博碩士論文 109324015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:52.14.209.100
姓名 陳昱銘(Yu-Ming Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 氟哌啶醇與分散藍14於超臨界二氧化碳中之溶解度
相關論文
★ 預測固體溶質於超臨界二氧化碳添加共溶劑系統之溶解度★ 碳酸二乙酯與低碳醇類於常壓下之汽液相平衡
★ 探討Peng-Robinson+COSMOSAC狀態方程式中分散項與溫度之關係★ 探討分散項之溫度函數與體積參數之修正對PR+COSMOSAC於相平衡預測之影響
★ 預測有機物與二氧化碳雙成份系統之固液氣三相平衡★ 常壓下乙酸酯類之雙成份混合物汽液相平衡
★ 以第一原理計算鋰嵌入與擴散於具氧空缺之二氧化鈦結構★ 探討不同量子化學方法對PR+COSMOSAC狀態方程式應用於預測純物質及混合流體相行為之影響
★ 預測固體溶質於超臨界二氧化碳中的溶解度★ 鋯金屬有機框架材料之碳氫氣體吸附與分離預測
★ 甲基水楊酸異構物於超臨界二氧化碳中之溶解度量測★ 原料藥與水楊酸衍生物於超臨界二氧化碳中之溶解度量測
★ 以第一原理計算探討鋰於鈮摻雜二氧化鈦之嵌入與擴散路徑★ 探討COSMO-SAC-dsp模型中分散項和組合項之效應
★ 第一原理計算探討藍磷烯異質結構用於鋰離子電池負極材料之特性★ 以第一原理計算探討鋰離子於鐵摻雜磷酸鋰鈷之塊材與表面附近之擴散路徑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-6-30以後開放)
摘要(中) 本研究利用一套通過可靠性驗證之高壓半流動式裝置,測量抗精神病藥物氟哌啶醇在溫度313.2 K、323.2 K、333.2 K和壓力12 MPa~22 MPa的條件下於超臨界二氧化碳中之溶解度。除此之外,本研究建構一套新的高壓半流動式裝置用於測量在更高的溫度條件下溶質於超臨界二氧化碳中之溶解度,透過測量水楊酸在溫度308.2 K、328.2 K與壓力15、20 MPa的條件下於超臨界二氧化碳中的溶解度,並與數組已公開發表於文獻的溶解度數據相互對照,皆得到良好的重合結果,足以驗證此新建立裝置和溶解度測量手法的可靠性。本研究亦利用此新建立之半流動式裝置,測量分散性染料,分散藍14在溫度353.2 K、373.2 K、393.2 K和壓力15 MPa~25 MPa條件下於超臨界二氧化碳中之溶解度。在每組溫度和壓力條件下,均進行三次獨立溶解度測量,並且氟哌啶醇與分散藍14在每組的溶解度測量,其變異係數分別維持在5%與8%以內。其中,氟哌啶醇與分散藍14的溶解度莫耳分率分別介於3.42×10-7至1.42×10-5與3.99×10-7至7.72×10-6之間,並且其溶解度的不準確度分別為5.92%和6.81%。本研究採用四種半經驗式模型:Chrastil模型、Mendez-Santiago and Teja(MST)模型、Kumar and Johnston(K-J)模型以及Bartle模型,針對新測量之溶解度進行數據的迴歸和自身一致性檢測。氟哌啶醇與分散藍14透過此四種半經驗式模型,迴歸結果之平均相對誤差分別介於3.24%至4.21%與7.25%至15.65%,並且在自身一致性檢測呈現良好的線性關係,藉以驗證本研究測量之溶解度具有足夠的可靠性。
摘要(英) The solubility of antipsychotic drug haloperidol in supercritical carbon dioxide (ScCO2) was measured at 313.2 K, 323.2 K, and 333.2 K within a pressure range of 12 MPa ~ 22 MPa by using a reliable semi-flow high-pressure apparatus. In this study, another new semi-flow high-pressure apparatus was constructed for measuring the solubility of solid solutes in ScCO2 at higher temperatures. The solubility of salicylic acid in ScCO2 was measured at 308.2 K and 328.2 K under pressure 15 MPa and 20 MPa to verify the reliability of the new apparatus and measurement procedure. The experimental solubility of salicylic acid obtained from this new apparatus satisfactorily agrees with those reported in literature. The new apparatus was used to measure the solubility of disperse blue 14 in ScCO2 at 353.2 K, 373.2 K, 393.2 K within a pressure range of 15 MPa ~ 25 MPa. The solubility at a specific temperature and pressure was measured three times independently. The coefficient of variation of haloperidol and disperse blue 14 of three repeated measurements were lower than 5% and 8%, respectively. It can be found that the solubility of haloperidol and disperse blue 14 are within the range of 3.42×10-7 to 1.42×10-5 and 3.99×10-7 to 7.72×10-6 accompanied value of uncertainty 5.92% and 6.81%, respectively. Four semi-empirical models: Chrastil model, Mendez-Santiago and Teja (MST), Kumar and Johnston (K-J) model and Bartle model were employed to correlate the solubility data and test the self-consistency of newly measured solubility. The average absolute relative deviation (AARD) of haloperidol and disperse blue 14 are 3.24% ~ 4.21% and 7.25% ~ 15.65%, respectively. The results of the self-consistency tests show an excellent linear relationship and confirm the reliability of the newly measured solubility in this study.
