參考文獻 |
[1] Naoki Nitta, Feixiang Wu, Jung Tae Lee, Gleb Yushin, “Li-ion battery materials: present and future.”, matreialstoday, vol. 18, pp.252-264, 2015.
[2] H. Vikström, et al. “Lithium availability and future production outlooks.”, Applied Energy, vol. 110, pp. 252-266, 2013.
[3] David L. Chandler : Study reveals plunge in lithium-ion battery costs. 2021年3月23日,取自https://news.mit.edu/2021/lithium-ion-battery-costs-0323.
[4] Marco Stecca, et al. “A Comprehensive Review of the Integration of Battery Energy Storage Systems Into Distribution Networks.”, Institute of Electrical and Electronics Engineers, pp.46-65, 2020.
[5] Micah S. Ziegler, Jessika E. Trancik, “Re-examining rates of lithium-ion battery technology improvement and cost decline. ”, Energy & Environmental Science , issue. 4, pp.1635-1651, 2021.
[6] Micah S. Ziegler, Juhyun Song, Jessika E. Trancik, “Determinants of lithium-ion battery technology cost decline.”, Energy & Environmental Science , issue 12, pp. 6074-6098, 2021.
[7] A. Weidenkaff, et al. “DeLithium-ion batteries need to be greener and more ethical.”, Nature , vol. 595, pp.7, 2021.
[8] Pratima Meshram, Abhilash Mishra, Abhilash, Rina Sahu, “Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids - A review. ”, Chemosphere , vol. 242, 125291, 2020.
[9] G.Ceder, G. Hautier, A. Jain, S.P. Ong, “Recharging Lithium Battery Research with Fi Rst-Principles Methods.”, Materials Research Society, vol. 36, pp. 185–191, 2011.
[10] Malay K. Das, Partha P. Mukherjee, K. Muralidhar, Modeling Transport Phenomena in Porous Media with Applications., Springer International Publishing., Delhi, 2018.
[11] Mizushima.K, Jones P.C, Wiseman P.J, Goodenough J.B, “LixCoO2 (0<x<-1): A New Cathode Material for Batteries of High Energy Density.”, Materials Research Bulletin, pp.783-789, 1980.
[12] Melisaris, et al. “LIQUID, RADIATION-CURABLE COMPOSITION, ESPECIALLY FOR PRODUCING FLEXBLE CURED ARTICLES BY STEREOLITHOGRAPHY.”, Patent Application Publication , US 2002/0177073 A1, 2002.
[13] James V. Crivello, “UV and electron beam-induced cationic polymerization.”, ELSEVIER ,vol. 151, pp.8-12, 1999.
[14] James Murray : Is the Nobel Prize-winning lithium-ion battery really having a positive impact on the environment ? 2019年10月14號。取自 https://www.nsenergybusiness.com/features/lithium-ion-battery-environmental-impact/.
[15] B. Dunn, H. Kamath, J.-.M. Tarascon, “Electrical Energy Storagefor the Grid: A Battery of Choices.”, SCIENCE, vol. 334, pp.928-935, 2011.
[16] Mohammad Mohsen Loghavi, Saeed Bahadorikhalili, Najme Lari, Mohammad Hadi Moghim, Mohsen Babaiee and Rahim Eqra, “The Effect of Crystalline Microstructure of PVDF Binder on Mechanical and Electrochemical Performance of Lithium-Ion Batteries Cathode.”, DE Gruyter , vol. 234, Issue 3, 2020.
[17] Ramin Amin-Sanayei, Wensheng He, Advanced Fluoride-Based Materials for Energy Conversion, Elsevier., PA, 2015.
[18] Patteth S. Salini, Sumol V. Gopinadh, Athira Kalpakasseri, Bibin John,* and Mercy Thelakkattu Devassy, “Toward Greener and Sustainable Li-Ion Cells: An Overview of Aqueous-Based Binder Systems.”, ACS Sustainable Chem. Eng. , pp.4003-4025, 2020.
[19] Ye Shi, Xingyi Zhou, Guihua Yu, “Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries.”, Acc. Chem. Res., pp. 2642–2652, 2017.
[20] A.Guerfi, M.Kanekob, M.Petitclerc, M.Mori, K.Zaghib, “LiFePO4 water-soluble binder electrode for Li-ion batteries.”, Journal of Power Sources , vol. 162, Issue 2, pp.1047-1052, 2007
[21] Zhongli Wang, Nicolas Dupré, Anne-Claire, Gaillot, Bernard Lestriez, Jean-Frédéric Martin, Lise Daniel, Sébastien Patoux, Dominique Guyomard, “CMC as a binder in LiNi0.4Mn1.6O4 5 V cathodes and their electrochemical performance for Li-ion batteries.”, Electrochimica Acta , vol. 62, pp.77-83, 2012
[22] Rui Wang, Lili Feng, Wenrong Yang, Yinyin Zhang, Yanli Zhang, Wei Bai, Bo Liu, Wei Zhang, Yongming Chuan, Ziguang Zheng, Hongjin Guan, “Effect of Different Binders on the Electrochemical Performance of Metal Oxide Anode for Lithium-Ion Batteries.”, Nanoscale Research Letters , vol. 12, article number. 575, 2017.
