博碩士論文 109322604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:126 、訪客IP:18.117.70.58
姓名 艾札(Muhammad Azhar)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 在TDR 壓力鍋實驗與變化的土壤乾濕速率和環境因素分析土壤的介電譜
(Dielectric spectrum analysis of soils due to drying-wetting rate and environment influences using TDR pressure plate)
相關論文
★ 時域反射法於土壤含水量與導電度遲滯效應之影響因子探討★ TDR監測資訊平台之改善與 感測器觀測服務之建立
★ 用過核子燃料最終處置場緩衝材料之 熱-水耦合實驗及模擬★ 堰塞壩破壞歷程分析及時域反射法應用監測
★ 深地層最終處置場緩衝材料小型熱-水耦合實驗之分層含水量量測改善★ 應用時域反射法於地層下陷監測之改善研發
★ 深地層處置場緩衝材料小型熱-水-力耦合實驗精進與模擬比對★ 淺層崩塌物聯網系統與深層型時域反射邊坡監測技術之整合
★ Modification of TDR Penetrometer for Water Content Profile Monitoring★ 利用線上遊戲於國小一年級至三年級學童防災教育推廣效益之研究—以桃園防災教育館為例
★ 低放射性最終處置場混合型緩衝材料之工程特性及潛變試驗與模擬★ Improved TDR Deformation Monitoring by Integrating Centrifuge Physical Modeling
★ 用於滑坡監測的 PS- 和 SBAS-InSAR 處理的參數研究——以阿里山為例★ 穿戴式偵測墜落及跌倒裝備於本國建築工地之研發測試
★ 機器學習在水庫入流與濁度預測之應用-以石岡壩為例★ 深度學習與資料擴增於山崩監測預測之可行性評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 淺層滑坡是坡地災害之一,此類滑坡一般發生在岩盤上覆有殘餘土的斜坡,往往是由於降雨入滲,改變了非飽和土的含水量,使基質吸力降低,影響土壤的穩定性。因此,監測邊坡非飽和土層的含水量和特性是必要的。雖然通過地電阻 (ERT) 作為土壤含水量與電阻率剖面轉換,但電阻率與含水量關係受地質和水文因素的影響。因此,時域反射儀(Time Domain Reflectometry, TDR)常被用來測量土壤水分含量和導電率(electrical conductivity, EC)/電阻率,此外,乾濕速率控制著土壤水分特性與EC的關係,需要從鹽度(電導率)和pH值等環境因素進一步考察。因此,本研究以TDR壓力鍋裝置檢測低潤濕和乾燥速率下土壤的介電頻譜。本試驗採用國立中央大學不同乾密度的紅黏土(如1.35 g/〖cm〗^3 和1.45 g/〖cm〗^3),並研究各種水質鹽度(100~700 μS/cm)和pH值(5~7)的影響。同時,本研究初步採用向量網路分析儀(Vector Network Analyzer, VNA)(1 MHz至1 GHz頻率範圍)用於比對TDR的介電頻譜波形結果。試驗結果顯示,採用TDR波形全反算分析和頻率域相速速度法,對土壤的介電頻譜分析結果非常吻合,特別是在0.1 GHz~1 GHz頻率範圍內。結果顯示乾燥速率較高的土壤的介電頻譜在每個週期之間的差異大於乾燥速率較低的土壤。然而,觀察TDR和VNA的介電頻譜,介電常數之間的差距在高頻上更大。VNA需要更充分的測試與計算才能產生更加合理的結果。
摘要(英) Shallow landslide is one of the natural disasters that arise on slope land. This kind of landslide, which generally occurs on slopes with residual soils overlying bedrock, is often caused by infiltration of rainfall, changing the water content of the unsaturated soil. Then, the decreasing matric suction reduces the stability of the soil. Hence, monitoring the water content and characteristic of the unsaturated soil layer on the slope is necessary. Although the soil water content is correlated with electrical resistivity through Electrical Resistivity Tomography (ERT), resistivity is influenced by geological and hydrological factors. Therefore, Time Domain Reflectometry (TDR) is utilized to measure the soil moisture content and electrical conductivity (EC)/resistivity to address the problem. Moreover, the drying-wetting rate controls the relationship between soil water characteristics and EC, and it needs further examination from environmental factors, such as salinity (conductivity) and pH value. Accordingly, this study involves TDR to retrieve the dielectric spectrum of soil from the TDR Pressure Plate device with a low wetting and drying rate. The soil red clay soil of National Central University with different dry density such as 1.35 g/cm3 and 1.45 g/cm3 was