關鍵字(中) ★ 超臨界二氧化碳
★ 溶解度
★ 氟哌啶醇
★ 分散藍14
★ 實驗測量
關鍵字(英) ★ Supercritical carbon dioxide
★ Solubility
★ Haloperidol
★ Disperse blue 14
★ Experimental measurement
論文目次 摘要.......................................................i
Abstract..................................................ii
誌謝.....................................................iii
目錄......................................................iv
圖目錄....................................................vi
表目錄..................................................viii
第一章 緒論................................................1
1-1 超臨界流體性質之發現與簡介...............................1
1-2 超臨界流體之應用........................................4
1-3 固體溶質於超臨界二氧化碳中溶解度之重要性..................8
1-4 研究動機..............................................10
第二章 固體溶質於超臨界二氧化碳之溶解度測量..................11
2-1 實驗藥品..............................................11
2-2 實驗裝置..............................................15
2-3 半流動式實驗裝置之操作與流程............................20
2-4 新建構實驗裝置.........................................22
2-5 新建構半流動式實驗裝置之操作與流程.......................27
2-6 樣品分析與檢量線建立...................................29
第三章 數據處理與模型迴歸...................................34
3-1數據處理與溶解度計算....................................34
3-2 溶解度數據迴歸.........................................40
3-3 半經驗式模型...........................................41
(1) Chrastil model....................................41
(2) Méndez-Santiago and Teja model(MST model).......42
(3) Kumar and Johnston model(K-J model).............42
(4) Bartle model......................................42
3-4 溶解度數據之自身一致性檢測..............................44
第四章 結果與討論..........................................45
4-1 超臨界二氧化碳流速對於固體溶質溶解度之影響...............45
4-2 新建構半流動式裝置之可靠性實驗數據.......................48
4-3 固體溶質於超臨界二氧化碳中之溶解度數據...................52
4-4 固體溶質溶解度之半經驗式模型迴歸........................60
4-5 固體溶質溶解度之自身一致性檢測..........................67
第五章 結論...............................................72
參考文獻..................................................73
附錄一....................................................79
附錄二....................................................81
參考文獻 1. Berche, B.; Henkel, M.; Kenna, R., Critical phenomena: 150 years since Cagniard de la Tour. arXiv preprint arXiv:0905.1886 2009.
2. Subra, P.; Jestin, P., Powders elaboration in supercritical media: comparison with conventional routes. Powder technology 1999, 103 (1), 2-9.
3. Jia, J.-f.; Zabihi, F.; Gao, Y.-h.; Zhao, Y.-p., Solubility of glycyrrhizin in supercritical carbon dioxide with and without cosolvent. Journal of Chemical & Engineering Data 2015, 60 (6), 1744-1749.
4. Gupta, R. B.; Shim, J.-J., Solubility in supercritical carbon dioxide. CRC press: 2006.
5. DeSimone, J. M.; Tumas, W., Green chemistry using liquid and supercritical carbon dioxide. Oxford University Press: 2003.
