博碩士論文 109223009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:63 、訪客IP:18.225.117.242
姓名 楊雅宜(Ya-Yi Yang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 線上熱脫附-氣相層析/質譜儀技術即時監測工業區空氣中有害揮發性有機化合物
(Online Monitoring Toxic Volatile Organic Compounds by Thermal Desorption-Gas Chromatography/Mass spectrometry in an Industrial Park)
相關論文
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 以逆吹式氣相層析法分析氣體成份
★ 氣相層析法應用於工業排放連續監測★ 煙道氣揮發性有機化合物連續監測方法開發
★ 自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機汙染物★ 觸媒式非甲烷總碳氫分析儀開發與驗證
★ 自製除水器及熱脫附儀用於線上GC/MS/FID揮發性有機污染物之分析★ 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用
★ VOC前濃縮與預警系統之建構★ 建立自動化甲烷連續量測系統與其在指示大氣輻射冷卻之應用
★ 臭氧前趨物連續監測與臭氧生成之光化學探討★ 以近連續方式量測空氣中甲烷與異戊二烯及其生成之季節性探討
★ 自行架設光化學測站與商業化儀器平行比對及所得資料初步分析★ 近地表臭氧前驅物分析之前濃縮技術改良
★ 自動化噴霧捕捉分析系統之建立與研究★ 大體積固相微萃取水中揮發性有機污染物
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 有害空氣污染物 (Hazardous Air Pollutants, HAPs) 隨著工業發展被大量排放威脅著人民的健康。HAPs的監測標準方法,美國以EPA TO-15方法為主,台灣參考此方法開發了NIEA A715.16B方法,均利用採樣筒離線採樣。台灣針對特殊性工業區應用NIEA A715.16B,離線採樣工業區周界空氣,頻率為六天採樣一次,數據僅為24小時的平均,無法提供即時數值且無法反應當地長時間環境污染物濃度變化,因此本研究目的即延續前人研究持續開發線上熱脫附氣相層析質譜技術 (Online Thermal Desorption GC/MS,簡稱Online TD-GC/MS),除了能持續監測空氣中86種HAPs每小時的數值,更重要的是延長離子源的使用壽命,延長連續監測的時間,使連續監測工作可以更完善。
離子源劣化快速導致離子源維護頻繁,影響數據的連續性為Online TD-GC/MS方法之最大難點,本研究透過探討空氣成分確認了水氣為造成離子源感度下降的主要因素,在不影響MDL的條件下將採樣體積減少並加大熱脫附分流流速使進入GC-MS的樣品體積減少,有效的減緩離子源感度下降的速率,維護頻率下降,在進行每日中濃度標準品查核時目標物種的回收率能維持在± 30%的範圍的時間增加,連續監測時間延長到兩週以上所測得之連續數據增加。
利用調控後的參數,實際在實場連續監測91天,離子源壽命最長可使用20天,因為連續性改善,可以清楚的看到如四氯化碳等污染物具背景值,此背景濃度值和NOAA (National Oceanic and Atmospheric Administration, NOAA) 之背景濃度相近,證實儀器對低濃度監測的準確度,監測期間的數據更利用與離線採樣方法NIEA A715.16B及PTR-MS數據進行平行比對獲得良好的比對性,再一次佐證此系統之數據準確性。
本研究除了內標準品外還透過監測氟氯碳化物 (Chlorofluorocarbon, CFC) 濃度來確認儀器的穩定性,CFC於周界空氣中濃度穩定,可作為環境內標來佐證系統可信度。
監測期間的物種高值稱之為特殊事件,例如氯乙烯伴隨著1,2-二氯乙烷同時出現高值的特殊事件,將測得之連續數據結合當時的氣象資料可以透過後推軌跡的方法對污染物進行溯源,氯乙烯及1,2-二氯乙烷結合後推軌跡後證實兩者來自相同排放源。Online TD-GC/MS即時監測的結果可用於評估當地環境的污染物暴露濃度,每小時一筆數據能即時反應突然的特殊事件,對事件進行溯源尋找排放源,使排放管制更有成效。
摘要(英) Hazardous air pollutants (HAPs) have been released in large quantities with industrial development, threatening people′s health. The standard method for monitoring HAPs in the United States is mainly based on the EPA TO-15 method, according to which Taiwan developed an analogy, the NIEA A715.16B method. Both use canisters for offline sampling. Taiwan applies NIEA A715.16B for the special industrial district. The frequency of sampling is once every six days and each for 24 hours, which cannot provide real-time values and reflect local concentration variability. Therefore, this research is a continuation of the previous study to further refine the method of online thermal desorption gas chromatography/mass spectrometry (called the Online TD-GC/MS). In addition, by continuously monitoring 86 HAPs in the air with hourly resolution and, more importantly, prolonging the service life of the ion source in MS at the same time we have successfully extended the time length of monitoring, making the online method more applicable.