employed to investigate the effect of various salinity (100-700 μS/cm) and pH values (5-7). Meanwhile, the Vector Network Analyzer (VNA) (1 MHz to 1 GHz frequency range) was operated to verify the dielectric spectrum results from the TDR waveform. The result of dielectric spectrum analysis of soil from full inversion analysis and phase velocity method fit greatly, especially at the 0.1 GHz to 1 GHz frequency range. The result indicates that the dielectric spectrum of soil with a higher drying rate will have a higher difference between each cycle than soil with a lower drying rate. However, the gaps in the dielectric spectrum between TDR and VNA are higher on the high frequency. More adequate tests and calculation procedures are needed in the VNA test to produce more reasonable results.
關鍵字(中) ★ 土壤介電頻譜
★ 時域反射法
★ 乾濕速率
★ 向量網絡分析儀
關鍵字(英) ★ Soil dielectric spectrum
★ time domain reflectometry
★ drying-wetting rate
★ vector network analyzer
論文目次 Abstract ii
Acknowledgement v
Table of Contents vi
List of Tables ix
List of Figures x
List of Symbols xix
1. Introduction 1
1.1. Research Motivation 1
1.2. Study Objectives 4
1.3. Study Flowchart 4
2. Literature Review 7
2.1. TDR Principles 7
2.1.1. Dielectric Permittivity 11
2.1.2. Apparent Dielectric Constant and Electrical Conductivity 15
2.1.3. Tangent Line Method 17
2.1.4. TDR Full Waveform Inversion Analysis 19
2.1.5. Frequency Domain Analysis of Phase Velocity 24
2.1.6. TDR Pressure Plate 27
2.2. Vector Network Analyzer 32
2.2.1. Soil Dielectric Spectrum Using VNA 33
2.2.2. Truncated Coaxial Sample Holder (One-Port VNA) 35
2.2.3. EIA 1-5/8′′ Coaxial Transmission Lines (Two-port VNA) 40
3. Material and Methods 42
3.1. Pressure Plates 42
3.1.1. TDR Pressure Plate Apparatus 42
3.1.2. Tangent Line Method 50
3.1.3. Probe Length Calibration 51
3.1.4. Electrical Conductivity Calibrations 54
3.1.5. Measurement Steps 56
3.1.6. TDR Full Waveform Inversion Analysis Steps 58
3.1.7. Phase Velocity Analysis Steps 61
3.2. Vector Network Analyzer 62
3.2.1. Vector Network Analyzer Apparatus 62
3.2.2. Vector Network Analyzer Calibration 67
3.2.3. Electrical Length Calibration for Truncated Coaxial Holder 68
3.2.4. VNA Measurement Steps 70
3.2.5. Dielectric Spectrum Calculation Steps 71
3.3. Soil Samples 73
4. Result and Discussion 80
4.1. TDR Pressure Plate 80
4.1.1. Wetting and Drying Process 80
4.1.2. EC-θ Analysis 97
4.2. Full Waveform Inversion Analysis and Phase Velocity Analysis 113
4.3. Vector Network Analyzer 127
4.4. Comparison of soil dielectric spectrum 135
5. Conclusions and Suggestions 143
5.1. Conclusions 143
5.2. Suggestions 144
Response for Review and Suggestion 145
References 151
參考文獻 Andryieuski, A., Kuznetsova, S. M., Zhukovsky, S. V., Kivshar, Y. S., & Lavrinenko, A. V. (2015). Water: Promising opportunities for tunable all-dielectric electromagnetic metamaterials. Scientific reports, 5(1), 1-9.