[23] Shiyan Gao, Yuefeng Su, Liying Bao, Ning Li, Lai Chen, Yu Zheng,
Jun Tian, Jian Li, Shi Chen, Feng Wu, “High-performance LiFePO4/C electrode with polytetrafluoroethylene as an aqueous-based binder.”, Journal of Power Sources , vol. 298, pp.292-298, 2015.
[24] Herman F.Mark, “Enocyclopedia of polymer science and technology.”, Wiley Online Library , vol. 10, 2004.
[25] Manmeet Kaur, A. K. Srivastava, “PHOTOPOLYMERIZATION: A REVIEW.”, Journal of Macromolecular Science , vol. 42, pp.481-512, 2002.
[26] Katharina Hunger, Laura Buschhaus, Nadine Schmeling, Claudia Staudt, Anna Pfeifera, Karl Kleinermanns, “Characterization of maleimide dimers in photo-cross-linked copolyimide films.”, Phys. Chem. Chem. Phys., issue. 13 , pp.4538-4547, 2012.
[27] Yuanmei Cao, Xiaofeng Ren, Hamideh Shokouhi Mehr, Mark D.Soucek, “UV-Curable bismaleimides part I: Synthesis and photo-cure kinetics.”, Progress in Organic Coatings , vol. 100, pp.118-128, 2016.
[28] Yuwon Park, Sueun Lee, Si-Hoon Kim, Bo Yun Jang, Joon Soo Kim, Seung M. Oh, Ju-Young Kim, Nam-Soon Choi, Kyu Tae Lee, Byeong-Su Kim, “A photo-cross-linkable polymeric binder for silicon anodes in lithium ion batteries.”, RSC Adv , Issue. 31, pp.12625–12630, 2013.
[29] N. L. Hamidah, F. M. Wang, G. Nugroho “The Understanding of Solid Electrolyte Interface (SEI) Formation and Mechanism as the Effect of Flouro‐o-Phenylenedimaleimaide (F‐MI) Additive on Lithium‐ion Battery.”, Surf Interface Anal., vol. 51, pp. 345–352, 2018.
[30] L. Wang, B. W. Eichhorn, “Compositions and Formation Mechanisms of Solid-Electrolyte Interphase on Microporous Carbon/Sulfur Cathodes.”, Chem. Mater., vol. 32,pp. 3765−3775, 2020.
[31] P. Verma, P. Maire, P. Novak, “A Review of the Features and Analyses of the Solid Electrolyte Interphase in Li-Ion Batteries.”, Electrochimica Acta, vol. 55, pp. 6332–6341, 2010.
[32] 陳佑頎;吳昱賢;張家欽, “鋰離子電解質-鋰離子傳遞的橋樑”, 科學發展, 第564期, pp. 16-20, 2019.
[33] J. B. Goodenough, Y. Kim, “Challenges for Rechargeable Li Batteries.”, Chem. Mater., vol. 22, pp. 587–603, 2010.
[34] V. A. Agubra, J. W. Fergus, “The Formation and Stability of the Solid Electrolyte Interface on the Graphite Anode.”, Journal of Power Sources, vol. 268, pp. 153–162, 2014.
[35] Paul G. Kitz, Matthew J. Lacey, Petr Nov´ak, Erik J. Berg, “Operando investigation of the solid electrolyte interphase mechanical and transport properties formed from vinylene carbonate and fluoroethylene carbonate.”, Journal of Power Sources., vol. 477, 228567, 2020.
[36] B. Zhang, M. Metzger, S. Solchenbach, M. Payne, S. Meini, H.A. Gasteiger, A. Garsuch, B.L. Lucht, “Role of 1,3-propane sultone and vinylene carbonate in solid electrolyte interface formation and gas generation.”, J. Phys. Chem. C , vol. 119, pp.11337-11348, 2015.
[37] M. Nie, J. Demeaux, B.T. Young, D.R. Heskett, Y. Chen, A. Bose, J.C. Woicik, B.L. Lucht, “Effect of vinylene carbonate and fluoroethylene carbonate on SEI formation on graphitic anodes in Li-ion batteries.”, J. Electrochem. Soc., vol.162, pp. A7008-A7014, 2015.
[38] J.C. Burns, R. Petibon, K.J. Nelson, N.N. Sinha, A. Kassam, B.M. Way, J.R. Dahn, “Studies of the effect of varying vinylene carbonate (VC) content in lithium ion cells on cycling performance and cell impedance.”, J. Electrochem. Soc., vol. 160, pp.A1668-A1674, 2013.
