV to estimate the power generation and investment payback period of the system. However, in the study of maximizing power generation, the energy consumption of the building is not considered, and it may increase the consumption of power when we try our best to increase the generation of power. Therefore, this study will take net carbon emission as an indicator, and take advantage of light-transmitting characteristics of the semi-transparent solar PV to optimize the problem of maximizing power generation and minimizing energy consumption of semi-transparent solar PV with the different transmittance. In addition, unlike traditional solar PV, semi-transparent solar PV can not only be used on the roof, but also replace the windows of the building, increasing the usable area.
The objection of this study is to minimize the total cost, which includes the cost of installing solar panels, the cost of carbon tax, and the cost of buying the electricity. It is expected that the semi-transparent solar panels can transmit light through the characteristics of semi-transparent solar panels to explore how to find the best solution about the relationship between power generation and the electricity demand of the of buildings while generating electricity from solar panels. Factors that affect power generation and electricity demand include the number of semi-transparent solar panels and transmittance of the solar panels, and the paved area of ​​buildings includes roof and the four walls. And taking the IC design company as the research object, referring to its plant information, the location of the solar radiation and the simulated electricity consumption of the industry as parameters. The gurobi package in python is used to optimize the nonlinear problem in the research. The optimal solution includes the number of solar panels installed and the best transparency of solar panels in each area. The research results show that in a total of 730 periods in a year, the semi-transparent solar panels reduce the electricity demand of the lighting system by a total of 262,796.4 kWh, which is equivalent to reducing the electricity consumption of light during the day by 22%. In addition, due to the installation of semi-transparent solar panels, a total of 82,246 kilograms of carbon emissions can be reduced in one year. With the increase of carbon tax, the transparency of the best solution will be reduced, so that the power generation of solar panels will increase, thereby reducing the power purchase cost and carbon emission cost of purchasing electricity from the power company
Keywords: Sustainability, Solar Energy, Building Integrated Solar Panels, Energy Planning, Semiconductor Industry.
關鍵字(中) ★ 永續發展
★ 太陽能
★ 建築整合型太陽能板
★ 能源規劃
★ 半導體產
關鍵字(英) ★ Sustainability
★ Solar Energy
★ Building Integrated Solar Panels
★ Energy Planning
★ Semiconductor Industry
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 研究問題 1
1.1 全球暖化 1
1.2 研究動機 4
1.3 研究問題 9
第二章 文獻探討 13
2.1 永續發展與太陽能 13
2.2 半透明太陽能板 19
第三章 研究方法 24
3.1 問題分析 24
3.2 研究方法 25
3.3 數學模型 26
第四章 電腦實驗 34
4.1 資料蒐集 34
4.1.1 太陽日射量 34
4.1.2 科技廠房之用電需求 36
4.1.3 成本設定(台電電價、碳稅價格、太陽能板價格) 37
4.2 實驗結果分析 40
4.2.1 參數設定 40
4.2.2 結果分析 41
4.2.3 成本分析 45
第五章 結論 48
5.1 研究總結 48
5.2 後續工作 49
參考文獻 51
中文文獻 51
英文文獻 52
參考文獻 中文文獻
科技部、中央研究院環境變遷研究中心、交通部中央氣象局、臺灣師範大學地球科學系、國家災害防救科技中心聯合發布(2021)。IPCC氣候變遷第六次評估報告之科學重點摘錄與臺灣氣候變遷評析更新報告。科技部。1-9。
Chen, Y. J., Wang, J.(2020)。全球暖化下臺灣海平面上升和風暴潮衝擊分析。綠色和平組織。1-15。
環境資訊中心(2021)。網站:https://e-info.org.tw/node/231489b(上網日期:2021年9月27日)。崛起
顏文治(2013)。太陽光電發電系統發電效益分析與保養維護說明。台開公司。19-37。
聯詠科技股份有限公司官方網站(2020)。網站:https://www.novatek.com.tw/upload/media/csr/CSR%20Report/2020/2020CSR_c.pdf(上網日期:2022年1月12日)。
李訓谷、陳文亮(2009)。高科技廠房能源使用調查及管理模式建構。科學與工程技術期刊第五卷第四期。57-68。
歐文生、何明錦、陳瑞鈴、陳建富、羅時麒(2008)。台灣太陽能設計用標準日射量之研究。中華民國建築學會建築學報第64期。103-118。
聯合新聞網(2021)。網站:https://udn.com/news/story/7324/5885897(上網日期:2022年2月10日)。
黃郁青、陳治均(2020)。我國太陽光電中長期之技術發展策略。臺灣能源期刊第七卷第四期。325-344。
喻新等人(2003)。生態建築之日射量模擬-以宜蘭市為例。農業工程學報第49卷第三期。60-70。
黃漢泉等人(2000)。辦公室類建築耗能總量調查研究。內政部建築研究所研究計畫成果報告。
台灣電力公司官方網站(2021)。台電營業用非時間電價表。網站:https://www.taipower.com.tw/upload/238/2021101315451523922.pdf (上網日期:2022年5月26日)。
中華民國經濟部官方網站(2022)。111年度再生能源電能躉購費率。網站:https://www.moea.gov.tw/MNS/populace/news/News.aspx?kind=1&menu_id=40&news_id=98715(上網日期:2022年6月8日)。
英文文獻
Ahmed, H. O., Madkor, A. K., Makeen, P., Betelmal, S. E. I., Hassan, M. M., Abdelsamee, M. M., Ayman A., El-Adly, M. H., Nessim, A. , Abdullatif, S. O.. Optimizing the Artificial Lighting in a Smart and Green Glass Building-integrated Semi-Transparent Photovoltaics: A Multifaceted Case Study in Egypt. WSEAS Transactions on Environment and Development, 2021, 118-127.