ASTM. (2007). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 Ft-lbf/ft3 (600 KN-m/m3)) 1. In: ASTM international.
Bai, W., Kong, L., & Guo, A. (2013). Effects of physical properties on electrical conductivity of compacted lateritic soil. Journal of Rock Mechanics and Geotechnical Engineering, 5(5), 406-411.
Baker, J., & Allmaras, R. (1990). System for automating and multiplexing soil moisture measurement by time‐domain reflectometry. Soil Science Society of America Journal, 54(1), 1-6.
Beff, L., Günther, T., Vandoorne, B., Couvreur, V., & Javaux, M. (2013). Three-dimensional monitoring of soil water content in a maize field using Electrical Resistivity Tomography. Hydrology and Earth System Sciences, 17(2), 595-609.
Brunet, P., Clément, R., & Bouvier, C. (2010). Monitoring soil water content and deficit using Electrical Resistivity Tomography (ERT)–A case study in the Cevennes area, France. Journal of hydrology, 380(1-2), 146-153.
Bugdal, E. D., & Procedures, O. H. R. (2005). Chapter 1: Interaction of microwaves with different materials, Tetrahedron Organic Chemistry Series. In: Elsevier.
Campbell, J. E. (1990). Dielectric properties and influence of conductivity in soils at one to fifty megahertz. Soil Science Society of America Journal, 54(2), 332-341.
Chung, C.-C. (2008). Improved Time Domain Reflectometry Measurements and Its Application to Characterization of Soil-Water Mixtures. (Doctor of Philosophy). National Chiao Tung University, HsinChu, Taiwan, Republic of China.
Chung, C.-C., & Lin, C.-P. (2019). A comprehensive framework of TDR landslide monitoring and early warning substantiated by field examples. Engineering Geology, 262, 105330.
Chung, C.-C., Lin, C.-P., Wu, I.-L., Chen, P.-H., & Tsay, T.-K. (2013). New TDR waveguides and data reduction method for monitoring of stream and drainage stage. Journal of hydrology, 505, 346-351.
Chung, C.-C., Lin, C.-P., Yang, S.-H., Lin, J.-Y., & Lin, C.-H. (2019). Investigation of non-unique relationship between soil electrical conductivity and water content due to drying-wetting rate using TDR. Engineering Geology, 252, 54-64.
Clarkson, T. S., Glasser, L., Tuxworth, R. W., & Williams, G. (1977). An appreciation of experimental factors in time-domain spectroscopy. Advances in Molecular Relaxation and Interaction Processes, 10(3), 173-202.
Crawford, M. M., & Bryson, L. S. (2018). Assessment of active landslides using field electrical measurements. Engineering Geology, 233, 146-159.
Crosta, G., & Frattini, P. (2003). Distributed modelling of shallow landslides triggered by intense rainfall. Natural Hazards and Earth System Sciences, 3(1/2), 81-93.
Dobson, M. C., Ulaby, F. T., Hallikainen, M. T., & El-Rayes, M. A. (1985). Microwave dielectric behavior of wet soil-Part II: Dielectric mixing models. IEEE Transactions on Geoscience and Remote Sensing(1), 35-46.
Dong, X., & Wang, Y.-H. (2008). The Effects of the pH‐influenced Structure on the Dielectric Properties of Kaolinite–Water Mixtures. Soil Science Society of America Journal, 72(6), 1532-1541.
Dowding, C. H., & O′Connor, K. M. (2000). Comparison of TDR and inclinometers for slope monitoring. In Geotechnical Measurements: Lab and Field (pp. 80-90).
Dowding, C. H., Pierce, C. E., Nicholson, G. A., Taylor, P. A., & Agoston, A. (1996). Recent advancements in TDR monitoring of ground water levels and piezometric pressures. Paper presented at the 2nd North American Rock Mechanics Symposium.
