博碩士論文 109223035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:64 、訪客IP:3.23.103.9
姓名 張在焮(Tsai-Hsin Chang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 製備Fe金屬附載於碳化ZIF-67對抗生素與有機染料降解及六價鉻離子還原之催化反應
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-6-30以後開放)
摘要(中) 本論文研究為合成雙金屬有機金屬骨架材料,並將其碳化應用在催化反應上,使材料中金屬節點還原成金屬態並把有機配體碳化成氮參雜碳材以增加材料穩定度。以2-甲基咪唑與鐵和鈷的前驅物合成Fex-ZIF67,再以高溫鍛燒爐碳化成碳材Fex-CZ67,碳化後材料的穩定性得以提升,並且金屬還原後仍保有催化活性。
第一部分實驗中,針對抗生素—四環黴素與有機染料的Fenton降解反應,以調控鈷和鐵的含量達到最佳的降解效果,僅含鈷的CZ-67對四環黴素的降解需經過8.5分鐘才能反應完全,準一級反應速率常數k為42.78(min-1gcat-1);而Fe0.1-CZ67和Fe0.2-CZ67的k值分別下降至18.98與14.92。但當鐵含量上升至40%時(Fe0.4-CZ67)降解速率為最快,3.5分鐘四環黴素降解率達到94.2%,且反應率速率常數k達到79.54,這個結果歸因於鐵和鈷的協同效應,而鈷可能為主要的催化金屬,所以Fe0.1-CZ67和 Fe0.2-CZ67的鈷含量降低且鐵的含量不足以在此反應產生協同效應。
第二部分的實驗為六價鉻還原反應,CZ-67對六價鉻還原需經過135分鐘,準一級反應速率常數k為2.16;而隨著鐵的含量上升至50%(Fe0.5-CZ67)時,7.5分鐘六價鉻還原率達到99.76%,反應速率常數k上升至79.29。此結果歸因於鐵和鈷的協同效應。
摘要(英) This thesis is about to synthesize bimetallic metal-organic framework (MOF) materials and carbonized them to apply on catalytic reactions. Carbonization of MOF materials will makes metal nodes in MOF reduce to metallic states, and the organic linkers will also turn into N-doped carbon material to increase the stability of materials. Fex-ZIF67 was synthesized with 2-methylimidazole and precursors of iron and cobalt, and then carbonized into carbon material Fex-CZ67 in a high-temperature calcining furnace.
The first part of experiment is the Fenton degradation reaction of antibiotics-tetracycline and organic dyes. To adjust the content of cobalt and iron to achieve the best degradation effect, it takes 8.5min to degrade tetracycline completely by CZ-67, and the pseudo-first-order reaction rate constant k is 42.78 (min-1gcat-1); while the k values of Fe0.1-CZ67 and Fe0.2-CZ67 drop to 18.98 and 14.92, respectively. But when the iron content rises to 40 % (Fe0.4-CZ67) has the fastest degradation rate, the degradation rate of tetracycline reaches 94.2% in 3.5 minutes, and the reaction rate constant k reaches 79.54. This result is attributed to the synergistic effect of iron and cobalt, while cobalt probably the main catalytic metal, so Fe0.1-CZ67 and Fe0.2-CZ67 have reduced cobalt content and insufficient iron content to provide a synergistic effect in this reaction.
The second part of the experiment is the reduction reaction of hexavalent chromium. The reduction of hexavalent chromium by CZ-67 takes 135 minutes, and the pseudo-first-order reaction rate constant k is 2.16; when the iron content rises to 50 % (Fe0.5-CZ67) has the fastest reduction rate, the reduction rate of hexavalent chromium reached 99.76% in 7.5 minutes, and the reaction rate constant k increased to 79.29. This result is attributed to the synergistic effect of iron and cobalt.