Due to the rapid decline of the ion source response, the ion source needs to be revived frequently, resulting in the lack of long-term data continuity, which is the greatest obstacle to the online TD-GC/MS method. By investigating the air composition, it is confirmed that moisture is the main factor causing the deterioration of the ion source response. As a result, we reduced the sampling volume and increased the thermal desorption split flow rate without affecting the MDL to reduce the amount of sample entering the GC-MS, effectively slowing down the decline of ion source response and; thus, fewer interruptions in monitoring. As a result, the time spent for the target species to be maintained in the recovery range of ±30% based on the daily performance check increases. In the end, the time length of continued monitoring is extended to more than two weeks before service of the ion source is required.
Using the adjusted parameters, the actual continuous monitoring in the field was operated for 91 days, during which the ion source was able to last for up to 20 days for each segment of measurement. Because of the improvements made in this study, it can be seen in the field data that the atmospheric background level of carbon tetrachloride (CCl4) was clearly revealed at around 0.1 ppb, despite concentration variability. This background concentration value is similar to the National Oceanic and Atmospheric Administration (NOAA) data, confirming the instrument′s low concentration monitoring detection limits.
In this study, the instrument′s stability was confirmed by monitoring the chlorofluorocarbon (CFC) concentrations and normalized internal standards. Because the concentrations of CFCs in the ambient air are stable, they can be used as an environmental internal standard to prove the system′s reliability.
The high values of species during the monitoring period are called special events, such as the occurrence of high values of vinyl chloride and 1,2-dichloroethane simultaneously. Combining the online data with a simple two-dimensional back-trajectory algorithm, the spikes of vinyl chloride and 1,2-dichloroethane were determined to be caused by an emission source from polyvinyl chloride (PVC) factory. As a result, the online TD-GC/MS method not only can be used in the risk assessment of HAPs in a local environment but it also can instantaneously respond to sudden special events, and trace back to emission sources, making emission control more effective.
關鍵字(中) ★ 有害空氣汙染物
★ 線上連續監測
★ 前濃縮氣象層析質譜
關鍵字(英) ★ Hazardous air pollutants
★ Online TD-GC/MS
★ Volatile Organic Compound
論文目次 摘要 I
Abstract III
謝誌 VII
目錄 IX
圖目錄 XIII
表目錄 XIX
第一章、前言 1
1-1研究背景 1
1-2研究目的 3
第二章、文獻回顧與整理 5
2-1揮發性有機空氣污染物 5
2-2美國及台灣有害揮發性有機化合物管理回顧 6
2-3特殊性工業區揮發性有機化合物之管制 22
2-4揮發性有機化合物的監測方法 27
2-4-1離線分析方法 29
2-4-2 線上連續分析方法 34
第三章-實驗原理及介紹 43
3-1實驗流程 43
3-2前濃縮除水系統 45
3-3質譜 (Mass Spectrometry, MS) 50
3-4內標準品 (Internal Standard, IS) 52
3-5標準氣體 (Standard gas) 57
3-6過去之研究經驗 61
3-6-1水氣之影響 62
3-6-2內標體積之影響 63
3-6-3離子源拉出極板之影響 64
第四章、方法建立 67
4-1系統精進與改善 67
4-1-1質譜感度下降原因探討 67
4-1-2系統參數調整 70
4-1-3選擇離子掃描模式 (Selected Ion Monitoring, SIM) 75
4-2品保品管 (Quality Assurance/Quality Contro, QA/QC) 80
4-2-1質譜儀調機 (MS Tuning) 80
4-2-2檢量線 (Calibration curve) 82
4-2-3方法偵測極限 (Method Detection Limit, MDL) 88
4-2-4精密度/準確度 (Accuracy/Precision) 93
4-2-5每日查核 (Daily check) 97
4-3後推軌跡 (Backward trajectory) 103
第五章、實場監測與結果討論 105
5-1實場監測準備 105
5-2後推軌跡閾值設定 115
5-3 實場監測結果 119
5-3-1氯乙烯製程 (Vinyl chloride Process) 127
5-3-2 AS樹酯製程 (AS Resin Process) 131
5-3-3三氯乙烯及四氯乙烯 (Trichloroethylene & Tetrachloroethylene) 136
5-3-4氯代甲烷 (Chloromethane) 139
5-3-5 聚丁二烯製程 (Polybutadiene Process) 153
5-4數據比對 158
5-4-1採樣筒比對 (NIEA A715.16B) 158
5-4-2 質子轉移反應質譜法比對 161
5-5 質譜感度衰退測試 163
5-6 質譜感度校正 170
第六章、結論 181
文獻參考 183
參考文獻 1. C. Baird and M. Cann, Environmental Chemistry. New York: WH 608. 2005, Freeman and Company.
