博碩士論文 107283604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.118.186.143
姓名 亞維明(Velusamy Arulmozhi)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(Synthesis and Characterization of Small molecular Organic Semiconductors: Applications in Organic Electronics)
相關論文
★ Cycloiptycene分子之合成與自組裝行為之研究★ 含二噻吩蒽[3,2-b:2′,3′-d]噻吩單元之敏化染料太陽能電池
★ 以有機磷酸修飾電極表面功函數及對有機發光元件效率影響研究★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 具交聯結構之磺酸化聚馬來醯亞胺高分子質子傳導膜之開發與製備★ 有機薄膜電晶體材料苯三併環噻吩及苯四併環噻吩衍生物之開發
★ 有機薄膜電晶體高分子材料併環噻吩系列之開發★ 有機薄膜電晶體材料及可溶性有機薄膜電晶體材料衍生物之開發
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 具交聯結構之苯乙烯-馬來醯亞胺 接枝型高分子質子傳導膜之開發與製備
★ 有機薄膜電晶體材料苯三併環噻吩及可溶性聯噻吩衍生物之開發★ 可溶性有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 含benzotriazole 之D-π-A 共軛形光敏染料及其染料太陽能電池★ 有機薄膜電晶材料苯併環噻吩和可溶性硫醚噻吩衍生物之開發
★ 具咪唑鹽團聯高分子之陰離子傳導膜的開發與製備★ 可溶性有機薄膜電晶體材料三併環 及四併環噻吩衍生物之開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-6-30以後開放)
摘要(中) 本論文主要可分為有機薄膜電晶體 (OFET)、染料敏化太陽能電池 (DSSC) 和鈣鈦
礦太陽能電池 (PSC) 的材料開發。
有機薄膜電晶體 (OFET) 的部分分為 N-type 及 P-type 材料,本研究成功以 TII
為核心,開發出四種不同碳鏈之醌型結構材料,包含 TIIQ-10、TIIQ-b8、TIIQ-b16 和
TIIQ-b17,其中 TIIQ-b16 在 N-type OFET 中表現出高達 2.54 cm2
V
-1
s
-1 的電子遷移
率,電流開關比為 105
~106,具有單極電子傳輸特性和強環境穩定性。同時成功以 DTTR 為
核心,外接不同共軛基團,開發另一系列材料 DFPT-DTTR 及 DFPbT-DTTR,其中 DFPTDTTR 在 P-type OFET 中表現出高達 0.48 cm2
V
-1
s
-1 的電洞遷移率。
鈣鈦礦太陽能電池 (PSC) 的部分,本研究利用 BCDT 作為核心,接上不同苯基烷
氧鏈,再分別於末端接上拉電子基團 IN、INCl 與 INBr,共開發出六種材料 INBCDT-8、
INBCDT-b8、INClBCDT-8、INClBCDT-b8、INBrBCDT-8、INBrBCDT-b8,其中以 INBrBCDT-b8 應
用於 PSC 中可獲得高達 22.20% 的 PCE 值,FF 值為 79%,JSC 值為 24.44 mA cm-2,VOC
值為 1.15 V ,還可有效地鈍化表面缺陷並增強元件界面處的電荷傳輸能力。同時成功合
成出以 maleimide 為核心的材料 MLIBP’-4D,其 PCE 值高達 21.20%。
目前已成功合成出應用於 OFET、DSSC 和 PSC 的共軛醌型化合物、有機染敏材料
和電洞傳輸材料,這些新材料經由 UV-Vis 及 DPV 測量其光學及電化學性質、DSC 及 TGA
測量其熱穩定性,且利用 X 射線衍射、原子力顯微鏡 (AFM) 和掠入射 X 射線衍射
(GIXRD) 了解分子結構、分子堆疊、薄膜形態、結晶度和元件效能之間的關係,多項材料
應用之光電元件正在優化中。
摘要(英) A number of small molecular organic semiconductors have been designed and synthesized for
various organic electronics device applications such as organic field-effect transistors (OFETs),
dye-sensitized solar cells (DSSCs), and perovskite solar cells (PSCs). The optical, and
electrochemical properties of these newly synthesized materials were examined using differential
pulse voltammetry (DPV), and UV-Visible absorption spectroscopy. Thermal properties were
investigated by differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA).
Thin-film microstructure and film morphology were examined by X-ray diffraction, atomic force
microscopy (AFM), and grazing incidence X-ray diffraction (GIXRD) to understand the
relationship between the molecular structure, film morphology/crystallinity, and device
performance. The molecular structures of organic semiconductors and their molecular packing
properties were determined by single-crystal X-ray diffraction. In this research, air-processed
TIIQ-b16 OFETs exhibit electron mobility up to 2.54 cm2 V
−1
s
−1 with a current ON/OFF ratio of
105–106
exhibiting unipolar electron transport characteristics and enhanced ambient stability.
DFPT-DTTR compound based OFETs exhibit efficient hole transport mobility up to 0.48 cm2 V
−1
s
−1
. Non-fullerene acceptor (INBrBCDT-b8) was used as an anti-solvent in PSCs yielding an
excellent PCE of up to 22.20% with FF of 79%, a JSC of 24.44 mA cm-2
, and a VOC of 1.15 V, also
effectively passivate surface defects and enhance charge transport at the device interface. Further,
maleimide-based HTM (MLIBP’-4D) with tetra-substituted triphenylamine donors exhibits highperformance PCE reaching up to 21.20 % in PSCs. Several conjugated quinoidal compounds,
organic dyes, and hole-transporting materials (HTMs) have been synthesized for OFETs, DSSCs,
and PSCs, respectively. Presently, device characterization and optimization of these newly
developed small molecules are in progress for future publications.
關鍵字(中) ★ 有機小分子
★ 有機半導體
★ 有機場效電晶體
★ 染料敏化電池
★ 鈣鈦礦電池
關鍵字(英) ★ organic small molecules
★ organic semiconductors
★ organic field-effect transistors
★ dye-sensitized solar cells
★ perovskite solar cells
論文目次 Table of Contents
摘要.................................................................................................................................................. i
Abstract.......................................................................................................................................... ii
Acknowledgements ......................................................................................................................iii
List of Figures............................................................................................................................... ix
List of Schemes............................................................................................................................ xv
List of Tables............................................................................................................................... xvi
Chapter Ⅰ ..................................................................................................................................... 1
Introduction................................................................................................................................... 1
1.1. Introduction.......................................................................................................................... 3
1.2. Applications of organic semiconductors.............................................................................. 8
1.2.1. Organic field-effect transistors (OFETs)....................................................................... 8
1.3. Perovskite solar cells (PSCs) ............................................................................................. 12
1.4. Dye-sensitized Solar Cells (DSSCs).................................................................................. 14
Chapter Ⅱ ................................................................................................................................... 17
n-type organic field-effect transistors (OFETs)........................................................................ 17
Thienoisoindigo (TII)-Based Quinoidal Small Molecules for High-Performance n-Type
OFETs ...................................................................................................................................... 19
2.1. Abstract .............................................................................................................................. 19
2.2. Introduction........................................................................................................................ 19
2.3. Results and Discussion ...................................................................................................... 24
2.3.1. Synthesis..................................................................................................................... 24
2.3.2. Physical Characterization............................................................................................ 26
2.3.3. Theoretical Calculations ............................................................................................. 30
2.3.4. Single Crystal Structure .............................................................................................. 31
2.3.5. Charge Transport Properties ....................................................................................... 35
2.3.6. Thin Film Morphology and Structural Analysis......................................................... 38
2.3.7. OFET stability............................................................................................................. 45
2.4. Experimental Section......................................................................................................... 47
2.4.1. General Procedures for Final Target Compounds (1-4):............................................. 47
2.4.2. Characterization:......................................................................................................... 48
2.4.3. Device Fabrication and Measurement: ....................................................................... 49
2.5. Conclusion ......................................................................................................................... 50
Difuran-dithioalkyl based Quinoidal Compounds for n-type OFETs................................ 51
2.6. Introduction........................................................................................................................ 51
2.7. Results and Discussion: ..................................................................................................... 53
2.7.1. Synthesis..................................................................................................................... 53
2.7.2. Physical Characterization............................................................................................ 54
2.7.3. Single Crystal Structure .............................................................................................. 57
2.8. Experimental Section......................................................................................................... 62
2.8.1. General Procedures for Final Target Compounds (1–3):............................................ 62
2.9. Conclusion ......................................................................................................................... 63
Diselenophene-dithioalkyl based Quinoidal Compounds for n-type OFETs .................... 64
2.10. Introduction...................................................................................................................... 64
2.11. Results and Discussion: ................................................................................................... 66
2.11.1. Synthesis ................................................................................................................... 66
2.11.2. Physical Characterization.......................................................................................... 67
2.12. Experimental Section....................................................................................................... 70
2.12.1. General Procedures for Final Target Compounds (1–3): .......................................... 70
2.13. Conclusion ....................................................................................................................... 71
Chapter Ⅲ ................................................................................................................................... 73
p-type organic field-effect transistors (OFETs)........................................................................ 73
Solution Processable Pentafluorophenyl End-capped Dithienothiophene (DTTR) Organic
Semiconductors for Efficient p-type Organic Field Effect Transistors.............................. 75
3.1. Abstract .............................................................................................................................. 75
3.2. Introduction........................................................................................................................ 75
3.3. Results and Discussion ...................................................................................................... 79
3.3.1. Synthesis..................................................................................................................... 79