關鍵字(中) ★ ZIF-67
★ Fenton
★ chromium reduction
關鍵字(英)
論文目次 中文摘要 i
Abstract ii
謝誌 iv
目錄 vi
圖目錄 ix
表目錄 xiii
第一章 序論 1
1-1 前言 1
1-2 研究動機及目的 1
第二章 材料與文獻回顧 5
2-1 有機金屬骨架材料 5
2-1-1 有機金屬骨架材料之介紹 5
2-1-2 類沸石咪唑骨架材料 8
2-1-3 類沸石咪唑骨架材料-67及衍生物 11
2-1-4 類沸石咪唑骨架衍生碳材-67及衍生物 13
第一部分 類沸石咪唑骨架碳化材料之抗生素的降解 16
2-2類沸石咪唑骨架碳化材料之抗生素的降解 16
2-2-1 Fenton反應機制介紹 16
2-2-2 Fenton反應與降解抗生素應用之文獻回顧 17
第二部分 類沸石咪唑骨架碳化材料之六價鉻還原 23
2-3 類沸石咪唑骨架碳化材料之六價鉻還原 23
2-3-1 金屬催化之六價鉻還原反應機制介紹 23
2-3-2 金屬催化之六價鉻還原反應文獻回顧 24
第三章 實驗方法 30
3-1 實驗藥品 30
3-2 材料合成方法 32
3-2-1 類沸石咪唑骨架材料-67(ZIF-67) 32
3-2-2 含鐵雙金屬類沸石咪唑骨架材料(Fex –ZIF67) 32
3-2-3 類沸石咪唑骨架衍生碳材-67(CZ-67) 32
3-2-4 含鐵雙金屬類沸石咪唑骨架衍生碳材(Fex –CZ67) 32
3-3 材料應用 34
3-3-1 材料對抗生素進行Fenton降解反應與回收再使用實驗 34
3-3-2 材料對有機染料進行Fenton降解反應實驗 34
3-3-3 材料對抗生素進行Fenton降解反應回收效率實驗 34
3-3-4 材料對六價鉻進行還原反應實驗 35
3-3-5 材料對六價鉻進行還原反應回收效率實驗 35
3-4 實驗設備 36
3-4-1 實驗合成設備 36
3-4-2 實驗鑑定儀器 36
3-5 材料性質鑑定 38
3-5-1 氮氣吸脫附等溫曲線(N2-Adsorption-Desorption Isotherm, BET) 38
3-5-2 大角度X光繞射儀(Wide-Angle X-Ray Diffraction, WAXRD) 44
3-5-3 熱重量分析儀(Thermogravimetric Analysis) 45
3-5-4 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 46
3-5-5 穿透式電子顯微鏡(Transmission Electron Microscope,TEM) 47
3-5-6 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 48
3-5-7 超導量子干涉磁化儀(Superconducting Quantum Interference Device,SQUID) 49
第四章 結果與討論 50
4-1 Fex-ZIF67與Fex-CZ67基本性質鑑定 50
4-1-1 大角度X光繞射圖譜(WAXRD) 50
4-1-2 掃描式電子顯微鏡影像(SEM) 52
4-1-3 穿透式電子顯微鏡影像(TEM) 54
4-1-4 熱重量分析曲線(TGA) 62
4-1-5 氮氣吸脫附等溫曲線(N2-Adsorption-Desorption Isotherm) 65
4-1-6 超導量子干涉磁化圖譜(SQUID) 69
4-1-7 X射線光電子能譜圖(XPS) 70
第一部分 雙金屬類沸石咪唑骨架碳化材料之抗生素的降解 72
4-2 Fex-CZ67催化抗生素與有機染料之Fenton降解反應 72
4-2-1 Fex-CZ67對抗生素之Fenton降解反應 73
4-2-2 Fex-CZ67對有機染料之Fenton降解反應 77
4-2-3 Fe0.4-CZ67對抗生素之Fenton降解反應回收效率 80
第二部分 雙金屬類沸石咪唑骨架碳化材料之六價鉻還原 81
4-3 Fex-CZ67催化六價鉻還原反應 81
4-3-1 Fex-CZ67催化六價鉻還原 82
4-3-2 Fe0.5-CZ67催化六價鉻還原之回收效率 85
第五章 結論 87
第六章 參考資料 88
參考文獻 1. Qian, Q.; Asinger, P.A.; Lee, M.J.; Han, G.; Rodriguez, K.M.; Lin, S.; Benedetti, F.M.; Wu, A.X.; Chi, W.S.; Smith, Z.P., MOF-Based Membranes for Gas Separations. Chem. Rev. 2020, 120, 16, 8161–8266.