[39] A.L. Michan, B.S. Parimalam, M. Leskes, R.N. Kerber, T. Yoon, C.P. Grey, B.L. Lucht, “Fluoroethylene carbonate and vinylene carbonate reduction: understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation.”, Chem. Mater., vol. 28, pp.8149-8159, 2016.
[40] Wang X, Zhang M, Alvarado J, Wang S, Sina M, Lu B, Bouwe J, Xu W, Xiao J, Zhang J-G, “New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM.”, Nano Lett., vol. 17, pp.7606-7612, 2017.
[41] Jiao S, Ren X, Cao R, Engelhard M.H, Liu Y, Hu D, Mei D, Zheng J, Zhao W, Li Q, “Stable cycling of high-voltage lithium metal batteries in ether electrolytes.”, Nat. Energy , vol. 3, pp.739-746, 2018.
[42] Li J, Li W, You Y, and Manthiram A, “Extending the service life of high-Ni layered oxides by tuning the electrodeelectrolyte interphase.”, Adv. Energy Mater., vol. 8, 1801957, 2018.
[43] Cabana J, Kwon B.J, Hu L, “Mechanisms of degradation and strategies for the stabilization of cathode-electrolyte interfaces in Li-ion batteries.”, Acc. Chem. Res. , vol. 51, pp.299-308, 2018.
[44] Zewen Zhang, Jinlong Yang, William Huang, Hansen Wang, Weijiang Zhou, Yanbin Li, Yuzhang Li, Jinwei Xu, Wenxiao Huang, Wah Chiu, Yi Cui, “Cathode-Electrolyte Interphase in Lithium Batteries Revealed by Cryogenic Electron Microscopy.”, Sciencedirect matter , vol. 4, pp.302-312, 2021.
[45] J. Kasnatscheew, M. Evertz, B. Streipert, R. Wagner, R. Klöpsch, B. Vortmann, H. Hahn, S. Nowak, M. Amereller, A.-C. Gentschev, P. Lamp, M. Winter, “The truth about the 1st cycle Coulombic efficiency of LiNi1/3Co1/3Mn1/3O2 (NCM) cathodes.”, Phys. Chem. Chem. Phys., vol. 18, pp.3956-3965, 2016.
[46] Choi J, Manthiram A, “Investigation of the Irreversible Capacity Loss in the Layered LiNi1/3Mn1/3Co1/3O2 Cathodes.”, Electrochem. Solid-State Lett., vol. 8, C102-105, 2005.
[47] Zhang S.S, Xu K, Jow T.R, “Formation of Solid Electrolyte Interface in Lithium Nickel Mixed Oxide Electrodes during the First Cycling.”, Electrochem. Solid-State Lett., vol. 5, A92-94, 2002.
[48] Lee K.-K, Kim K.-B,“Electrochemical and Structural Characterization of LiNi1–2yCoyO2 (0 ≤ y ≤ 0.2) Positive Electrodes during Initial Cycling.”, J. Electrochem. Soc., vol. 147, pp. 1709– 1717, 2000.
[49] Arai H, Okada S, Sakurai Y, Yamaki J.-I, “Reversibility of LiNiO2 cathode.”, Solid State Ionics., vol. 95, pp.275-282, 1997.
[50] Hui Zhou, Fengxia Xin, Ben Pei, M. Stanley Whittingham,“What Limits the Capacity of Layered Oxide Cathodes in Lithium Batteries? ”, ACS Energy Lett. , vol. 4, pp.1902-1906, 2019.
[51] MoneyDJ : 車用加持,鋰電池關鍵材料需求夯!25 年估跳增逾 1 倍。2021年06月18日。取自https://technews.tw/2021/06/18/lithium-battery-key-material-demand/.
[52] Bonjae Koo, Hyunjung Kim, Younghyun Cho, Prof. Kyu Tae Lee, “A Highly Cross-Linked Polymeric Binder for High-Performance Silicon Negative Electrodes in Lithium Ion Batteries.”, Angewandte Communications., vol. 51, pp.8762-8767, 2012.
[53] 江恆瑋, “提升矽陽極鋰離子電池之循環穩定性之研究,”國立臺灣師範大學化學系碩士論文, 2013.
[54] PharmacyBrighton, Cyclic Voltammogram。 2010年12月1日。取自https://www.youtube.com/watch?v=1f92vGOridg.
[55] H aitao Zhang, Deyu Wang, Cai Shen, “In-situ EC-AFM and ex-situ XPS characterization to investigate the mechanism of SEI formation in highly concentrated aqueous electrolyte for Li-ion batteries.”, Applied Surface Science., vol. 503, 145059, 2020. |