3.3.2. Physical Characterization............................................................................................ 81
3.3.3. Theoretical Calculations ............................................................................................. 85
3.3.4. Charge Transport Properties ....................................................................................... 86
3.3.5. Thin Film Morphology and Structural Analysis......................................................... 88
3.4. Experimental Section......................................................................................................... 90
3.4.1. General Procedures for Final Target Compounds (1-2):............................................. 90
3.4.2. OFET devices fabrication and characterization:......................................................... 92
3.5. Conclusion ......................................................................................................................... 93
Chapter Ⅳ ................................................................................................................................... 95
Non-fullerene Acceptors (NFAs)................................................................................................ 95
Grain Boundary Passivation in Perovskite Solar Cells by Bicyclopentadithiophene
(BCDT)-based Organic Semiconductor for High Performance and Stability .................. 97
4.1. Abstract .............................................................................................................................. 97
4.2. Introduction........................................................................................................................ 97
4.2. Results and Discussion .................................................................................................... 102
4.2.1. Synthesis................................................................................................................... 102
4.2.2. Thermal, optical, and electrochemical properties..................................................... 104
4.2.3. The morphology and photo-physics of the perovskite films with and without
passivation, as well as the photovoltaic performance and stability of the corresponding cells
..............................................................................................................................................111
4.3. Experimental Section....................................................................................................... 126
4.3.1. Materials ................................................................................................................... 126
4.3.2. Synthesis of INXBCDT target compounds and its intermediates.............................. 127
4.4. Conclusion ....................................................................................................................... 136
Chapter Ⅴ ................................................................................................................................. 137
Dye-Sensitized Solar Cells (DSSCs) ........................................................................................ 137
Alkyl (R), thioalkyl (SR) substituted Terthiophene (tT) and Bithiophene imide (BTI)-based
Organic Sensitizers for Dye-Sensitized Solar cell Applications............................................ 139
5.1. Introduction...................................................................................................................... 139
5.2. Results and Discussion .................................................................................................... 141
5.2.1. Synthesis of dyes (1-4).............................................................................................. 141
5.2.2. Synthesis of dyes (5 and 6)....................................................................................... 142
5.2.3. Thermogravimetric analysis...................................................................................... 143
5.2.4. Optical properties...................................................................................................... 145
5.2.5. Electrochemical properties........................................................................................ 146
5.3. Experimental Section....................................................................................................... 148
5.3.1. General Procedures for Final Target Compounds (1-4):........................................... 148
5.3.2. General Procedures for Final Target Compounds (5-6):........................................... 150
5.4. Conclusion ....................................................................................................................... 152
Chapter Ⅵ ................................................................................................................................. 153
Hole-transporting materials (HTMs)...................................................................................... 153
Aryl functionalized-Maleimides with triphenylamine donors as Hole-Transporting Materials for Perovskite Solar Cells.................................................................................... 155
6.1. Introduction...................................................................................................................... 155
6.2. Results and Discussion .................................................................................................... 157
6.2.1. Synthesis................................................................................................................... 157
6.2.2. Thermogravimetric analysis...................................................................................... 158
6.2.3. Optical properties...................................................................................................... 159
6.2.4. Electrochemical properties........................................................................................ 161
6.3. Experimental Section....................................................................................................... 162
6.3.1. General Procedures for Final Target Compounds (1-4):........................................... 162
6.4. Conclusion ....................................................................................................................... 163
Chapter Ⅶ ................................................................................................................................. 165
Conclusion ................................................................................................................................. 165
7.1. Conclusion ....................................................................................................................... 167
References.................................................................................................................................. 169
Publications ............................................................................................................................... 195
Supporting Information ........................................................................................................... 197
參考文獻 References
[1] C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid, Phys. Rev. Lett. 1977, 39, 1098.
[2] C. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater. 2002, 14, 99.
[3] M. Muccini, Nat. Mater. 2006, 5, 605.
[4] C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chem. Rev. 2012, 112, 2208.
[5] Z. Chen, W. Li, M. A. Sabuj, Y. Li, W. Zhu, M. Zeng, C. S. Sarap, M. M. Huda, X. Qiao, X. Peng, D. Ma, Y. Ma, N. Rai, F. Huang, Nat. Commun. 2021, 12, 5889.
[6] L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H.-L. Yip, Y. Cao, Y. Chen, Science 2018, 361, 1094.
[7] Z. Wu, Y. Zhai, H. Kim, J. D. Azoulay, T. N. Ng, Acc. Chem. Res. 2018, 51, 3144.
[8] C. Wang, X. Zhang, W. Hu, Chem. Soc. Rev. 2020, 49, 653.
[9] M. Kim, S. U. Ryu, S. A. Park, K. Choi, T. Kim, D. Chung, T. Park, Adv. Funct. Mater. 2020, 30, 1904545.
[10] Q. Zhang, Y. Sun, W. Xu, D. Zhu, Adv. Mater. 2014, 26, 6829.
[11] X. Guo, A. Facchetti, T. J. Marks, Chem. Rev. 2014, 114, 8943.
[12] S. N. Afraj, C.-C. Lin, A. Velusamy, C.-H. Cho, H.-Y. Liu, J. Chen, G.-H. Lee, J.-C. Fu, J.-S. Ni, S.-H. Tung, S. Yau, C.-L. Liu, M.-C. Chen, A. Facchetti, Adv. Funct. Mater. n/a, 2200880.
[13] I. Osaka, K. Takimiya, Adv. Mater. 2017, 29, 1605218.
[14] G.-H. Lee, H. Moon, H. Kim, G. H. Lee, W. Kwon, S. Yoo, D. Myung, S. H. Yun, Z. Bao, S. K. Hahn, Nat. Rev. Mater. 2020, 5, 149.
[15] Y. Shi, H. Guo, J. Huang, X. Zhang, Z. Wu, K. Yang, Y. Zhang, K. Feng, H. Y. Woo, R. P. Ortiz, M. Zhou, X. Guo, Angew. Chem., Int. Ed. 2020, 59, 14449.
[16] J. Xu, H.-C. Wu, C. Zhu, A. Ehrlich, L. Shaw, M. Nikolka, S. Wang, F. Molina-Lopez, X. Gu, S. Luo, D. Zhou, Y.-H. Kim, G.-J. N. Wang, K. Gu, V. R. Feig, S. Chen, Y. Kim, T. Katsumata, Y.-Q. Zheng, H. Yan, J. W. Chung, J. Lopez, B. Murmann, Z. Bao, Nat. Mater. 2019, 18, 594.
[17] M. Saito, T. Fukuhara, S. Kamimura, H. Ichikawa, H. Yoshida, T. Koganezawa, Y. Ie, Y. Tamai, H. D. Kim, H. Ohkita, I. Osaka, Adv. Energy Mater. 2020, 10, 1903278.
[18] H. Li, J. Wu, K. Takahashi, J. Ren, R. Wu, H. Cai, J. Wang, H. L. Xin, Q. Miao, H. Yamada, H. Chen, H. Li, J. Am. Chem. Soc. 2019, 141, 10007.
[19] Y. Shirota, J. Mater. Chem. 2000, 10, 1.
[20] J. D. Myers, J. Xue, Polym. Rev. 2012, 52, 1.
[21] S. R. Forrest, M. E. Thompson, Chem. Rev. 2007, 107, 923.
[22] C. J. Kousseff, R. Halaksa, Z. S. Parr, C. B. Nielsen, Chem. Rev. 2022, 122, 4397.
[23] V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, M. E. Gershenson, Phys. Rev. Lett. 2004, 93, 086602.
[24] J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, S. Ogawa, Appl. Phys. Lett. 2007, 90, 102120.
[25] M. A. Reyes-Martinez, A. J. Crosby, A. L. Briseno, Nat. Commun. 2015, 6, 6948.
[26] J. E. Anthony, J. S. Brooks, D. L. Eaton, S. R. Parkin, J. Am. Chem. Soc. 2001, 123, 9482.
[27] K. Takimiya, H. Ebata, K. Sakamoto, T. Izawa, T. Otsubo, Y. Kunugi, J. Am. Chem. Soc. 2006, 128, 12604.
[28] H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, T. Yui, J. Am. Chem. Soc. 2007, 129, 15732.
[29] T. Izawa, E. Miyazaki, K. Takimiya, Adv. Mater. 2008, 20, 3388.
[30] J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao, C. L. Wilkins, J. Org. Chem. 1995, 60, 532.
[31] M. Gsänger, J. H. Oh, M. Könemann, H. W. Höffken, A.-M. Krause, Z. Bao, F. Würthner, Angew. Chem., Int. Ed. 2010, 49, 740.
[32] C. Zhang, Y. Zang, F. Zhang, Y. Diao, C. R. McNeill, C.-a. Di, X. Zhu, D. Zhu, Adv. Mater. 2016, 28, 8456.
[33] A. Chilvery, A. K. Batra, B. Yang, K. Xiao, P. Guggilla, M. D. Aggarwal, R. Surabhi, R. B. Lal, J. R. Currie, B. G. Penn, J. Photonics Energy 2015, 5, 057402.
[34] NREL, Best Research-Cell Efficiencies, https://www.nrel.gov/pv/cell-efficiency.html.
[35] H. D. Pham, T. C.-J. Yang, S. M. Jain, G. J. Wilson, P. Sonar, Adv. Energy Mater. 2020, 10, 1903326.
[36] G. Gelinck, P. Heremans, K. Nomoto, T. D. Anthopoulos, Adv. Mater. 2010, 22, 3778.
[37] C. Yao, X. Chen, Y. He, Y. Guo, I. Murtaza, H. Meng, RSC Adv. 2017, 7, 5514.
[38] N. Wang, A. Yang, Y. Fu, Y. Li, F. Yan, Acc. Chem. Res. 2019, 52, 277.
[39] X. Zhang, H. Dong, W. Hu, Adv. Mater. 2018, 30, 1801048.
[40] X. Wu, S. Mao, J. Chen, J. Huang, Adv. Mater. 2018, 30, 1705642.