An, H. J., Yoon, J. H., An, Y. S., Heo, E.. Heating and Cooling Performance of Office Buildings with a-Si BIPV Windows Considering Operating Conditions in Temperate Climates: The Case of Korea. Sustainability, 2018, 1-19.
Bodart, M., Herde, A. D.. Global energy savings in offices buildings by the use of daylighting. Energy and Buildings 34, 2002, 421-429.
Carson, R., Silent Spring. 1962.
Conibeer, G.. Third-generation photovoltaics. Materialstoday, 2007, 42-50.
Council of the European Union (2021). Fit for 55. Retrieved from https://www.consilium.europa.eu/en/policies/green-deal/eu-plan-for-a-green-transition/ (Accessed: Nov. 11, 2021)
Do, S. L., Shin, M., Baltazar, J. C., Kim, J.. Energy benefits from semi-transparent BIPV window and daylight-dimming systems for IECC code-compliance residential buildings in hot and humid climates. Solar Energy 155, 2017, 291-303.
Green, M. A., Dunlop, E. D., Levi, D. H., Hohl‐Ebinger, J., Yoshita, M., Ho‐Baillie, A. W. Y.. Solar cell efficiency tables (version 54). Progress in Photovoltaics: Research and Applications, 2019, 565-575.
Green, M. A.. Third generation photovoltaics: solar cells for 2020 and beyond. Physica E 14, 2002, 65-70.
Hassanien, R. H. E., Li, M., Yin, F.. The integration of semi-transparent photovoltaics on greenhouse roof for energy and plant production, Renewable Energy 121, 2018, 377-388.
Imamzai, M., Aghaei, M., Thayoob, Y. H. M., Forouzanfar, M.. A Review on Comparison between Traditional Silicon Solar Cells and Thin-Film CdTe Solar Cells. Proceedings National Graduate Conference, 2012, 1-6.
Intergovernmental Panel on Climate Change (IPCC). Global warming of 1.5°C, 2018, 59-70.
International Union for Conservation of Nature and Natural Resources (IUCN). World Conservation Strategy: Living Resource Conservation for Sustainable Development, 1980.
Li, D. H. W., Lam, T. N. T., Chan, W. W. H., Ada, M. H. L.. Energy and cost analysis of semi-transparent photovoltaic in office buildings. Applied Energy 86, 2009, 722-729.
Miyazaki, T., Akisawa, A., Kashiwagi, T.. Energy savings of office buildings by the use of semi-transparent solar cells for windows. Renewable Energy 30, 2005, 281-304.
NASA′s Goddard Space Flight Center (2021). Satellite sea level observations. Retrieved from https://climate.nasa.gov/vital-signs/sea-level/ (Accessed: Sept. 27, 2021)
Ng, P. K., Mithraratne, N., Kua, H. W.. Energy analysis of semi-transparent BIPV in Singapore buildings. Energy and Buildings 66, 2013, 274-281.
Olivieria, L., Caamano-Martin, E., Olivieri, F., Neila, J.. Integral energy performance characterization of semi-transparent photovoltaic elements for building integration under real operation conditions. Energy and Buildings 68, 2014, 280-291.
Padhy, A., Vishal, B., Verma, P., Dwivedi, G., Behura, A. K.. Fabrication of parabolic trough hybrid solar PV-T collector using a-Si thin film solar cells in Indian perspective. Materials Today: Proceedings, 2020.
Padoan, F. C. S. M., Altimari, P., Pagnanelli, F.. Recycling of end of life photovoltaic panels: A chemical prospective on process development. Solar Energy 177, 2019, 746-761.
Palm, J., Probst, V., Karg, F. H.. Second generation CIS solar modules. Solar Energy 77, 2004, 757-765.
Reinhard, P., Chirila, A., Blosch P., Pianezzi, F., Nishiwaki, S., Buecheler S., Tiwari, A. N.. Review of Progress Toward 20% Efficiency Flexible CIGS Solar Cells and Manufacturing Issues of Solar Modules. IEEE JOURNAL OF PHOTOVOLTAICS 3, 2013, 572-580.
Sharma, S., Jain, K. K., Sharma, A.. Solar Cells: In Research and Applications-A Review. Materials Sciences and Applications, 2015, 11.
The world conservation union. (IUCN). Caring for the Earth: A Strategy for Sustainable Living, 1991.
Wenham, S. R., and Green, M. A.. Silicon Solar Cells. Progress in Photovoltaics: Research and Applications, 1996, 3-33.
Western Cape Education Department (WCED). Report of the World Commission on Environment and Development: Our Common Future, 1987.
Wong, P. W., Shimoda, Y., Nonaka, M., Inoue, M., Mizuno, M.. Semi-transparent PV: Thermal performance, power generation, daylight modelling and energy saving potential in a residential application. Renewable Energy 33, 2008, 1024-1036.
Xu, S., Liao, W., Huang, J., Kang, J.. Optimal PV cell coverage ratio for semi-transparent photovoltaics on office building facades in central China. Energy and Buildings 77, 2014, 130-138.
Yang, I. H., Nam, E. J.. Economic analysis of the daylight-linked lighting control system in office buildings. Solar Energy 84, 2010, 1513-1525.
Zhang, W., Lu, L., Peng, J., Song, A.. Comparison of the overall energy performance of semi-transparent photovoltaic windows and common energy-efficient windows in Hong Kong. Energy and Buildings 128, 2016, 511-518.
指導教授 王啟泰(Chi-Thai Wang) 審核日期 2022-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明