Dowding, C. H., Su, M., & O′Connors, K. (1988). Principles of time domain reflectometometry applied to measurement of rock mass deformation. Paper presented at the International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.
Foti, S. (2000). Multistation methods for geotechnical characterization using surface waves: na.
Fourie, A., Rowe, D., & Blight, G. (1999). The effect of inæltration on the stability of the slopes of a dry ash dump. Geotechnique, 49(1), 1-13.
Fredlund, D. G., & Rahardjo, H. (1993). Soil mechanics for unsaturated soils: John Wiley & Sons.
Grant, E., Buchanan, T., & Cook, H. (1957). Dielectric behavior of water at microwave frequencies. The Journal of Chemical Physics, 26(1), 156-161.
Hasted, J. B. (1973). Aqueous dielectrics (Vol. 122): Chapman and Hall London.
Heimovaara, T. (1993). Design of triple‐wire time domain reflectometry probes in practice and theory. Soil Science Society of America Journal, 57(6), 1410-1417.
Heimovaara, T. (1994). Frequency domain analysis of time domain reflectometry waveforms: 1. Measurement of the complex dielectric permittivity of soils. Water Resources Research, 30(2), 189-199.
Heimovaara, T., Bouten, W., & Verstraten, J. (1994). Frequency domain analysis of time domain reflectometry waveforms: 2. A four‐component complex dielectric mixing model for soils. Water Resources Research, 30(2), 201-209.
Heimovaara, T., De Winter, E., Van Loon, W., & Esveld, D. (1996). Frequency‐dependent dielectric permittivity from 0 to 1 GHz: Time domain reflectometry measurements compared with frequency domain network analyzer measurements. Water Resources Research, 32(12), 3603-3610.
Hilhorst, M., & Dirksen, C. (1994). Dielectric water content sensors: time domain versus frequency domain. In Time domain reflectometry in environmental, infrastructure, and mining applications, KM O′Connor et al.(eds.). US Dept. Interior Bureau of Mines, Northwestern Univ., Evanston, Illinois (pp. 23-33).
Jiang, X., Lei, M., Gao, Y., Meng, Y., & Sang, X. (2008). Monitoring soil void formation along highway subgrade using time domain reflectometry (TDR): a pilot study at Guilin-Yangshuo highway, Guangxi, China. In Sinkholes and the Engineering and Environmental Impacts of Karst (pp. 213-222).
José, M.-C., Pereira, J.-M., Delage, P., & Cui, Y. J. (2013). The influence of changes in water content on the electrical resistivity of a natural unsaturated loess. arXiv preprint arXiv:1303.5303.
Kalinski, R. J., & Kelly, W. E. (1993). Estimating water content of soils from electrical resistivity. Geotechnical Testing Journal, 16(3), 323-329.
Klein, L., & Swift, C. (1977). An improved model for the dielectric constant of sea water at microwave frequencies. IEEE transactions on antennas and propagation, 25(1), 104-111.
Klemunes, J. A., Witczak, M. W., & López Jr, A. (1996). Analysis of methods used in time domain reflectometry response. Transportation research record, 1548(1), 89-96.
Knight, R. (1991). Hysteresis in the electrical resistivity of partially saturated sandstones. Geophysics, 56(12), 2139-2147.
Komarov, V., Wang, S., & Tang, J. (2005). Permittivity and measurements.
Kraft, C. (1987). Constitutive parameter measurements of fluids and soil between 500 kHz and 5 MHz using a transmission line technique. Journal of Geophysical Research: Solid Earth, 92(B10), 10650-10656.
Lauer, K., Wagner, N., & Felix‐Henningsen, P. (2012). A new technique for measuring broadband dielectric spectra of undisturbed soil samples. European Journal of Soil Science, 63(2), 224-238.