[41] B. Kang, W. H. Lee, K. Cho, ACS Appl. Mater. Interfaces 2013, 5, 2302.
[42] J. Yang, Z. Zhao, S. Wang, Y. Guo, Y. Liu, Chem 2018, 4, 2748.
[43] A. Marrocchi, A. Facchetti, D. Lanari, C. Petrucci, L. Vaccaro, Energy Environ. Sci. 2016, 9, 763.
[44] T. Erdmann, S. Fabiano, B. Milian-Medina, D. Hanifi, Z. Chen, M. Berggren, J. Gierschner, A. Salleo, A. Kiriy, B. Voit, A. Facchetti, Adv. Mater. 2016, 28, 9169.
[45] X. Guo, J. Quinn, Z. Chen, H. Usta, Y. Zheng, Y. Xia, J. W. Hennek, R. P. Ortiz, T. J. Marks, A. Facchetti, J. Am. Chem. Soc. 2013, 135, 1986.
[46] M. Natali, S. D. Quiroga, L. Passoni, L. Criante, E. Benvenuti, G. Bolognini, L. Favaretto, M. Melucci, M. Muccini, F. Scotognella, F. Di Fonzo, S. Toffanin, Adv. Funct. Mater. 2017, 27, 1605164.
[47] J. Mun, J. Kang, Y. Zheng, S. Luo, H.-C. Wu, N. Matsuhisa, J. Xu, G.-J. N. Wang, Y. Yun, G. Xue, J. B.-H. Tok, Z. Bao, Adv. Mater. 2019, 31, 1903912.
[48] J. Mun, G.-J. N. Wang, J. Y. Oh, T. Katsumata, F. L. Lee, J. Kang, H.-C. Wu, F. Lissel, S. Rondeau-Gagné, J. B.-H. Tok, Z. Bao, Adv. Funct. Mater. 2018, 28, 1804222.
[49] S. R. Forrest, Nature 2004, 428, 911.
[50] E. K. Lee, M. Y. Lee, C. H. Park, H. R. Lee, J. H. Oh, Adv. Mater. 2017, 29, 1703638.
[51] S. Fratini, M. Nikolka, A. Salleo, G. Schweicher, H. Sirringhaus, Nat. Mater. 2020, 19, 491.
[52] A. F. Paterson, T. D. Anthopoulos, Nat. Commun. 2018, 9, 5264.
[53] D. Bharath, S. Chithiravel, M. Sasikumar, N. R. Chereddy, B. Shanigaram, K. Bhanuprakash, K. Krishnamoorthy, V. J. Rao, RSC Adv. 2015, 5, 94859.
[54] H. Usta, D. Kim, R. Ozdemir, Y. Zorlu, S. Kim, M. C. Ruiz Delgado, A. Harbuzaru, S. Kim, G. Demirel, J. Hong, Y.-G. Ha, K. Cho, A. Facchetti, M.-G. Kim, Chem. Mater. 2019, 31, 5254.
[55] Y. Wang, H. Guo, A. Harbuzaru, M. A. Uddin, I. Arrechea-Marcos, S. Ling, J. Yu, Y. Tang, H. Sun, J. T. López Navarrete, R. P. Ortiz, H. Y. Woo, X. Guo, J. Am. Chem. Soc. 2018, 140, 6095.
[56] J. Wu, Q. Li, G. Xue, H. Chen, H. Li, Adv. Mater. 2017, 29, 1606101.
[57] M. Kim, S. U. Ryu, S. A. Park, K. Choi, T. Kim, D. Chung, T. Park, Adv. Funct. Mater. 2020, 30, 1904545.
[58] Y. Sun, Y. Guo, Y. Liu, Mater. Sci. Eng. 2019, 136, 13.
[59] Y. Wang, L. Sun, C. Wang, F. Yang, X. Ren, X. Zhang, H. Dong, W. Hu, Chem. Soc. Rev. 2019, 48, 1492.
[60] A. F. Paterson, S. Singh, K. J. Fallon, T. Hodsden, Y. Han, B. C. Schroeder, H. Bronstein, M. Heeney, I. McCulloch, T. D. Anthopoulos, Adv. Mater. 2018, 30, 1801079.
[61] J. Mei, Y. Diao, A. L. Appleton, L. Fang, Z. Bao, J. Am. Chem. Soc. 2013, 135, 6724.
[62] H. N. Tsao, D. M. Cho, I. Park, M. R. Hansen, A. Mavrinskiy, D. Y. Yoon, R. Graf, W. Pisula, H. W. Spiess, K. Mullen, J. Am. Chem. Soc. 2011, 133, 2605.
[63] X. Zhao, X. Zhan, Chem. Soc. Rev. 2011, 40, 3728.
[64] H. Li, F. S. Kim, G. Ren, S. A. Jenekhe, J. Am. Chem. Soc. 2013, 135, 14920.
[65] H. Li, T. Earmme, G. Ren, A. Saeki, S. Yoshikawa, N. M. Murari, S. Subramaniyan, M. J. Crane, S. Seki, S. A. Jenekhe, J. Am. Chem. Soc. 2014, 136, 14589.
[66] B. J. Jung, N. J. Tremblay, M.-L. Yeh, H. E. Katz, Chem. Mater. 2011, 23, 568.
[67] X. Gao, Y. Hu, J. Mater. Chem. C 2014, 2, 3099.
[68] A. Naibi Lakshminarayana, A. Ong, C. Chi, J. Mater. Chem. C 2018, 6, 3551.
[69] J. T. E. Quinn, J. Zhu, X. Li, J. Wang, Y. Li, J. Mater. Chem. C 2017, 5, 8654.
[70] H. Sun, J. Gerasimov, M. Berggren, S. Fabiano, J. Mater. Chem. C 2018, 6, 11778.
[71] Y. Zhao, Y. Guo, Y. Liu, Adv. Mater. 2013, 25, 5372.
[72] T. Lei, J. H. Dou, J. Pei, Adv. Mater. 2012, 24, 6457.
[73] J.-H. Dou, Y.-Q. Zheng, T. Lei, S.-D. Zhang, Z. Wang, W.-B. Zhang, J.-Y. Wang, J. Pei, Adv. Funct. Mater. 2014, 24, 6270.
[74] B. Fu, J. Baltazar, A. R. Sankar, P.-H. Chu, S. Zhang, D. M. Collard, E. Reichmanis, Adv. Funct. Mater. 2014, 24, 3734.
[75] J. Li, X. Qiao, Y. Xiong, H. Li, D. Zhu, Chem. Mater. 2014, 26, 5782.
[76] C. Wang, Y. Qin, Y. Sun, Y. S. Guan, W. Xu, D. Zhu, ACS Appl. Mater. Interfaces 2015, 7, 15978.
[77] F. Zhang, Y. Hu, T. Schuettfort, C. A. Di, X. Gao, C. R. McNeill, L. Thomsen, S. C. Mannsfeld, W. Yuan, H. Sirringhaus, D. Zhu, J. Am. Chem. Soc. 2013, 135, 2338.
[78] I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. Macdonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M. L. Chabinyc, R. J. Kline, M. D. McGehee, M. F. Toney, Nat. Mater. 2006, 5, 328.
[79] I. Osaka, R. Zhang, G. Sauvé, D.-M. Smilgies, T. Kowalewski, R. D. McCullough, J. Am. Chem. Soc. 2009, 131, 2521.
[80] R. J. Kline, D. M. DeLongchamp, D. A. Fischer, E. K. Lin, L. J. Richter, M. L. Chabinyc, M. F. Toney, M. Heeney, I. McCulloch, Macromolecules 2007, 40, 7960.
[81] L. Torsi, G. M. Farinola, F. Marinelli, M. C. Tanese, O. H. Omar, L. Valli, F. Babudri, F. Palmisano, P. G. Zambonin, F. Naso, Nat. Mater. 2008, 7, 412.
[82] C. Zhang, D. Yuan, H. Wu, E. Gann, L. Thomsen, C. R. McNeill, C.-a. Di, X. Zhu, D. Zhu, J. Mater. Chem. C 2017, 5, 1935.
[83] J. Zhang, J. Jin, H. Xu, Q. Zhang, W. Huang, J. Mater. Chem. C 2018, 6, 3485.
[84] B. Kang, F. Ge, L. Qiu, K. Cho, Adv. Electron. Mater. 2017, 3, 1600240.
[85] L. Ren, D. Yuan, X. Zhu, Chem. - Asian J. 2019, 14, 1717.
[86] Y. Teshima, M. Saito, T. Fukuhara, T. Mikie, K. Komeyama, H. Yoshida, H. Ohkita, I. Osaka, ACS Appl. Mater. Interfaces 2019, 11, 23410.
[87] Y. Wang, H. Guo, S. Ling, I. Arrechea-Marcos, Y. Wang, J. T. López Navarrete, R. P. Ortiz, X. Guo, Angew. Chem. Int. Ed. 2017, 56, 9924.
[88] S. Vegiraju, G.-Y. He, C. Kim, P. Priyanka, Y.-J. Chiu, C.-W. Liu, C.-Y. Huang, J.-S. Ni, Y.-W. Wu, Z. Chen, G.-H. Lee, S.-H. Tung, C.-L. Liu, M.-C. Chen, A. Facchetti, Adv. Funct. Mater. 2017, 27, 1606761.
[89] C. Zhang, Y. Zang, E. Gann, C. R. McNeill, X. Zhu, C. A. Di, D. Zhu, J. Am. Chem. Soc. 2014, 136, 16176.
[90] C. Zhang, X. Zhu, Acc. Chem. Res. 2017, 50, 1342.