6. Feng, Y.; Meier, D., Supercritical carbon dioxide extraction of fast pyrolysis oil from softwood. The Journal of Supercritical Fluids 2017, 128, 6-17.
7. Knez, Ž.; Pantić, M.; Cör, D.; Novak, Z.; Hrnčič, M. K., Are supercritical fluids solvents for the future? Chemical Engineering and Processing-Process Intensification 2019, 141, 107532.
8. Kostrzewa, D.; Dobrzyńska-Inger, A.; Turczyn, A., Experimental data and modelling of the solubility of high-carotenoid paprika extract in supercritical carbon dioxide. Molecules 2019, 24 (22), 4174.
9. Natolino, A.; Da Porto, C., Supercritical carbon dioxide extraction of pomegranate (Punica granatum L.) seed oil: Kinetic modelling and solubility evaluation. The Journal of Supercritical Fluids 2019, 151, 30-39.
10. dos Santos, L. C.; Bitencourt, R. G.; dos Santos, P.; e Rosa, P. d. T. V.; Martinez, J., Solubility of passion fruit (Passiflora edulis Sims) seed oil in supercritical CO2. Fluid Phase Equilibria 2019, 493, 174-180.
11. Kayathi, A.; Chakrabarti, P. P.; Bonfim-Rocha, L.; Cardozo-Filho, L.; Jegatheesan, V., Selective extraction of polar lipids of mango kernel using Supercritical Carbon dioxide (SC–CO2) extraction: Process optimization of extract yield/phosphorous content and economic evaluation. Chemosphere 2020, 260, 127639.
12. Qamar, S.; Torres, Y. J.; Parekh, H. S.; Falconer, J. R., Extraction of medicinal cannabinoids through supercritical carbon dioxide technologies: A review. Journal of Chromatography B 2021, 1167, 122581.
13. Pinto, R. H. H.; Menezes, E. G. O.; Freitas, L. C.; Andrade, E. H. d. A.; Ribeiro-Costa, R. M.; Silva Júnior, J. O. C.; Carvalho Junior, R. N., Supercritical CO2 extraction of uxi (Endopleura uchi) oil: Global yield isotherms, fatty acid profile, functional quality and thermal stability. The Journal of Supercritical Fluids 2020, 165, 104932.
14. Ishak, I.; Hussain, N.; Coorey, R.; Ghani, M. A., Optimization and characterization of chia seed (Salvia hispanica L.) oil extraction using supercritical carbon dioxide. Journal of CO2 Utilization 2021, 45, 101430.
15. Bezerra, F. W. F.; Salazar, M. d. L. A. R.; Freitas, L. C.; de Oliveira, M. S.; dos Santos, I. R. C.; Dias, M. N. C.; Gomes-Leal, W.; Andrade, E. H. d. A.; Ferreira, G. C.; Carvalho, R. N. d., Chemical composition, antioxidant activity, anti-inflammatory and neuroprotective effect of Croton matourensis Aubl. Leaves extracts obtained by supercritical CO2. The Journal of Supercritical Fluids 2020, 165, 104992.
16. Jingfu, J.; Qinglong, S.; Chengyuan, Q.; yue, Z.; dan, Z.; Fahuan, G., Modelling of continuous supercritical fluids extraction to recover fatty and volatile oil from Traditional Chinese Medicinal materials. The Journal of Supercritical Fluids 2022, 180, 105456.
17. Vardanega, R.; Nogueira, G. C.; Nascimento, C. D.; Faria-Machado, A. F.; Meireles, M. A. A., Selective extraction of bioactive compounds from annatto seeds by sequential supercritical CO2 process. The Journal of Supercritical Fluids 2019, 150, 122-127.
18. Sun, Q.; Shi, J.; Scanlon, M.; Xue, S. J.; Lu, J., Optimization of supercritical-CO2 process for extraction of tocopherol-rich oil from canola seeds. Lwt 2021, 145, 111435.