Lewandowski, A., Szypłowska, A., Kafarski, M., Wilczek, A., Barmuta, P., & Skierucha, W. (2017). 0.05–3 GHz VNA characterization of soil dielectric properties based on the multiline TRL calibration. Measurement Science and Technology, 28(2), 024007.
Lewandowski, A., Szypłowska, A., Wilczek, A., Kafarski, M., Szerement, J., & Skierucha, W. (2019). One-port vector network analyzer characterization of soil dielectric spectrum. IEEE Transactions on Geoscience and Remote Sensing, 57(6), 3661-3676.
Lin, C.-P. (2003a). Analysis of nonuniform and dispersive time domain reflectometry measurement systems with application to the dielectric spectroscopy of soils. Water Resources Research - WATER RESOUR RES, 39. doi:10.1029/2002WR001418
Lin, C.-P. (2003b). Frequency domain versus travel time analyses of TDR waveforms for soil moisture measurements. Soil Science Society of America Journal, 67(3), 720-729.
Lin, C.-P., Chung, C.-C., & Tang, S.-H. (2007). Accurate time domain reflectometry measurement of electrical conductivity accounting for cable resistance and recording time. Soil Science Society of America Journal, 71(4), 1278-1287.
Lin, C.-P., Ngui, Y. J., & Lin, C.-H. (2016). A novel TDR signal processing technique for measuring apparent dielectric spectrum. Measurement Science and Technology, 28(1), 015501.
Lin, C.-P., Tang, S., & Chung, C. (2006). Development of TDR penetrometer through theoretical and laboratory investigations: 1. Measurement of soil dielectric permittivity. Geotechnical Testing Journal, 29(4), 306-313.
Logsdon, S. D. (2005). Soil dielectric spectra from vector network analyzer data. Soil Science Society of America Journal, 69(4), 983-989.
Logsdon, S. D. (2006). Uncertainty effects on soil electrical conductivity and permittivity spectra. Soil Science, 171(10), 737-746.
Logsdon, S. D. (2008). Activation energies and temperature effects from electrical spectra of soil. Soil Science, 173(6), 359-367.
Logsdon, S. D., & Laird, D. A. (2003). Ranges of bound water properties associated with a smectite clay. Paper presented at the Electromagnetic Wave Interaction with Water and Moist Substances, Proceedings of Conference.
Logsdon, S. D., & Laird, D. A. (2004a). Cation and water content effects on dipole rotation activation energy of smectites. Soil Science Society of America Journal, 68(5), 1586-1591.
Logsdon, S. D., & Laird, D. A. (2004b). Electrical conductivity spectra of smectites as influenced by saturating cation and humidity. Clays and clay minerals, 52(4), 411-420.
Malmberg, C., & Maryott, A. (1956). Dielectric constant of water from 0 to 100 C. Journal of research of the National Bureau of Standards, 56(1), 1-8.
Micheli, D., Pastore, R., Vricella, A., Delfini, A., Marchetti, M., & Santoni, F. (2017). Electromagnetic characterization of materials by vector network analyzer experimental setup. In Spectroscopic Methods for Nanomaterials Characterization (pp. 195-236): Elsevier.
Mishra, P. N., Bore, T., Jiang, Y., Scheuermann, A., & Li, L. (2018). Dielectric spectroscopy measurements on kaolin suspensions for sediment concentration monitoring. Measurement, 121, 160-169.
Mu, H. (2003). Development and validation of coaxial cable sensors for damage detection of reinforced concrete structures: University of Missouri-Rolla.
Parkin, G. W., Kachanoski, R. G., Elrick, D. E., & Gibson, R. G. (1995). Unsaturated hydraulic conductivity measured by time domain reflectometry under a rainfall simulator. Water Resources Research, 31(3), 447-454.
Pepin, S., Livingston, N., & Hook, W. (1995). Temperature‐dependent measurement errors in time domain reflectometry determinations of soil water. Soil Science Society of America Journal, 59(1), 38-43.