[91] J. Liu, R. Zhang, I. Osaka, S. Mishra, A. E. Javier, D.-M. Smilgies, T. Kowalewski, R. D. McCullough, Adv. Funct. Mater. 2009, 19, 3427.
[92] Y. Xiong, J. Tao, R. Wang, X. Qiao, X. Yang, D. Wang, H. Wu, H. Li, Adv. Mater. 2016, 28, 5949.
[93] Q. Wu, R. Li, W. Hong, H. Li, X. Gao, D. Zhu, Chem. Mater. 2011, 23, 3138.
[94] S. Wang, M. Wang, X. Zhang, X. Yang, Q. Huang, X. Qiao, H. Zhang, Q. Wu, Y. Xiong, J. Gao, H. Li, Chem. Commun. 2014, 50, 985.
[95] G. Lin, Y. Qin, J. Zhang, Y.-S. Guan, H. Xu, W. Xu, D. Zhu, J. Mater. Chem. C 2016, 4, 4470.
[96] H. Wu, Y. Wang, X. Qiao, D. Wang, X. Yang, H. Li, Chem. Mater. 2018, 30, 6992.
[97] R. S. Ashraf, A. J. Kronemeijer, D. I. James, H. Sirringhaus, I. McCulloch, Chem. Commun. 2012, 48, 3939.
[98] D. Yoo, T. Hasegawa, M. Ashizawa, T. Kawamoto, H. Masunaga, T. Hikima, H. Matsumoto, T. Mori, J. Mater. Chem. C 2017, 5, 2509.
[99] B. Nketia-Yawson, H. Kang, E.-Y. Shin, Y. Xu, C. Yang, Y.-Y. Noh, Org. Electron. 2015, 26, 151.
[100] I. Meager, M. Nikolka, B. C. Schroeder, C. B. Nielsen, M. Planells, H. Bronstein, J. W. Rumer, D. I. James, R. S. Ashraf, A. Sadhanala, P. Hayoz, J.-C. Flores, H. Sirringhaus, I. McCulloch, Adv. Funct. Mater. 2014, 24, 7109.
[101] C.-M. Chen, S. Sharma, Y.-L. Li, J.-J. Lee, S.-A. Chen, J. Mater. Chem. C 2015, 3, 33.
[102] G. Kim, H. Kim, M. Jang, Y. K. Jung, J. H. Oh, C. Yang, J. Mater. Chem. C 2016, 4, 9554.
[103] H. J. Cho, S.-J. Kang, S. M. Lee, M. Jeong, G. Kim, Y.-Y. Noh, C. Yang, ACS Appl. Mater. Interfaces 2017, 9, 30755.
[104] M. R. Raj, Y. Kim, C. E. Park, T. K. An, T. Park, Org. Electron. 2019, 65, 251.
[105] C. C. Chueh, C. Z. Li, F. Ding, Z. Li, N. Cernetic, X. Li, A. K. Jen, ACS Appl. Mater. Interfaces 2017, 9, 1136.
[106] A. P. Dhondge, Y.-X. Huang, T. Lin, Y.-H. Hsu, S.-L. Tseng, Y.-C. Chang, H. J. H. Chen, M.-Y. Kuo, J. Org. Chem. 2019, 84, 14061.
[107] S. Vegiraju, A. A. Amelenan Torimtubun, P.-S. Lin, H.-C. Tsai, W.-C. Lien, C.-S. Chen, G.-Y. He, C.-Y. Lin, D. Zheng, Y.-F. Huang, Y.-C. Wu, S.-L. Yau, G.-H. Lee, S.-H. Tung, C.-L. Wang, C.-L. Liu, M.-C. Chen, A. Facchetti, ACS Appl. Mater. Interfaces 2020, 12, 25081.
[108] S. Vegiraju, X.-L. Luo, L.-H. Li, S. N. Afraj, C. Lee, D. Zheng, H.-C. Hsieh, C.-C. Lin, S.-H. Hong, H.-C. Tsai, G.-H. Lee, S.-H. Tung, C.-L. Liu, M.-C. Chen, A. Facchetti, Chem. Mater. 2020, 32, 1422.
[109] Z. Liu, G. Zhang, D. Zhang, Acc. Chem. Res. 2018, 51, 1422.
[110] T. Marszalek, M. Li, W. Pisula, Chem. Commun. 2016, 52, 10938.
[111] J. Mei, Z. Bao, Chem. Mater. 2013, 26, 604.
[112] Y. Yang, Z. Liu, G. Zhang, X. Zhang, D. Zhang, Adv. Mater. 2019, 31, 1903104.
[113] H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, T. Yui, J. Am. Chem. Soc. 2007, 129, 15732.
[114] H. Iino, T. Usui, J.-i. Hanna, Nat. Commun. 2015, 6, 6828.
[115] G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, Z. Bao, Nature 2011, 480, 504.
[116] Y. Diao, B. C. K. Tee, G. Giri, J. Xu, D. H. Kim, H. A. Becerril, R. M. Stoltenberg, T. H. Lee, G. Xue, S. C. B. Mannsfeld, Z. Bao, Nat. Mater. 2013, 12, 665.
[117] G. Giri, S. Park, M. Vosgueritchian, M. M. Shulaker, Z. Bao, Adv. Mater. 2014, 26, 487.
[118] M. Gsänger, E. Kirchner, M. Stolte, C. Burschka, V. Stepanenko, J. Pflaum, F. Würthner, J. Am. Chem. Soc. 2014, 136, 2351.
[119] H. H. Choi, K. Cho, C. D. Frisbie, H. Sirringhaus, V. Podzorov, Nat. Mater. 2018, 17, 2.
[120] D. M. Smilgies, J. Appl. Crystallogr. 2009, 42, 1030.
[121] L. Wang, G. Nan, X. Yang, Q. Peng, Q. Li, Z. Shuai, Chem. Soc. Rev. 2010, 39, 423.
[122] S. Fratini, S. Ciuchi, D. Mayou, G. T. de Laissardière, A. Troisi, Nat. Mater. 2017, 16, 998.
[123] Q. Wang, E. J. Juarez-Perez, S. Jiang, M. Xiao, J. Qian, E.-S. Shin, Y.-Y. Noh, Y. Qi, Y. Shi, Y. Li, Phys. Rev. Mater. 2020, 4, 044604.
[124] Y. Wang, X. Huang, T. Li, L. Li, X. Guo, P. Jiang, Chem. Mater. 2019, 31, 2212.
[125] M. Fahlman, S. Fabiano, V. Gueskine, D. Simon, M. Berggren, X. Crispin, Nat. Rev. Mater. 2019, 4, 627.
[126] R. P. Ortiz, A. Facchetti, T. J. Marks, Chem. Rev. 2010, 110, 205.
[127] H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler, A. Facchetti, Nature 2009, 457, 679.
[128] D. M. de Leeuw, M. M. J. Simenon, A. R. Brown, R. E. F. Einerhand, Synth. Met. 1997, 87, 53.
[129] J. Soeda, Y. Hirose, M. Yamagishi, A. Nakao, T. Uemura, K. Nakayama, M. Uno, Y. Nakazawa, K. Takimiya, J. Takeya, Adv. Mater. 2011, 23, 3309.
[130] G. Kim, S.-J. Kang, G. K. Dutta, Y.-K. Han, T. J. Shin, Y.-Y. Noh, C. Yang, J. Am. Chem. Soc. 2014, 136, 9477.
[131] J. Mei, Y. Diao, A. L. Appleton, L. Fang, Z. Bao, J. Am. Chem. Soc. 2013, 135, 6724.
[132] Y. Yuan, G. Giri, A. L. Ayzner, A. P. Zoombelt, S. C. B. Mannsfeld, J. Chen, D. Nordlund, M. F. Toney, J. Huang, Z. Bao, Nat. Commun. 2014, 5, 3005.
[133] C. Zhang, Y. Zang, F. Zhang, Y. Diao, C. R. McNeill, C.-a. Di, X. Zhu, D. Zhu, Adv. Mater. 2016, 28, 8456.
[134] T. Takahashi, K.-i. Matsuoka, K. Takimiya, T. Otsubo, Y. Aso, J. Am. Chem. Soc. 2005, 127, 8928.
[135] J. Li, X. Qiao, Y. Xiong, H. Li, D. Zhu, Chem. Mater. 2014, 26, 5782.
[136] Y. Qiao, Y. Guo, C. Yu, F. Zhang, W. Xu, Y. Liu, D. Zhu, J. Am. Chem. Soc. 2012, 134, 4084.
[137] H. Limpricht, Ber. Dtsch. Chem. Ges. 1870, 3, 90.
[138] Z. Zhao, H. Nie, C. Ge, Y. Cai, Y. Xiong, J. Qi, W. Wu, R. T. K. Kwok, X. Gao, A. Qin, J. W. Y. Lam, B. Z. Tang, Adv. Sci. 2017, 4, 1700005.
[139] A. Pachariyangkun, M. Suda, S. Hadsadee, S. Jungsuttiwong, P. Nalaoh, P. Pattanasattayavong, T. Sudyoadsuk, H. M. Yamamoto, V. Promarak, J. Mater. Chem. C 2020, 8, 17297.
[140] C. Mitsui, J. Soeda, K. Miwa, H. Tsuji, J. Takeya, E. Nakamura, J. Am. Chem. Soc. 2012, 134, 5448.
[141] Y. Miyata, M. Terayama, T. Minari, T. Nishinaga, T. Nemoto, S. Isoda, K. Komatsu, Chem Asian J. 2007, 2, 1492.
[142] Y. Xiong, M. Wang, X. Qiao, J. Li, H. Li, Tetrahedron 2015, 71, 852.
[143] O. Gidron, M. Bendikov, Angew. Chem., Int. Ed. 2014, 53, 2546.