2. L. Wang, R. Atkinson and J. Arey, Dicarbonyl products of the OH radical-initiated reactions of naphthalene and the C1-and C2-alkylnaphthalenes. Environmental science & technology, 2007. 41 (8), 2803-2810.
3. R. Atkinson, Atmospheric chemistry of VOCs and NOx. Atmospheric environment, 2000. 34 (12-14), 2063-2101.
4. K. Chay and M. Greenstone, Air quality, infant mortality, and the Clean Air Act of 1970. 2003, National Bureau of Economic Research Cambridge, Mass., USA.
5. D. Popp, Pollution control innovations and the Clean Air Act of 1990. Journal of Policy Analysis and Management, 2003. 22 (4), 641-660.
6. R. S. Melnick, Regulation and the courts: The case of the Clean Air Act. 2010: Brookings Institution Press.
7. 行政院環境保護署,空氣污染防制法,1975。
8. 中華民國行政院環保署,空氣中揮發性有機化合物檢測方法-不銹鋼採樣筒/氣相層析質譜儀 (NIEA A715.16B),2021。
9. 陳光彥和陳藹然, 揮發與揮發性有機化合物. 科學Online, 2009.
10. United States Environmental Protection Agency, Indoor Air Quality (IAQ) Technical Overview of Volatile Organic Compounds. Available from: https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-compounds#3. [14 Jul.2022]
11. United States Environmental Protection Agency, What are volatile organic compounds (VOCs)? 2022; Available from: https://www.epa.gov/indoor-air-quality-iaq/what-are-volatile-organic-compounds-vocs. [14 Jul.2022]
12. 中華民國行政院環保署,特殊性工業區緩衝地帶及空氣品質監測設施設置標準,2014。
13. K. B. Schnelle Jr, R. F. Dunn and M. E. Ternes, Air pollution control technology handbook. 2015: CRC press.
14. United States Environmental Protection Agency, 40 CFR Part 63, National emissions standards for hazardous air pollutants: solvent extraction for vegetable oil production, final rule. Federal Register, 2001. 66, 19005-19026.
15. T. Culp and J. Hylko, A Reevaluation of the National Emission Standards for Hazardous Air Pollutants (NESHAP-40 CFR 61, Subpart H) Program at Sandia National Laboratories, New Mexico. 1997, Sandia National Lab. (SNL-NM), Albuquerque, NM (United States).
16. United States Environmental Protection Agency, Compendium Method TO-15 Determination of Volatile Organic Compounds (VOCs) In Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS) 1999.
17. 宋宗信,以GC/MS偵測高科技工業區內空氣中揮發性有機物濃度之研究,2010。
18. 中華民國行政院環保署,「固定污染源有害空氣污染物排放標準草案」預告總說明及條文對照表,2021。
19. United States Environmental Protection Agency, TO-5 Method Method for the Determination of Aldehydes and Ketones in Ambient Air Using High Performance Liquid Chromatography (HPLC) 1984.