Rahardjo, H., Lim, T., Chang, M., & Fredlund, D. (1995). Shear-strength characteristics of a residual soil. Canadian Geotechnical Journal, 32(1), 60-77.
Ramo, S., Whinnery, J. R., & Van Duzer, T. (1994). Fields and waves in communication electronics: John Wiley & Sons.
Rickli, C., & Graf, F. (2009). Effects of forests on shallow landslides–case studies in Switzerland. Forest Snow and Landscape Research, 82(1), 33-44.
Robinson, D., Kelleners, T., Cooper, J., Gardner, C., Wilson, P., Lebron, I., & Logsdon, S. (2005). Evaluation of a capacitance probe frequency response model accounting for bulk electrical conductivity: Comparison with TDR and network analyzer measurements. Vadose Zone Journal, 4(4), 992-1003.
Schmidt, K., Roering, J., Stock, J., Dietrich, W., Montgomery, D., & Schaub, T. (2001). The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range. Canadian Geotechnical Journal, 38(5), 995-1024.
Schwartz, B. F., Schreiber, M. E., & Yan, T. (2008). Quantifying field-scale soil moisture using electrical resistivity imaging. Journal of hydrology, 362(3-4), 234-246.
Skierucha, W., Wilczek, A., Szypłowska, A., Sławiński, C., & Lamorski, K. (2012). A TDR-based soil moisture monitoring system with simultaneous measurement of soil temperature and electrical conductivity. Sensors, 12(10), 13545-13566.
Sparks, J. P., Campbell, G. S., & Black, A. R. (2001). Water content, hydraulic conductivity, and ice formation in winter stems of Pinus contorta: a TDR case study. Oecologia, 127(4), 468-475.
Stogryn, A. (1971). Equations for calculating the dielectric constant of saline water (correspondence). IEEE transactions on microwave theory and Techniques, 19(8), 733-736.
Sun, S., Pommerenke, D. J., Drewniak, J. L., Chen, G., Xue, L., Brower, M. A., & Koledintseva, M. Y. (2009). A novel TDR-based coaxial cable sensor for crack/strain sensing in reinforced concrete structures. IEEE transactions on Instrumentation and Measurement, 58(8), 2714-2725.
Thomsen, A., Hansen, B., & Schelde, K. (2000). Application of TDR to water level measurement. Journal of hydrology, 236(3-4), 252-258.
Topp, G. C., Davis, J. L., & Annan, A. P. (1980). Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Research, 16(3), 574-582.
Trandafir, A. C., Sidle, R. C., Gomi, T., & Kamai, T. (2008). Monitored and simulated variations in matric suction during rainfall in a residual soil slope. Environmental Geology, 55(5), 951-961.
Wagner, N., Schwing, M., & Scheuermann, A. (2013). Numerical 3-D FEM and experimental analysis of the open-ended coaxial line technique for microwave dielectric spectroscopy on soil. IEEE Transactions on Geoscience and Remote Sensing, 52(2), 880-893.
Wraith, J. M., Robinson, D. A., Jones, S. B., & Long, D. S. (2005). Spatially characterizing apparent electrical conductivity and water content of surface soils with time domain reflectometry. Computers and Electronics in Agriculture, 46(1-3), 239-261.
Yoon, G., Oh, M., & Park, J. (2002). Laboratory study of landfill leachate effect on resistivity in unsaturated soil using cone penetrometer. Environmental Geology, 43(1), 18-28.
Zhang, H., Krooswyk, S., & Ou, J. (2015). Chapter 5 - Measurement and data acquisition techniques. In H. Zhang, S. Krooswyk, & J. Ou (Eds.), High Speed Digital Design (pp. 199-219). Boston: Morgan Kaufmann.
Zhou, Q. Y., Shimada, J., & Sato, A. (2001). Three‐dimensional spatial and temporal monitoring of soil water content using electrical resistivity tomography. Water Resources Research, 37(2), 273-285.
指導教授 鐘志忠(Chung, Chih-Chung) 審核日期 2022-9-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明