[144] O. Gidron, Y. Diskin-Posner, M. Bendikov, J. Am. Chem. Soc. 2010, 132, 2148.
[145] Y. Xiong, J. Tao, R. Wang, X. Qiao, X. Yang, D. Wang, H. Wu, H. Li, Adv. Mater. 2016, 28, 5949.
[146] G. Barbarella, L. Favaretto, G. Sotgiu, M. Zambianchi, C. Arbizzani, A. Bongini, M. Mastragostino, Chem. Mater. 1999, 11, 2533.
[147] P. M. Beaujuge, J. M. J. Fréchet, J. Am. Chem. Soc. 2011, 133, 20009.
[148] M. E. Cinar, T. Ozturk, Chem. Rev. 2015, 115, 3036.
[149] L. Zhang, L. Tan, Z. Wang, W. Hu, D. Zhu, Chem. Mater. 2009, 21, 1993.
[150] W. Yi, S. Zhao, H. Sun, Y. Kan, J. Shi, S. Wan, C. Li, H. Wang, J. Mater. Chem. C 2015, 3, 10856.
[151] Z. Shan, J. Shi, W. Xu, C. Li, H. Wang, Dyes Pigm. 2019, 171, 107675.
[152] S. Vegiraju, B.-C. Chang, P. Priyanka, D.-Y. Huang, K.-Y. Wu, L.-H. Li, W.-C. Chang, Y.-Y. Lai, S.-H. Hong, B.-C. Yu, C.-L. Wang, W.-J. Chang, C.-L. Liu, M.-C. Chen, A. Facchetti, Adv. Mater. 2017, 29, 1702414.
[153] H. Huang, L. Yang, A. Facchetti, T. J. Marks, Chem. Rev. 2017, 117, 10291.
[154] C.-C. Lin, S. N. Afraj, A. Velusamy, P.-C. Yu, C.-H. Cho, J. Chen, Y.-H. Li, G.-H. Lee, S.-H. Tung, C.-L. Liu, M.-C. Chen, A. Facchetti, ACS Nano 2021, 15, 727.
[155] H. Wang, J. Huang, M. A. Uddin, B. Liu, P. Chen, S. Shi, Y. Tang, G. Xing, S. Zhang, H. Y. Woo, H. Guo, X. Guo, ACS Appl. Mater. Interfaces 2019, 11, 10089.
[156] Y. Liu, J. Song, Z. Bo, Chem. Commun. 2021, 57, 302.
[157] Z. Fei, Y. Han, E. Gann, T. Hodsden, A. S. R. Chesman, C. R. McNeill, T. D. Anthopoulos, M. Heeney, J. Am. Chem. Soc. 2017, 139, 8552.
[158] S.-Y. Jang, I.-B. Kim, M. Kang, Z. Fei, E. Jung, T. McCarthy-Ward, J. Shaw, D.-H. Lim, Y.-J. Kim, S. Mathur, M. Heeney, D.-Y. Kim, Adv. Sci. 2019, 6, 1900245.
[159] M. J. Sung, A. Luzio, W.-T. Park, R. Kim, E. Gann, F. Maddalena, G. Pace, Y. Xu, D. Natali, C. de Falco, L. Dang, C. R. McNeill, M. Caironi, Y.-Y. Noh, Y.-H. Kim, Adv. Funct. Mater. 2016, 26, 4984.
[160] C. Wang, M. Abbas, G. Wantz, K. Kawabata, K. Takimiya, J. Mater. Chem. C 2020, 8, 15119.
[161] H. Takenaka, T. Ogaki, C. Wang, K. Kawabata, K. Takimiya, Chem. Mater. 2019, 31, 6696.
[162] T. Okamoto, M. Mitani, C. P. Yu, C. Mitsui, M. Yamagishi, H. Ishii, G. Watanabe, S. Kumagai, D. Hashizume, S. Tanaka, M. Yano, T. Kushida, H. Sato, K. Sugimoto, T. Kato, J. Takeya, J. Am. Chem. Soc. 2020, 142, 14974.
[163] S. Vegiraju, A. A. Amelenan Torimtubun, P.-S. Lin, H.-C. Tsai, W.-C. Lien, C.-S. Chen, G.-Y. He, C.-Y. Lin, D. Zheng, Y.-F. Huang, Y.-C. Wu, S.-L. Yau, G.-H. Lee, S.-H. Tung, C.-L. Wang, C.-L. Liu, M.-C. Chen, A. Facchetti, ACS Appl. Mater. Interfaces 2020, 12, 25081.
[164] P. L. Gamage, C. M. Udamulle Gedara, Z. Ma, A. Bhadran, R. Gunawardhana, C. Bulumulla, M. C. Biewer, M. C. Stefan, ACS Appl. Electron. Mater. 2021, 3, 5335.
[165] H. Bronstein, C. B. Nielsen, B. C. Schroeder, I. McCulloch, Nat. Rev. Chem. 2020, 4, 66.
[166] H. Chen, W. Zhang, M. Li, G. He, X. Guo, Chem. Rev. 2020, 120, 2879.
[167] Z. Lu, C. Wang, W. Deng, M. T. Achille, J. Jie, X. Zhang, J. Mater. Chem. C 2020, 8, 9133.
[168] S. Fratini, M. Nikolka, A. Salleo, G. Schweicher, H. Sirringhaus, Nat. Mater. 2020, 19, 491.
[169] Y. Wang, L. Sun, C. Wang, F. Yang, X. Ren, X. Zhang, H. Dong, W. Hu, Chem. Soc. Rev. 2019, 48, 1492.
[170] Y. Yu, Q. Ma, H. Ling, W. Li, R. Ju, L. Bian, N. Shi, Y. Qian, M. Yi, L. Xie, W. Huang, Adv. Funct. Mater. 2019, 29, 1904602.
[171] X. Gu, L. Shaw, K. Gu, M. F. Toney, Z. Bao, Nat. Commun. 2018, 9, 534.
[172] B. Kang, F. Ge, L. Qiu, K. Cho, Adv. Electron. Mater. 2017, 3, 1600240.
[173] B. Wang, W. Huang, L. Chi, M. Al-Hashimi, T. J. Marks, A. Facchetti, Chem. Rev. 2018, 118, 5690.
[174] G. Wang, F. S. Melkonyan, A. Facchetti, T. J. Marks, Angew. Chem., Int. Ed. 2019, 58, 4129.
[175] C. Yan, S. Barlow, Z. Wang, H. Yan, A. K. Y. Jen, S. R. Marder, X. Zhan, Nat. Rev. Mater. 2018, 3, 18003.
[176] S. Yuvaraja, A. Nawaz, Q. Liu, D. Dubal, S. G. Surya, K. N. Salama, P. Sonar, Chem. Soc. Rev. 2020, 49, 3423.
[177] Y. H. Lee, M. Jang, M. Y. Lee, O. Y. Kweon, J. H. Oh, Chem 2017, 3, 724.
[178] K. Takimiya, S. Shinamura, I. Osaka, E. Miyazaki, Adv. Mater. 2011, 23, 4347.
[179] Y. Pan, G. Yu, Chem. Mater. 2021, 33, 2229.
[180] D. J. Gundlach, J. E. Royer, S. K. Park, S. Subramanian, O. D. Jurchescu, B. H. Hamadani, A. J. Moad, R. J. Kline, L. C. Teague, O. Kirillov, C. A. Richter, J. G. Kushmerick, L. J. Richter, S. R. Parkin, T. N. Jackson, J. E. Anthony, Nat. Mater. 2008, 7, 216.
[181] Q. Miao, M. Lefenfeld, T.-Q. Nguyen, T. Siegrist, C. Kloc, C. Nuckolls, Adv. Mater. 2005, 17, 407.
[182] K. Ito, T. Suzuki, Y. Sakamoto, D. Kubota, Y. Inoue, F. Sato, S. Tokito, Angew. Chem., Int. Ed. 2003, 42, 1159.
[183] T.-H. Chao, M.-J. Chang, M. Watanabe, M.-H. Luo, Y. J. Chang, T.-C. Fang, K.-Y. Chen, T. J. Chow, Chem. Commun. 2012, 48, 6148.
[184] S. Vegiraju, D.-Y. Huang, P. Priyanka, Y.-S. Li, X.-L. Luo, S.-H. Hong, J.-S. Ni, S.-H. Tung, C.-L. Wang, W.-C. Lien, S. L. Yau, C.-L. Liu, M.-C. Chen, Chem. Commun. 2017, 53, 5898.
[185] L. Wang, J. Dai, Y. Song, Int. J. Quantum Chem. 2019, 119, e25824.
[186] C. Kim, P.-Y. Huang, J.-W. Jhuang, M.-C. Chen, J.-C. Ho, T.-S. Hu, J.-Y. Yan, L.-H. Chen, G.-H. Lee, A. Facchetti, T. J. Marks, Org. Electron. 2010, 11, 1363.
[187] J. Youn, P.-Y. Huang, Y.-W. Huang, M.-C. Chen, Y.-J. Lin, H. Huang, R. P. Ortiz, C. Stern, M.-C. Chung, C.-Y. Feng, L.-H. Chen, A. Facchetti, T. J. Marks, Adv. Funct. Mater. 2012, 22, 48.
[188] J. Youn, S. Vegiraju, J. D. Emery, B. J. Leever, S. Kewalramani, S. J. Lou, S. Zhang, K. Prabakaran, Y. Ezhumalai, C. Kim, P.-Y. Huang, C. Stern, W.-C. Chang, M. J. Bedzyk, L. X. Chen, M.-C. Chen, A. Facchetti, T. J. Marks, Adv. Electron. Mater. 2015, 1, 1500098.
[189] C. Zhang, X. Zhu, Adv. Funct. Mater. 2020, 30, 2000765.