19. Mahato, R. I.; Narang, A. S., Pharmaceutical dosage forms and drug delivery. CRC Press: 2017.
20. Huang, L.-F.; Tong, W.-Q. T., Impact of solid state properties on developability assessment of drug candidates. Advanced drug delivery reviews 2004, 56 (3), 321-334.
21. Wang, B.-C.; Su, C.-S., Solid solubility measurement of ipriflavone in supercritical carbon dioxide and microparticle production through the rapid expansion of supercritical solutions process. Journal of CO2 Utilization 2020, 37, 285-294.
22. Fang, C.-H.; Chen, P.-H.; Chen, Y.-P.; Tang, M., Micronization of Three Active Pharmaceutical Ingredients Using the Rapid Expansion of Supercritical Solution Technology. Chemical Engineering & Technology 2020, 43 (6), 1186-1193.
23. Yang, T.-M.; Li, J.-S.; Yeh, T.-F.; Su, C.-S., Solid Solubilities of Sulfonamides and Use of Rapid Expansion of Supercritical Solutions for Microparticle Production. Chemical Engineering & Technology 2020, 43 (6), 1115-1123.
24. Cuadra, I. A.; Zahran, F.; Martín, D.; Cabañas, A.; Pando, C., Preparation of 5-fluorouracil microparticles and 5-fluorouracil/poly(l-lactide) composites by a supercritical CO2 antisolvent process. The Journal of Supercritical Fluids 2019, 143, 64-71.
25. Remiro, P. d. F. R.; Rosa, P. d. T. V. e.; Moraes, Â. M., Effect of process variables on imiquimod micronization using a supercritical antisolvent (SAS) precipitation technique. The Journal of Supercritical Fluids 2022, 181, 105500.
26. Yan, T.; Tao, Y.; Wang, X.; Lv, C.; Miao, G.; Wang, S.; Wang, D.; Wang, Z., Preparation, characterization and evaluation of the antioxidant capacity and antitumor activity of myricetin microparticles formated by supercritical antisolvent technology. The Journal of Supercritical Fluids 2021, 175, 105290.
27. Yeo, S.-D.; Kiran, E., Formation of polymer particles with supercritical fluids: A review. The Journal of Supercritical Fluids 2005, 34 (3), 287-308.
28. Bethune, S. J.; Schultheiss, N.; Henck, J.-O., Improving the poor aqueous solubility of nutraceutical compound pterostilbene through cocrystal formation. Crystal growth & design 2011, 11 (7), 2817-2823.
29. Padrela, L.; Rodrigues, M. A.; Tiago, J.; Velaga, S. P.; Matos, H. A.; de Azevedo, E. G., Tuning physicochemical properties of theophylline by cocrystallization using the supercritical fluid enhanced atomization technique. The Journal of Supercritical Fluids 2014, 86, 129-136.
30. Ribas, M. M.; Aguiar, G. P. S.; Muller, L. G.; Siebel, A. M.; Lanza, M.; Oliveira, J. V., Curcumin-nicotinamide cocrystallization with supercritical solvent (CSS): Synthesis, characterization and in vivo antinociceptive and anti-inflammatory activities. Industrial Crops and Products 2019, 139, 111537.
31. Dal Magro, C.; dos Santos, A. E.; Ribas, M. M.; Aguiar, G. P.; Volfe, C. R.; Lopes, M. L.; Siebel, A. M.; Müller, L. G.; Bortoluzzi, A. J.; Lanza, M., Production of curcumin-resveratrol cocrystal using cocrystallization with supercritical solvent. The Journal of Supercritical Fluids 2021, 171, 105190.
32. Gong, D.; Jing, X.; Zhao, Y.; Zheng, H.; Zheng, L., One-step supercritical CO2 color matching of polyester with dye mixtures. Journal of CO2 Utilization 2021, 44, 101396.
33. Penthala, R.; Heo, G.; Kim, H.; Lee, I. Y.; Ko, E. H.; Son, Y.-A., Synthesis of azo and anthraquinone dyes and dyeing of nylon-6, 6 in supercritical carbon dioxide. Journal of CO2 Utilization 2020, 38, 49-58.
34. Saus, W.; Knittel, D.; Schollmeyer, E., Dyeing of textiles in supercritical carbon dioxide. Textile Research Journal 1993, 63 (3), 135-142.
