參考文獻 |
1. Aboagye-Sarfo, P., Mai, Q., Sanfilippo, F. M., Preen, D. B., Stewart, L. M., Fatovich, D. M., (2015). “A comparison of multivariate and univariate time series approaches to modelling and forecasting emergency department demand in Western Australia,” Journal of Biomedical Informatics, 57, pp. 62-73
2. Beleites, C., Neugebauer, U., Bocklitz, T., Krafft, C., Popp, J. (2013) “Sample size planning for classification models.” Anal. Chim. Acta, 760, pp. 25-33
3. Blagus, R., Lusa, L. (2013). “SMOTE for high-dimensional class-imbalanced data.” BMC Bioinformatics 14, 106.
4. Blázquez-García, A., Conde, A., Mori, U., Lozano, J. A., (2021) “A Review on Outlier/Anomaly Detection in Time Series Data,” ACM Computing Surveys, 54(3), pp. 1-33.
5. Brown, A. H. D., & Marshall, D. R. (1995). “A basic sampling strategy: theory and practice.” Collecting plant genetic diversity: technical guidelines. CAB International, Wallingford, pp. 75-91.
6. Carreño, A., Inza, I., Lozano, J.A. (2020) “Analyzing rare event, anomaly, novelty and outlier detection terms under the supervised classification framework,” Artif Intell Rev 53, pp. 3575–3594.
7. Chawla, N. V., Bowyer, K. W., Hall, L. O., Kegelmeyer, W. P., (2002) “SMOTE: Synthetic Minority Over-sampling Technique,” Journal of Artificial Intelligence Research, 16, pp. 321-357.
8. Chazal, F., Cohen-Steiner, D., Lieutier, A. (2009) “A Sampling Theory for Compact Sets in Euclidean Space.” Discrete Comput Geom 41, pp.461-479.
9. Davey, A.M., Flores, B.E., (1993). “Identification of seasonality in time series: A note,” Mathematical and Computer Modelling, 18, Issue 6, pp. 73-81.
10. Dreiseitl, S., Ohno-Machado, L., (2002). “Logistic regression and artificial neural network classification models: a methodology review,” Journal of Biomedical Informatics, 35, Issues 5–6, pp. 352-359.
11. Ferreira, L. N., Zhao, L., (2016). “Time series clustering via community detection in networks,” Information Sciences, 326, pp. 227-242
12. Franses, P. H., (1991), “Seasonality, non-stationarity and the forecasting of monthly time series.” International Journal of forecasting, 7(2), pp. 199-208.
13. Goutte, C., Gaussier, E., (2005). “A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation,” Advances in Information Retrieval, pp 345–359
14. Hamilton, J. D., (2020) “Time series analysis.” Princeton university press.
15. Holt, G. A. ten, Reinders, M. J. T., Hendriks, E., (2007). “Multi-Dimensional Dynamic Time Warping for Gesture Recognition,” Thirteenth annual conference of the Advanced School for Computing and Imaging.
16. Huang, W., (2019), “Time Series Forecasting and Analysis: A Study of American Clothing Retail Sales Data” Honors Undergraduate Theses. 643
17. Kumari, R., & Srivastava, S. K., (2017). “Machine learning: A review on binary classification.” International Journal of Computer Applications, 160(7)
18. Li, J., (2019). “Regression and Classification in Supervised Learning,” Proceedings of the 2nd International Conference on Computing and Big Data, pp. 99-104,
19. Li, L., Chang, Q., Xiao, G., Ambani, S. (2011). “Throughput Bottleneck Prediction of Manufacturing Systems Using Time Series Analysis.” Journal of Manufacturing Science and Engineering, 133(2), pp. 1-8.
20. López, V., Fernández, A., García, S., Palade, V., Herrera, F., (2013) “An insight into classification with imbalanced data: Empirical results and current trends on using data intrinsic characteristics,” Information Sciences, 250, pp.113-141
21. Lu, C. J., Lee, T. S., Chiu, C. C., (2009) “Financial time series forecasting using independent component analysis and support vector regression,” Decision Support Systems, 47(2), pp. 115-125.
22. Martin, D., Serrano, A., Bergman, A., Wetzstein, G., Masia, B., (2021) “ScanGAN360: A Generative Model of Realistic Scanpaths for 360$^{circ}$ Images.”
23. Mathur, A., Foody, G. M., (2008) “Multiclass and Binary SVM Classification: Implications for Training and Classification Users,” in IEEE Geoscience and Remote Sensing Letters, 5(2), pp. 241-245.
24. Menardi, G., Torelli, N. (2014) “Training and assessing classification rules with imbalanced data,” Data Min Knowl Disc 28, pp. 92-122.
25. Menon, A. K., Williamson, R. C. (2018). “The cost of fairness in binary classification.” In Conference on Fairness, Accountability and Transparency, pp. 107-118.
26. Miljković, D., (2011) “Fault detection methods: A literature survey,” 2011 Proceedings of the 34th International Convention MIPRO, pp. 750-755.
27. Phan, T. T. H., Caillault, E. P., Lefebvre, A., Bigand, A., (2017) “Dynamic time warping based imputation for univariate time series data,” Pattern Recognition Letters, 139, pp. 139-147.
28. Sarker, I. H., (2021) “CyberLearning: Effectiveness analysis of machine learning security modeling to detect cyber-anomalies and multi-attacks,” Internet of Things, 14, 100393
29. Shen, S. Y., (2020) “Establishing an early warning system on streaming data by anomaly detection,” 中央大學工業管理所碩士論文
30. Soltanzadeh, P., Hashemzadeh, M., (2021). “RCSMOTE: Range-Controlled synthetic minority over-sampling technique for handling the class imbalance problem,” Information Sciences, 542, pp. 92-111
31. Song, S., & Baek, J. G. (2020). “New Anomaly Detection in Semiconductor Manufacturing Process using Oversampling Method.” In ICAART (2), pp. 926-932.
32. Sperandei, S., (2014). “Understanding logistic regression analysis.” Biochemia medica, 24(1), 12-18.
33. Switonski, A., Josinski, H. & Wojciechowski, K., (2019) “Dynamic time warping in classification and selection of motion capture data,” Multidim Syst Sign Process 30, 1437-1468.
34. Wang, F., Shao, W., Yu, H., Kan, G., He, X., Zhang, D., Ren, M., & Wang, G., (2020) “Re-evaluation of the Power of the Mann-Kendall Test for Detecting Monotonic Trends in Hydrometeorological Time Series,” Frontiers in Earth Science, 8.
35. Wang, J. C., Hu, J., Xu, H. M., (2007) “A strategy on constructing core collections by least distance stepwise sampling.” Theor Appl Genet, 115, pp. 1-8.
36. Wu, S. F., Chang, C. Y., Lee, S. J., (2015). “Time series forecasting with missing values.” In 2015 1st International Conference on Industrial Networks and Intelligent Systems (INISCom), pp. 151-156.
37. Zhao, F., Gao, Y., Li, X., An, Z., Ge, S., Zhang, C., (2021) “A similarity measurement for time series and its application to the stock market,” Expert Systems with Applications, 182, 115217.
38. Zhou, W. X., Sornette, D., (2008). “Analysis of the real estate market in Las Vegas: Bubble, seasonal patterns, and prediction of the CSW indices,” Physica A: Statistical Mechanics and its Applications, 387(1). |