[190] Y. Sun, Y. Guo, Y. Liu, Mater. Sci. Eng. R Rep. 2019, 136, 13.
[191] Z. Xue, S. Chen, N. Gao, Y. Xue, B. Lu, O. A. Watson, L. Zang, J. Xu, Polym. Rev. 2020, 60, 318.
[192] S. N. Afraj, G.-Y. He, C.-Y. Lin, A. Velusamy, C.-Y. Huang, P.-S. Lin, S. Vegiraju, P.-Y. Huang, J.-S. Ni, S.-L. Yau, S.-H. Tung, T. Minari, C.-L. Liu, M.-C. Chen, Adv. Mater. Technol. 2021, 6, 2001028.
[193] M.-C. Chen, S. Vegiraju, C.-M. Huang, P.-Y. Huang, K. Prabakaran, S. L. Yau, W.-C. Chen, W.-T. Peng, I. Chao, C. Kim, Y.-T. Tao, J. Mater. Chem. C 2014, 2, 8892.
[194] N. C. Mamillapalli, S. Vegiraju, P. Priyanka, C.-Y. Lin, X.-L. Luo, H.-C. Tsai, S.-H. Hong, J.-S. Ni, W.-C. Lien, G. Kwon, S. L. Yau, C. Kim, C.-L. Liu, M.-C. Chen, Dyes Pigm. 2017, 145, 584.
[195] K. Takimiya, I. Osaka, T. Mori, M. Nakano, Acc. Chem. Res. 2014, 47, 1493.
[196] K. Xiao, Y. Liu, T. Qi, W. Zhang, F. Wang, J. Gao, W. Qiu, Y. Ma, G. Cui, S. Chen, X. Zhan, G. Yu, J. Qin, W. Hu, D. Zhu, J. Am. Chem. Soc. 2005, 127, 13281.
[197] X.-C. Li, H. Sirringhaus, F. Garnier, A. B. Holmes, S. C. Moratti, N. Feeder, W. Clegg, S. J. Teat, R. H. Friend, J. Am. Chem. Soc. 1998, 120, 2206.
[198] Y. Liu, Y. Wang, W. Wu, Y. Liu, H. Xi, L. Wang, W. Qiu, K. Lu, C. Du, G. Yu, Adv. Funct. Mater. 2009, 19, 772.
[199] Y. Liu, C.-a. Di, C. Du, Y. Liu, K. Lu, W. Qiu, G. Yu, Chem. Eur. J. 2010, 16, 2231.
[200] Y. M. Sun, Y. Q. Ma, Y. Q. Liu, Y. Y. Lin, Z. Y. Wang, Y. Wang, C. A. Di, K. Xiao, X. M. Chen, W. F. Qiu, B. Zhang, G. Yu, W. P. Hu, D. B. Zhu, Adv. Funct. Mater. 2006, 16, 426.
[201] M.-C. Chen, Y.-J. Chiang, C. Kim, Y.-J. Guo, S.-Y. Chen, Y.-J. Liang, Y.-W. Huang, T.-S. Hu, G.-H. Lee, A. Facchetti, T. J. Marks, Chem. Commun. 2009, 1846.
[202] C. Kim, M.-C. Chen, Y.-J. Chiang, Y.-J. Guo, J. Youn, H. Huang, Y.-J. Liang, Y.-J. Lin, Y.-W. Huang, T.-S. Hu, G.-H. Lee, A. Facchetti, T. J. Marks, Org. Electron. 2010, 11, 801.
[203] H. Usta, D. Kim, R. Ozdemir, Y. Zorlu, S. Kim, M. C. Ruiz Delgado, A. Harbuzaru, S. Kim, G. Demirel, J. Hong, Y.-G. Ha, K. Cho, A. Facchetti, M.-G. Kim, Chem. Mater. 2019, 31, 5254.
[204] M.-C. Chen, C. Kim, S.-Y. Chen, Y.-J. Chiang, M.-C. Chung, A. Facchetti, T. J. Marks, J. Mater. Chem. 2008, 18, 1029.
[205] T. J. Marks, MRS Bull. 2010, 35, 1018.
[206] H. Usta, C. Risko, Z. Wang, H. Huang, M. K. Deliomeroglu, A. Zhukhovitskiy, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2009, 131, 5586.
[207] S. Vegiraju, G.-Y. He, C. Kim, P. Priyanka, Y.-J. Chiu, C.-W. Liu, C.-Y. Huang, J.-S. Ni, Y.-W. Wu, Z. Chen, G.-H. Lee, S.-H. Tung, C.-L. Liu, M.-C. Chen, A. Facchetti, Adv. Funct. Mater. 2017, 27, 1606761.
[208] A. Velusamy, C.-H. Yu, S. N. Afraj, C.-C. Lin, W.-Y. Lo, C.-J. Yeh, Y.-W. Wu, H.-C. Hsieh, J. Chen, G.-H. Lee, S.-H. Tung, C.-L. Liu, M.-C. Chen, A. Facchetti, Adv. Sci. 2021, 8, 2002930.
[209] Y. Yang, Z. Liu, G. Zhang, X. Zhang, D. Zhang, Adv. Mater. 2019, 31, 1903104.
[210] N. Zhou, S. Vegiraju, X. Yu, E. F. Manley, M. R. Butler, M. J. Leonardi, P. Guo, W. Zhao, Y. Hu, K. Prabakaran, R. P. H. Chang, M. A. Ratner, L. X. Chen, A. Facchetti, M.-C. Chen, T. J. Marks, J. Mater. Chem. C 2015, 3, 8932.
[211] S. Vegiraju, X.-L. Luo, L.-H. Li, S. N. Afraj, C. Lee, D. Zheng, H.-C. Hsieh, C.-C. Lin, S.-H. Hong, H.-C. Tsai, G.-H. Lee, S.-H. Tung, C.-L. Liu, M.-C. Chen, A. Facchetti, Chem. Mater. 2020, 32, 1422.
[212] T. Dong, L. Lv, L. Feng, Y. Xia, W. Deng, P. Ye, B. Yang, S. Ding, A. Facchetti, H. Dong, H. Huang, Adv. Mater. 2017, 29, 1606025.
[213] V. Joseph, C.-H. Yu, C.-C. Lin, W.-C. Lien, H.-C. Tsai, C.-S. Chen, A. A. A. Torimtubun, A. Velusamy, P.-Y. Huang, G.-H. Lee, S.-L. Yau, S.-H. Tung, T. Minari, C.-L. Liu, M.-C. Chen, J. Mater. Chem. C 2020, 8, 15450.
[214] J. A. Letizia, A. Facchetti, C. L. Stern, M. A. Ratner, T. J. Marks, J. Am. Chem. Soc. 2005, 127, 13476.
[215] M.-H. Yoon, S. A. DiBenedetto, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2005, 127, 1348.
[216] M.-H. Yoon, C. Kim, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2006, 128, 12851.
[217] S. J. Cho, M. J. Kim, Z. Wu, J. H. Son, S. Y. Jeong, S. Lee, J. H. Cho, H. Y. Woo, ACS Appl. Mater. Interfaces 2020, 12, 41842.
[218] J. Youn, M.-C. Chen, Y.-j. Liang, H. Huang, R. P. Ortiz, C. Kim, C. Stern, T.-S. Hu, L.-H. Chen, J.-Y. Yan, A. Facchetti, T. J. Marks, Chem. Mater. 2010, 22, 5031.
[219] X. Gong, C. Zheng, X. Feng, Y. Huan, J. Li, M. Yi, Z. Fu, W. Huang, D. Gao, Chem. Asian J. 2018, 13, 3920.
[220] S. Vegiraju, C.-Y. Lin, P. Priyanka, D.-Y. Huang, X.-L. Luo, H.-C. Tsai, S.-H. Hong, C.-J. Yeh, W.-C. Lien, C.-L. Wang, S.-H. Tung, C.-L. Liu, M.-C. Chen, A. Facchetti, Adv. Funct. Mater. 2018, 28, 1801025.
[221] T.-Y. Lai, C.-Y. Cheng, W.-Y. Cheng, K.-M. Lee, S.-H. Tung, Macromolecules 2015, 48, 717.
[222] J. Rivnay, S. C. B. Mannsfeld, C. E. Miller, A. Salleo, M. F. Toney, Chem. Rev. 2012, 112, 5488.
[223] L. Fu, H. Li, L. Wang, R. Yin, B. Li, L. Yin, Energy Environ. Sci. 2020, 13, 4017.
[224] M. Zhang, X. Zhan, Adv. Energy Mater. 2019, 9, 1900860.
[225] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
[226] J. S. Manser, J. A. Christians, P. V. Kamat, Chem. Rev. 2016, 116, 12956.
[227] Y. Guo, J. Ma, H. Lei, F. Yao, B. Li, L. Xiong, G. Fang, J. Mater. Chem. A 2018, 6, 5919.
[228] B. Yu, L. Zhang, J. Wu, K. Liu, H. Wu, J. Shi, Y. Luo, D. Li, Z. Bo, Q. Meng, J. Mater. Chem. A 2020, 8, 1417.
[229] Y. Miyazawa, M. Ikegami, H.-W. Chen, T. Ohshima, M. Imaizumi, K. Hirose, T. Miyasaka, iScience 2018, 2, 148.
[230] W. Ke, P. Priyanka, S. Vegiraju, C. C. Stoumpos, I. Spanopoulos, C. M. M. Soe, T. J. Marks, M.-C. Chen, M. G. Kanatzidis, J. Am. Chem. Soc. 2018, 140, 388.
[231] S. Vegiraju, W. Ke, P. Priyanka, J.-S. Ni, Y.-C. Wu, I. Spanopoulos, S. L. Yau, T. J. Marks, M.-C. Chen, M. G. Kanatzidis, Adv. Funct. Mater. 2019, 29, 1905393.