20. United States Environmental Protection Agency, Compendium Method TO-11A Determination of Formaldehyde in Ambient Air Using Adsorbent Cartridge Followed by High Performance Liquid Chromatography (HPLC) [Active Sampling Methodology] 1999.
21. S. Inomata, H. Tanimoto, S. Kato, J. Suthawaree, Y. Kanaya, P. Pochanart, Y. Liu, and Z. Wang, PTR-MS measurements of non-methane volatile organic compounds during an intensive field campaign at the summit of Mount Tai, China, in June 2006. Atmospheric Chemistry and Physics, 2010. 10 (15), 7085-7099.
22. United States Environmental Protection Agency, EPA Method-18 Volatile Organic Compounds by Gas Chromatography. 1987.
23. Y. Wang, T. S. Raihala, A. P. Jackman and R. St. John, Use of Tedlar bags in VOC testing and storage: evidence of significant VOC losses. Environmental science & technology, 1996. 30 (10), 3115-3117.
24. W. A. McGlenny, J. D. Pleil, G. F. Evans, K. D. Oliver, M. W. Holdren and W. T. Winberry, Canister-based method for monitoring toxic VOCs in ambient air. Journal of the Air & Waste Management Association, 1991. 41 (10), 1308-1318.
25. D. Wang and C. Austin, Determination of complex mixtures of volatile organic compounds in ambient air: canister methodology. Analytical and bioanalytical chemistry, 2006. 386 (4).
26. United States Environmental Protection Agency, Method 325A Volatile Organic Compounds from Fugitive and Area Sources: Sampler Deployment and VOC Sample Collection. 2019.
27. United States Environmental Protection Agency, Compendium Method TO-17 Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling Onto Sorbent Tubes 1999.
28. N. A. Martin, P. Duckworth, M. H. Henderson, N. R. Swann, S. T. Granshaw, R. P. Lipscombe, B.A. Goody, Measurements of environmental 1, 3-butadiene with pumped and diffusive samplers using the sorbent Carbopack X. Atmospheric environment, 2005. 39 (6), 1069-1077.
29. W. A. McClenny, K. D. Oliver, H. H. Jacumin Jr, E. H. Daughtrey Jr and D. A. Whitaker, 24 h diffusive sampling of toxic VOCs in air onto Carbopack X solid adsorbent followed by thermal desorption/GC/MS analysis—laboratory studies. Journal of Environmental Monitoring, 2005. 7 (3), 248-256.
30. C. Walgraeve, K. Demeestere, J. Dewulf, K. Van Huffel and H. Van Langenhove, Diffusive sampling of 25 volatile organic compounds in indoor air: Uptake rate determination and application in Flemish homes for the elderly. Atmospheric Environment, 2011. 45 (32), 5828-5836.
31. 中華民國行政院環保署,空氣中有機光化前驅物檢測方法-氣相層析/火焰離子化偵測法 (NIEA A505.12B),2013。
32. 陳韋立,大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用,化學學系,2000,國立中央大學。
33. M. de Blas, M. Navazo, L. Alonso, N. Durana and J. Iza, Automatic on-line monitoring of atmospheric volatile organic compounds: Gas chromatography–mass spectrometry and gas chromatography–flame ionization detection as complementary systems. Science of the total environment, 2011. 409 (24), 5459-5469.
34. M. Wang, L. Zeng, S. Lu, M. Shao, X. Liu, X. Yu, W. Chen, B Yuan, Q. Zhang, M. Hu, and Z. Zhang, Development and validation of a cryogen-free automatic gas chromatograph system (GC-MS/FID) for online measurements of volatile organic compounds. Analytical Methods, 2014. 6 (23), 9424-9434.
35. K. D. Oliver, J. R. Adams, E. H. Daughtrey, W. A. McClenny, M. J. Yoong, M. A. Pardee, E. B. Almasi, and N. A. Kirshen, Technique for monitoring toxic VOCs in air: sorbent preconcentration, closed-cycle cooler cryofocusing, and GC/MS analysis. Environmental science & technology, 1996. 30 (6), 1939-1945.
36. 李秉翰和林嘉和,利用MOF孔洞材料分離捕獲或轉化利用二氧化碳,2016。
37. Z.-Y. Gu, G. Wang and X.-P. Yan, MOF-5 metal− organic framework as sorbent for in-field sampling and preconcentration in combination with thermal desorption GC/MS for determination of atmospheric formaldehyde. Analytical chemistry, 2010. 82 (4), 1365-1370.