35. Guzel, B.; Akgerman, A., Mordant dyeing of wool by supercritical processing. The Journal of Supercritical Fluids 2000, 18 (3), 247-252.
36. Long, J.-J.; Ma, Y.-Q.; Zhao, J.-P., Investigations on the level dyeing of fabrics in supercritical carbon dioxide. The Journal of Supercritical Fluids 2011, 57 (1), 80-86.
37. Cuadra, I. A.; Cabañas, A.; Cheda, J. A.; Türk, M.; Pando, C., Cocrystallization of the anticancer drug 5-fluorouracil and coformers urea, thiourea or pyrazinamide using supercritical CO2 as an antisolvent (SAS) and as a solvent (CSS). The Journal of Supercritical Fluids 2020, 160, 104813.
38. Penthala, R.; Kumar, R. S.; Heo, G.; Kim, H.; Lee, I. Y.; Ko, E. H.; Son, Y.-A., Synthesis and efficient dyeing of anthraquinone derivatives on polyester fabric with supercritical carbon dioxide. Dyes and Pigments 2019, 166, 330-339.
39. Abate, M. T.; Seipel, S.; Yu, J.; Viková, M.; Vik, M.; Ferri, A.; Guan, J.; Chen, G.; Nierstrasz, V., Supercritical CO2 dyeing of polyester fabric with photochromic dyes to fabricate UV sensing smart textiles. Dyes and Pigments 2020, 183, 108671.
40. Abate, M. T.; Zhou, Y.; Guan, J.; Chen, G.; Ferri, A.; Nierstrasz, V., Colouration and bio-activation of polyester fabric with curcumin in supercritical CO2: Part II – Effect of dye concentration on the colour and functional properties. The Journal of Supercritical Fluids 2020, 157, 104703.
41. Abate, M. T.; Ferri, A.; Guan, J.; Chen, G.; Ferreira, J. A.; Nierstrasz, V., Single-step disperse dyeing and antimicrobial functionalization of polyester fabric with chitosan and derivative in supercritical carbon dioxide. The Journal of Supercritical Fluids 2019, 147, 231-240.
42. Abou Elmaaty, T.; Elsisi, H.; Negm, E.; Ayad, S.; Sofan, M., Novel nano silica assisted synthesis of azo pyrazole for the sustainable dyeing and antimicrobial finishing of cotton fabrics in supercritical carbon dioxide. The Journal of Supercritical Fluids 2022, 179, 105354.
43. Kong, X.-j.; Huang, T.-t.; Cui, H.-s.; Yang, D.-f.; Lin, J.-x., Multicomponent system of trichromatic disperse dye solubility in supercritical carbon dioxide. Journal of CO2 Utilization 2019, 33, 1-11.
44. Kasim, N. A.; Whitehouse, M.; Ramachandran, C.; Bermejo, M.; Lennernäs, H.; Hussain, A. S.; Junginger, H. E.; Stavchansky, S. A.; Midha, K. K.; Shah, V. P.; Amidon, G. L., Molecular Properties of WHO Essential Drugs and Provisional Biopharmaceutical Classification. Molecular Pharmaceutics 2004, 1 (1), 85-96.
45. Custodio, J. M.; Wu, C.-Y.; Benet, L. Z., Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption. Advanced Drug Delivery Reviews 2008, 60 (6), 717-733.
46. Wang, S.-W.; Chen, J.-Z.; Hsieh, C.-M., Measurement and Correlation of Solubility of Methylsalicylic Acid Isomers in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2021, 66 (1), 280-289.
47. Span, R.; Wagner, W., A new equation of state for carbon dioxide covering the fluid region from the triple‐point temperature to 1100 K at pressures up to 800 MPa. Journal of physical and chemical reference data 1996, 25 (6), 1509-1596.
48. Jcgm, J., Evaluation of measurement data—Guide to the expression of uncertainty in measurement. Int. Organ. Stand. Geneva ISBN 2008, 50, 134.
49. Taylor, B. N.; Kuyatt, C. E., Guidelines for evaluating and expressing the uncertainty of NIST measurement results. US Department of Commerce, Technology Administration, National Institute of …: 1994; Vol. 1297.