[232] A. A. Sutanto, V. Joseph, C. Igci, O. A. Syzgantseva, M. A. Syzgantseva, V. Jankauskas, K. Rakstys, V. I. E. Queloz, P.-Y. Huang, J.-S. Ni, S. Kinge, A. M. Asiri, M.-C. Chen, M. K. Nazeeruddin, Chem. Mater. 2021, 33, 3286.
[233] V. Joseph, A. A. Sutanto, C. Igci, O. A. Syzgantseva, V. Jankauskas, K. Rakstys, V. I. E. Queloz, H. Kanda, P.-Y. Huang, J.-S. Ni, S. Kinge, M.-C. Chen, M. K. Nazeeruddin, Small n/a, 2100783.
[234] V. Govindan, K.-C. Yang, Y.-S. Fu, C.-G. Wu, New J. Chem. 2018, 42, 7332.
[235] Y. Yang, J. You, Nature 2017, 544, 155.
[236] H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H.-H. Fang, C. Wang, B. R. Ecker, Y. Gao, M. A. Loi, L. Cao, J. Huang, Nat. Photonics 2016, 10, 333.
[237] J. Huang, Y. Shao, Q. Dong, J. Phys. Chem. Lett. 2015, 6, 3218.
[238] M. I. Saidaminov, A. L. Abdelhady, B. Murali, E. Alarousu, V. M. Burlakov, W. Peng, I. Dursun, L. Wang, Y. He, G. Maculan, A. Goriely, T. Wu, O. F. Mohammed, O. M. Bakr, Nat. Commun. 2015, 6, 7586.
[239] K. Suding, E. Higgs, M. Palmer, J. B. Callicott, C. B. Anderson, M. Baker, J. J. Gutrich, K. L. Hondula, M. C. LaFevor, B. M. H. Larson, A. Randall, J. B. Ruhl, K. Z. S. Schwartz, Science 2015, 348, 638.
[240] J. S. Yun, A. Ho-Baillie, S. Huang, S. H. Woo, Y. Heo, J. Seidel, F. Huang, Y.-B. Cheng, M. A. Green, J. Phys. Chem. Lett. 2015, 6, 875.
[241] Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Nat. Commun. 2014, 5, 5784.
[242] Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong, Y. Deng, Y. Yuan, H. Wei, M. Wang, A. Gruverman, J. Shield, J. Huang, Energy Environ. Sci. 2016, 9, 1752.
[243] Y. Li, H. Wu, W. Qi, X. Zhou, J. Li, J. Cheng, Y. Zhao, Y. Li, X. Zhang, Nano Energy 2020, 77, 105237.
[244] N. K. Noel, A. Abate, S. D. Stranks, E. S. Parrott, V. M. Burlakov, A. Goriely, H. J. Snaith, ACS Nano 2014, 8, 9815.
[245] Y. Lin, L. Shen, J. Dai, Y. Deng, Y. Wu, Y. Bai, X. Zheng, J. Wang, Y. Fang, H. Wei, W. Ma, X. C. Zeng, X. Zhan, J. Huang, Adv. Mater. 2017, 29, 1604545.
[246] S. Lee, J. H. Park, B. R. Lee, E. D. Jung, J. C. Yu, D. Di Nuzzo, R. H. Friend, M. H. Song, J. Phys. Chem. Lett. 2017, 8, 1784.
[247] X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, Xiao C. Zeng, J. Huang, Nat. Energy 2017, 2, 17102.
[248] C. Bi, X. Zheng, B. Chen, H. Wei, J. Huang, ACS Energy Lett. 2017, 2, 1400.
[249] L. Wang, H. Zhou, J. Hu, B. Huang, M. Sun, B. Dong, G. Zheng, Y. Huang, Y. Chen, L. Li, Z. Xu, N. Li, Z. Liu, Q. Chen, L.-D. Sun, C.-H. Yan, Science 2019, 363, 265.
[250] E. A. Alharbi, A. Y. Alyamani, D. J. Kubicki, A. R. Uhl, B. J. Walder, A. Q. Alanazi, J. Luo, A. Burgos-Caminal, A. Albadri, H. Albrithen, M. H. Alotaibi, J.-E. Moser, S. M. Zakeeruddin, F. Giordano, L. Emsley, M. Grätzel, Nat. Commun. 2019, 10, 3008.
[251] E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T.-Y. Yang, J. H. Noh, J. Seo, Nature 2019, 567, 511.
[252] N. Li, S. Tao, Y. Chen, X. Niu, C. K. Onwudinanti, C. Hu, Z. Qiu, Z. Xu, G. Zheng, L. Wang, Y. Zhang, L. Li, H. Liu, Y. Lun, J. Hong, X. Wang, Y. Liu, H. Xie, Y. Gao, Y. Bai, S. Yang, G. Brocks, Q. Chen, H. Zhou, Nat. Energy 2019, 4, 408.
[253] H. Zhao, Y. Han, Z. Xu, C. Duan, S. Yang, S. Yuan, Z. Yang, Z. Liu, S. Liu, Adv. Energy Mater. 2019, 9, 1902279.
[254] S. Ye, H. Rao, Z. Zhao, L. Zhang, H. Bao, W. Sun, Y. Li, F. Gu, J. Wang, Z. Liu, Z. Bian, C. Huang, J. Am. Chem. Soc. 2017, 139, 7504.
[255] B. Wang, F. Wu, S. Bi, J. Zhou, J. Wang, X. Leng, D. Zhang, R. Meng, B. Xue, C. Zong, L. Zhu, Y. Zhang, H. Zhou, J. Mater. Chem. A 2019, 7, 23895.
[256] P.-W. Liang, C.-C. Chueh, S. T. Williams, A. K.-Y. Jen, Adv. Energy Mater. 2015, 5, 1402321.
[257] Z. Yang, J. Dou, S. Kou, J. Dang, Y. Ji, G. Yang, W.-Q. Wu, D.-B. Kuang, M. Wang, Adv. Funct. Mater. 2020, 30, 1910710.
[258] G. H. Ahmed, J. Yin, R. Bose, L. Sinatra, E. Alarousu, E. Yengel, N. M. AlYami, M. I. Saidaminov, Y. Zhang, M. N. Hedhili, O. M. Bakr, J.-L. Brédas, O. F. Mohammed, Chem. Mater. 2017, 29, 4393.
[259] M. Zhang, S. Dai, S. Chandrabose, K. Chen, K. Liu, M. Qin, X. Lu, J. M. Hodgkiss, H. Zhou, X. Zhan, J. Am. Chem. Soc. 2018, 140, 14938.
[260] C. Song, X. Li, Y. Wang, S. Fu, L. Wan, S. Liu, W. Zhang, W. Song, J. Fang, J. Mater. Chem. A 2019, 7, 19881.
[261] Y. Gao, Y. Wu, Y. Liu, M. Lu, L. Yang, Y. Wang, W. W. Yu, X. Bai, Y. Zhang, Q. Dai, Nanoscale Horiz. 2020, 5, 1574.
[262] M. Qin, J. Cao, T. Zhang, J. Mai, T.-K. Lau, S. Zhou, Y. Zhou, J. Wang, Y.-J. Hsu, N. Zhao, J. Xu, X. Zhan, X. Lu, Adv. Energy Mater. 2018, 8, 1703399.
[263] T. Niu, J. Lu, R. Munir, J. Li, D. Barrit, X. Zhang, H. Hu, Z. Yang, A. Amassian, K. Zhao, S. Liu, Adv. Mater. 2018, 30, 1706576.
[264] G. Yang, P. Qin, G. Fang, G. Li, Sol. RRL 2018, 2, 1800055.
[265] F. Zhao, S. Dai, Y. Wu, Q. Zhang, J. Wang, L. Jiang, Q. Ling, Z. Wei, W. Ma, W. You, C. Wang, X. Zhan, Adv. Mater. 2017, 29, 1700144.
[266] T. L. Nguyen, H. Choi, S. J. Ko, M. A. Uddin, B. Walker, S. Yum, J. E. Jeong, M. H. Yun, T. J. Shin, S. Hwang, J. Y. Kim, H. Y. Woo, Energy Environ. Sci. 2014, 7, 3040.
[267] D. Deng, Y. Zhang, J. Zhang, Z. Wang, L. Zhu, J. Fang, B. Xia, Z. Wang, K. Lu, W. Ma, Z. Wei, Nat. Commun. 2016, 7, 13740.
[268] Y. Cui, C. Yang, H. Yao, J. Zhu, Y. Wang, G. Jia, F. Gao, J. Hou, Adv. Mater. 2017, 29, 1703080.
[269] S. Dey, Small 2019, 15, 1900134.
[270] K. Wang, J. Liu, J. Yin, E. Aydin, G. T. Harrison, W. Liu, S. Chen, O. F. Mohammed, S. De Wolf, Adv. Funct. Mater. 2020, 30, 2002861.
[271] C.-H. Chiang, C.-G. Wu, Nat. Photonics 2016, 10, 196.
[272] D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr, Science 2015, 347, 519.