38. J. Gawłowski, T. Gierczak, E. Pietruszyñska, M. Gawryś and J. Niedzielski, Dry purge for the removal of water from the solid sorbents used to sample volatile organic compounds from the atmospheric air. Analyst, 2000. 125 (11), 2112-2117.
39. W. F. Burns, D. T. Tingey, R. C. Evans and E. H. Bates, Problems with a Nafion® membrane dryer for drying chromatographic samples. Journal of Chromatography A, 1983. 269, 1-9.
40. 朱晨瑄,以線上熱脫附氣相層析質譜法監測空氣中有害空氣污染物,化學學系,化學學系,2020,國立中央大學。
41. National Institute of Standards and Technology, Vinyl chloride; Available from: https://webbook.nist.gov/cgi/cbook.cgi?ID=75-01-4&Units=SI. [14 Jul.2022]
42. 中華民國行政院環保署,環境檢驗檢量線製備及查核指引,2004。
43. 曾美惠,離子通道孔徑對熱脫附GC-MS連續監測空氣有害物質穩定性的影響,化學學系,2021,國立中央大學。
44. B. Wolf, Handbook of ion sources. 1995: CRC press.
45. Agilent Technologies, Analysis of Semivolatile Organic Compounds in Drinking Water on the Agilent 8890 GC and 5977 GC/MSD with Extended Calibration Range. Application Note Environmental, 2019.
46. 安捷倫科技,既然信噪比已無意義為何還用作質譜性能的衡量指標,2011。
47. 中華民國行政院環保署,環境檢驗方法偵測極限測定指引,2004。
48. 行政院環境保護署,空氣中四氯甲烷等揮發性有害空氣污染物擴散式採樣與現地質譜監測調查技術精進開發,2021。
49. National Institute of Standards and Technology, p-Bromofluorobenzene; Available from: https://webbook.nist.gov/cgi/cbook.cgi?ID=460004&Units=SI. [14 Jul.2022]
50. J. Austin and A. Tuck, The calculation of stratospheric air parcel trajectories using satellite data. Quarterly Journal of the Royal Meteorological Society, 1985. 111 (468), 279-307.
51. R. B. Pierce and T. D. A. Fairlie, Chaotic advection in the stratosphere: Implications for the dispersal of chemically perturbed air from the polar vortex. Journal of Geophysical Research: Atmospheres, 1993. 98 (D10), 18589-18595.
52. 仁大工業區園區簡介;來自: https://www.moeaidb.gov.tw/iphw/renda/index.do?id=10. [14 Jul.2022]
53. 報導者-房慧真,【高雄環境難民大風吹】集體失憶的污染歷史,大社被抹除的遷廠承諾;來自: https://www.twreporter.org/a/kaohsiung-environment-refugee-dashe. [15 Feb.2019]
54. 行政院環境保護署土汙基管會. 台塑仁武廠污染事件;來自: https://enews.epa.gov.tw/Page/894720A1EB490390/0ea1ee76-acef-49ea-b0d2-753882b5532f. [01 Jul.2019]
55. 聯合新聞網,仁大工業區仍有3致癌物須減量;來自: https://udn.com/news/story/7327/5769857. [25 Sep.2021]
56. 高雄市政府環境保護局空氣品質管理中心,空氣品質監測站監測數值查詢; 來自:https://www.ksaqmc.com.tw/MIS/MisBackup/AirInfoBP.aspx. [18 Jul.2021]
57. Agency for Toxic Substances and Disease Registry, ToxFAQsTM for Toluene. 2017.
58. 郭勝儒,空氣中氯乙烯、1, 2-二氯乙烷GC/MS在線監測方法,化學學系,2017,國立中央大學。
59. M. Sittig, Vinyl Chloride and PVC manufacture: process and environmental aspects. 1978: Noyes Data Corporation.
60. M. M. Wu, Acrylonitrile and acrylonitrile polymers. Encyclopedia of polymer science and technology, 2002. 1.
61. Agency for Toxic Substances and Disease Registry, ToxFAQs™ for Styrene. 2012.
62. Agency for Toxic Substances and Disease Registry, ToxFAQs™ for Acrylonitrile. 1999.
63. Agency for Toxic Substances and Disease Registry, Trichloroethylene - ToxFAQs™ 2019.
64. Agency for Toxic Substances and Disease Registry, tetrachloroethylene. 2015.
65. C.-C. Chang, G.-G. Lo, C.-H. Tsai and J.-L. Wang, Concentration variability of halocarbons over an electronics industrial park and its implication in compliance with the Montreal protocol. Environmental science & technology, 2001. 35 (16),. 3273-3279.