50. Ellison, S. L.; Williams, A., Quantifying uncertainty in analytical measurement. 2012.
51. Kragten, J., Tutorial review. Calculating standard deviations and confidence intervals with a universally applicable spreadsheet technique. Analyst 1994, 119 (10), 2161-2165.
52. Vetter, T. W. In Quantifying measurement uncertainty in analytical chemistry–A simplified practical approach, Measurement Science Conference, 2001.
53. Chrastil, J., Solubility of solids and liquids in supercritical gases. The Journal of Physical Chemistry 1982, 86 (15), 3016-3021.
54. Méndez-Santiago, J.; Teja, A. S., The solubility of solids in supercritical fluids. Fluid Phase Equilibria 1999, 158, 501-510.
55. Kumar, S. K.; Johnston, K. P., Modelling the solubility of solids in supercritical fluids with density as the independent variable. The Journal of Supercritical Fluids 1988, 1 (1), 15-22.
56. Bartle, K.; Clifford, A.; Jafar, S.; Shilstone, G., Solubilities of solids and liquids of low volatility in supercritical carbon dioxide. Journal of Physical and Chemical Reference Data 1991, 20 (4), 713-756.
57. Tsai, C.-C.; Lin, H.-m.; Lee, M.-J., Phase equilibrium and micronization for flufenamic acid with supercritical carbon dioxide. Journal of the Taiwan Institute of Chemical Engineers 2017, 72, 19-28.
58. Gurdial, G. S.; Foster, N. R., Solubility of o-hydroxybenzoic acid in supercritical carbon dioxide. Industrial & engineering chemistry research 1991, 30 (3), 575-580.
59. Ke, J.; Mao, C.; Zhong, M.; Han, B.; Yan, H., Solubilities of salicylic acid in supercritical carbon dioxide with ethanol cosolvent. The Journal of Supercritical Fluids 1996, 9 (2), 82-87.
60. Lucien, F. P.; Foster, N. R., Influence of matrix composition on the solubility of hydroxybenzoic acid isomers in supercritical carbon dioxide. Industrial & engineering chemistry research 1996, 35 (12), 4686-4699.
61. Stassi, A.; Bettini, R.; Gazzaniga, A.; Giordano, F.; Schiraldi, A., Assessment of solubility of ketoprofen and vanillic acid in supercritical CO2 under dynamic conditions. Journal of Chemical & Engineering Data 2000, 45 (2), 161-165.
62. Bristow, S.; Shekunov, B. Y.; York, P., Solubility analysis of drug compounds in supercritical carbon dioxide using static and dynamic extraction systems. Industrial & engineering chemistry research 2001, 40 (7), 1732-1739.
63. Ravipaty, S.; Koebke, K. J.; Chesney, D. J., Polar Mixed-Solid Solute Systems in Supercritical Carbon Dioxide: Entrainer Effect and Its Influence on Solubility and Selectivity. Journal of Chemical & Engineering Data 2008, 53 (2), 415-421.
64. Manna, L.; Banchero, M., Solubility of Tolbutamide and Chlorpropamide in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2018, 63 (5), 1745-1751.
65. Ongkasin, K.; Sauceau, M.; Masmoudi, Y.; Fages, J.; Badens, E., Solubility of cefuroxime axetil in supercritical CO2: Measurement and modeling. The Journal of Supercritical Fluids 2019, 152, 104498.
66. Sodeifian, G.; Hazaveie, S. M.; Sajadian, S. A.; Saadati Ardestani, N., Determination of the Solubility of the Repaglinide Drug in Supercritical Carbon Dioxide: Experimental Data and Thermodynamic Modeling. Journal of Chemical & Engineering Data 2019, 64 (12), 5338-5348.
67. Huang, Z.; Guo, Y.-H.; Sun, G.-B.; Chiew, Y. C.; Kawi, S., Representing dyestuff solubility in supercritical carbon dioxide with several density-based correlations. Fluid Phase Equilibria 2005, 236 (1), 136-145.
指導教授 謝介銘(Chieh-Ming Hsieh) 審核日期 2022-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明