[273] M. V. Khenkin, E. A. Katz, A. Abate, G. Bardizza, J. J. Berry, C. Brabec, F. Brunetti, V. Bulović, Q. Burlingame, A. Di Carlo, R. Cheacharoen, Y.-B. Cheng, A. Colsmann, S. Cros, K. Domanski, M. Dusza, C. J. Fell, S. R. Forrest, Y. Galagan, D. Di Girolamo, M. Grätzel, A. Hagfeldt, E. von Hauff, H. Hoppe, J. Kettle, H. Köbler, M. S. Leite, S. Liu, Y.-L. Loo, J. M. Luther, C.-Q. Ma, M. Madsen, M. Manceau, M. Matheron, M. McGehee, R. Meitzner, M. K. Nazeeruddin, A. F. Nogueira, Ç. Odabaşı, A. Osherov, N.-G. Park, M. O. Reese, F. De Rossi, M. Saliba, U. S. Schubert, H. J. Snaith, S. D. Stranks, W. Tress, P. A. Troshin, V. Turkovic, S. Veenstra, I. Visoly-Fisher, A. Walsh, T. Watson, H. Xie, R. Yıldırım, S. M. Zakeeruddin, K. Zhu, M. Lira-Cantu, Nat. Energy 2020, 5, 35.
[274] F. Wang, W. Geng, Y. Zhou, H.-H. Fang, C.-J. Tong, M. A. Loi, L.-M. Liu, N. Zhao, Adv. Mater. 2016, 28, 9986.
[275] J. Xue, J.-W. Lee, Z. Dai, R. Wang, S. Nuryyeva, M. E. Liao, S.-Y. Chang, L. Meng, D. Meng, P. Sun, O. Lin, M. S. Goorsky, Y. Yang, Joule 2018, 2, 1866.
[276] T.-H. Lee, K.-Y. Wu, T.-Y. Lin, J.-S. Wu, C.-L. Wang, C.-S. Hsu, Macromolecules 2013, 46, 7687.
[277] X. Huang, M. Hu, X. Zhao, C. Li, Z. Yuan, X. Liu, C. Cai, Y. Zhang, Y. Hu, Y. Chen, Org. Lett. 2019, 21, 3382.
[278] B. O′Regan, M. Grätzel, Nature 1991, 353, 737.
[279] M. Grätzel, J. Photochem. Photobiol., C 2003, 4, 145.
[280] R. Milan, G. S. Selopal, M. Epifani, M. M. Natile, G. Sberveglieri, A. Vomiero, I. Concina, Sci. Rep. 2015, 5, 14523.
[281] A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M. Grätzel, Science 2011, 334, 629.
[282] A. Sen, A. Groß, ACS Appl. Energy Mater. 2019, 2, 6341.
[283] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K. Nazeeruddin, M. Grätzel, Nat. Chem. 2014, 6, 242.
[284] Y. K. Eom, S. H. Kang, I. T. Choi, Y. Yoo, J. Kim, H. K. Kim, J. Mater. Chem. A 2017, 5, 2297.
[285] T. Stergiopoulos, P. Falaras, Adv. Energy Mater. 2012, 2, 616.
[286] H. J. Snaith, Adv. Funct. Mater. 2010, 20, 13.
[287] M. J. Griffith, K. Sunahara, P. Wagner, K. Wagner, G. G. Wallace, D. L. Officer, A. Furube, R. Katoh, S. Mori, A. J. Mozer, Chem. Commun. 2012, 48, 4145.
[288] A. Mishra, M. K. R. Fischer, P. Bäuerle, Angew. Chem., Int. Ed. 2009, 48, 2474.
[289] C. Li, H. Wonneberger, Adv. Mater. 2012, 24, 613.
[290] M. Liang, J. Chen, Chem. Soc. Rev. 2013, 42, 3453.
[291] L. Zhang, X. Yang, W. Wang, G. G. Gurzadyan, J. Li, X. Li, J. An, Z. Yu, H. Wang, B. Cai, A. Hagfeldt, L. Sun, ACS Energy Lett. 2019, 4, 943.
[292] E. Tanaka, H. Michaels, M. Freitag, N. Robertson, J. Mater. Chem. A 2020, 8, 1279.
[293] F.-S. Lin, P. Priyanka, M.-S. Fan, S. Vegiraju, J.-S. Ni, Y.-C. Wu, Y.-H. Li, G.-H. Lee, Y. Ezhumalai, R.-J. Jeng, M.-C. Chen, K.-C. Ho, J. Mater. Chem. C 2020, 8, 15322.
[294] Y. Ezhumalai, F.-S. Lin, M.-S. Fan, K. Prabakaran, J.-S. Ni, Y.-C. Wu, G.-H. Lee, M.-C. Chen, K.-C. Ho, ACS Appl. Mater. Interfaces 2020, 12, 15071.
[295] Y. Ezhumalai, B. Lee, M.-S. Fan, B. Harutyunyan, K. Prabakaran, C.-P. Lee, S. H. Chang, J.-S. Ni, S. Vegiraju, P. Priyanka, Y.-W. Wu, C.-W. Liu, S. Yau, J. T. Lin, C.-G. Wu, M. J. Bedzyk, R. P. H. Chang, M.-C. Chen, K.-C. Ho, T. J. Marks, J. Mater. Chem. A 2017, 5, 12310.
[296] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisawa, M. Hanaya, Chem. Commun. 2015, 51, 15894.
[297] Z. Yao, M. Zhang, H. Wu, L. Yang, R. Li, P. Wang, J. Am. Chem. Soc. 2015, 137, 3799.
[298] J.-M. Ji, S. H. Kim, H. Zhou, C. H. Kim, H. K. Kim, ACS Appl. Mater. Interfaces 2019, 11, 24067.
[299] X. Zhang, Y. Xu, F. Giordano, M. Schreier, N. Pellet, Y. Hu, C. Yi, N. Robertson, J. Hua, S. M. Zakeeruddin, H. Tian, M. Grätzel, J. Am. Chem. Soc. 2016, 138, 10742.
[300] H. Cheema, J. Watson, A. Peddapuram, J. H. Delcamp, Chem. Commun. 2020, 56, 1741.
[301] J.-S. Ni, J.-H. You, W.-I. Hung, W.-S. Kao, H.-H. Chou, J. T. Lin, ACS Appl. Mater. Interfaces 2014, 6, 22612.
[302] N. Zhou, K. Prabakaran, B. Lee, S. H. Chang, B. Harutyunyan, P. Guo, M. R. Butler, A. Timalsina, M. J. Bedzyk, M. A. Ratner, S. Vegiraju, S. Yau, C.-G. Wu, R. P. H. Chang, A. Facchetti, M.-C. Chen, T. J. Marks, J. Am. Chem. Soc. 2015, 137, 4414.
[303] A. F. Buene, E. E. Ose, A. G. Zakariassen, A. Hagfeldt, B. H. Hoff, J. Mater. Chem. A 2019, 7, 7581.
[304] R. B. K. Siram, K. Tandy, M. Horecha, P. Formanek, M. Stamm, S. Gevorgyan, F. C. Krebs, A. Kiriy, P. Meredith, P. L. Burn, E. B. Namdas, S. Patil, J. Phys. Chem. C 2011, 115, 14369.
[305] A. Facchetti, M.-H. Yoon, H. E. Katz, M. Mushrush, T. J. Marks, MRS Online Proc. Libr. 2003, 769, 118128.
[306] J. A. Letizia, M. R. Salata, C. M. Tribout, A. Facchetti, M. A. Ratner, T. J. Marks, J. Am. Chem. Soc. 2008, 130, 9679.
[307] N.-G. Park, M. Grätzel, T. Miyasaka, K. Zhu, K. Emery, Nat. Energy 2016, 1, 16152.
[308] Y. Rong, Y. Hu, A. Mei, H. Tan, M. I. Saidaminov, S. I. Seok, M. D. McGehee, E. H. Sargent, H. Han, Science 2018, 361, eaat8235.
[309] X. Jiang, D. Wang, Z. Yu, W. Ma, H.-B. Li, X. Yang, F. Liu, A. Hagfeldt, L. Sun, Adv. Energy Mater. 2019, 9, 1803287.
[310] W. Chen, Y. Wu, J. Fan, A. B. Djurišić, F. Liu, H. W. Tam, A. Ng, C. Surya, W. K. Chan, D. Wang, Z.-B. He, Adv. Energy Mater. 2018, 8, 1703519.
[311] D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade, J. F. Watts, Z. Xu, T. Liu, K. Chen, F. Ye, P. Wu, L. Zhao, J. Wu, Y. Tu, Y. Zhang, X. Yang, W. Zhang, R. H. Friend, Q. Gong, H. J. Snaith, R. Zhu, Science 2018, 360, 1442.
[312] H. D. Pham, L. Gil-Escrig, K. Feron, S. Manzhos, S. Albrecht, H. J. Bolink, P. Sonar, J. Mater. Chem. A 2019, 7, 12507.
[313] R. Shang, Z. Zhou, H. Nishioka, H. Halim, S. Furukawa, I. Takei, N. Ninomiya, E. Nakamura, J. Am. Chem. Soc. 2018, 140, 5018.
[314] C. Rodríguez-Seco, L. Cabau, A. Vidal-Ferran, E. Palomares, Acc. Chem. Res. 2018, 51, 869.
[315] Y. Wang, W. Chen, L. Wang, B. Tu, T. Chen, B. Liu, K. Yang, C. W. Koh, X. Zhang, H. Sun, G. Chen, X. Feng, H. Y. Woo, A. B. Djurišić, Z. He, X. Guo, Adv. Mater. 2019, 31, 1902781.
[316] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, N.-G. Park, Sci. Rep. 2012, 2, 591.
[317] J. Cao, Y.-M. Liu, X. Jing, J. Yin, J. Li, B. Xu, Y.-Z. Tan, N. Zheng, J. Am. Chem. Soc. 2015, 137, 10914.
[318] Z. Chen, S. D. Boyd, J. S. Calvo, K. W. Murray, G. L. Mejia, C. E. Benjamin, R. P. Welch, D. D. Winkler, G. Meloni, S. D’Arcy, J. J. Gassensmith, Bioconjugate Chem. 2017, 28, 2277.
指導教授 陳銘洲(Ming-Chou Chen) 審核日期 2022-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明