66. M. Seo, R. Kobayashi and H. Nagase, Immunotoxic effects of trichloroethylene and tetrachloroethylene. Journal of Health Science, 2011. 57 (6),. 488-496.
67. W.-T. Tsai, Fate of chloromethanes in the atmospheric environment: implications for human health, ozone formation and depletion, and global warming impacts. Toxics, 2017. 5 (4), 23.
68. S. Montzka, S. Reimann, S. O′Doherty, A. Engel, K. Krüger and W. Sturges, Ozone-depleting substances (ODSs) and related chemicals. 2011, World Meteorological Organization.
69. A. Dorsey and R. S. DeWoskin, Toxicological profile for chloromethane. 1998.
70. National Oceanic and Atmospheric Administration, CH3Cl (Methyl Chloride or Chloromethane); Available from: https://gml.noaa.gov/hats/gases/CH3Cl.html. [14 Jul.2022]
71. National Oceanic and Atmospheric Administration, CH2Cl2 (Dichloromethane); Available from: https://gml.noaa.gov/hats/gases/CH2Cl2.html. [14 Jul.2022]
72. 自由時報,臭氧層破壞新威脅科學家點名二氯甲烷;來自:https://news.ltn.com.tw/news/world/breakingnews/1236335. [17 Feb.2015]
73. D. E. Oram, M. J. Ashfold, J. C. Laube, L. J. Gooch, S. Humphrey, W. T. Sturges, E. L. Elvidge, G. L. Forster, N. R. P. Harris, M. I. Mead, A. A. Samah, S. M. Phang, C.-F. O.-Yang, N. H. Lin, J. L. Wang, A. K. Baker, C. A. M. Brenninkmeijer, and D. Sherry, A growing threat to the ozone layer from short-lived anthropogenic chlorocarbons. Atmospheric Chemistry and Physics, 2017. 17 (19), 11929-11941.
74. U. N. E. P. O. Secretariat, Handbook for the Montreal protocol on substances that deplete the ozone layer. 2006: UNEP/Earthprint.
75. American Association for the Advancement of Science, Ozone-depleting chemical still seeping into atmosphere. Carbon tetrachloride is not vanishing as fast as it should be. 2014; Available from: https://www.science.org/content/article/ozone-depleting-chemical-still-seeping-atmosphere.
76. 行政院環境保護署,臭氧層保護相關法規,2019。
77. National Oceanic and Atmospheric Administration, Carbon Tetrachloride (CCl4). 2022; Available from: https://gml.noaa.gov/hats/combined/CCl4.html. [14 Jul.2022]
78. G. Wypych, Handbook of UV degradation and stabilization. 2020: Elsevier.
79. Agency for Toxic Substances and Disease Registry, ToxFAQs™ for 1,3-Butadiene. 2012.
80. L. N. Plummer and E. Busenberg, Chlorofluorocarbons, in Environmental tracers in subsurface hydrology. 2000, Springer. 441-478.
81. J. L. Wang, W. C. Lin and T. Y. Chen, Using atmospheric CCl4 as an internal reference in gas standard preparation. Atmospheric Environment, 2000. 34 (25), 4393-4398.
82. National Oceanic and Atmospheric Administration, Chlorofluorocarbon-12 (CCl2F2) - Combined Data Set; Available from: https://gml.noaa.gov/hats/combined/CFC12.html. [14 Jul.2022]
83. National Oceanic and Atmospheric Administration, Chlorofluorocarbon-11 (CCl3F) - Combined Data Set; Available from: https://gml.noaa.gov/hats/combined/CFC11.html. [14 Jul.2022]
指導教授 王家麟(Jia-Lin Wang) 審核日期 2022-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明