2. Li, J.; Jiang, L.; Chen, S.; Kirchon, A.; Li, B.; Li, Y.; Zhou, H. C., Metal−Organic Framework Containing Planar Metal-Binding Sites: Efficiently and Cost-Effectively Enhancing the Kinetic Separation of C2H2/C2H4. J. Am. Chem. Soc. 2019, 141, 9, 3807–3811.
3. Li, H.; Li, L.; Lin, R.B.; Zhou, W.; Zhang, Z.; Xiang, S.; Chen, B., Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem. Volume 1, Issue 1, July 2019, 100006.
4. Alezi, D.; Belmabkhout, Y.; Suyentin, M.; Bhatt, P. M.; Weselinski, L. J.; Solovyeva, V.; Adil, K.; Spanopoulos, I.; Trikalitis, P. N.; Emwas, A.-H.; Eddaoudi, M., MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O2, and CO2 Storage. J. Am. Chem. Soc. 2015, 137, 41, 13308–13318.
5. Stefaniak, K.R.; Epley, C.C.; Novak, J.J.; McAndrew, M.L.; Cornell, H.D.; Zhu, J.; McDaniel, D.K.; Davis, J.L.; Allen, I.C.; Morris, A.J.; Grove, T.Z., Photo-triggered release of 5-fluorouracil from a MOF drug delivery vehicle. Chem. Commun. 2018, 54, 7617-7620.
6. Ni, W.; Zhang, L.; Zhang, H.; Zhang, C.; Jiang, K.; Cao, X., Hierarchical MOF-on-MOF Architecture for pH/GSH-Controlled Drug Delivery and Fe-Based Chemodynamic Therapy. Inorg. Chem. 2022, 61, 7, 3281–3287.
7. Chen, W.; Cai, P.; Elumalai, P.; Zhang, P.; Feng, L.; Al-Rawashdeh, M.; Madrahimov, S.T.; Zhou, H.C., Site-Isolated Azobenzene-Containing Metal−Organic Framework for Cyclopalladated Catalyzed Suzuki-Miyuara Coupling in Flow. ACS Appl. Mater. Interfaces. 2021, 13, 51849−51854.
8. Gómez-Oliveira, E. P.; Méndez, N.; Iglesias, M.; Gutiérrez-Puebla, E.; Aguirre-Díaz, L. M.; Monge, M. A., Building a Green, Robust, and Efficient Bi-MOF Heterogeneous Catalyst for the Strecker Reaction of Ketones. Inorg. Chem. 2022, 61, 19, 7523–7529.
9. Zhao, R.; Wu, Y.; Liang, Z.; Gao, L.; Xia, W.; Zhao, Y.; Zou, R., Metal–organic frameworks for solid-state electrolytes. Energy Environ. Sci. 2020, 13, 2386.
10. Yang, H.; Liu, B.; Bright, J.; Kasani, S.; Yang, J.; Zhang, X.; Wu, N., A Single-Ion Conducting UiO-66 Metal−Organic Framework Electrolyte for All-Solid-State Lithium Batteries. ACS Applied Energy Materials 2020, 3, 4, 4007-4013.
11. Chen, C.; Xiong, D.; Gu, M.; Lu, C.; Yi, F.Y.; Ma, X., MOF-Derived Bimetallic CoFe-PBA Composites as Highly Selective and Sensitive Electrochemical Sensors for Hydrogen Peroxide and Nonenzymatic Glucose in Human Serum. ACS Appl. Mater. Interfaces. 2020, 12, 35365−35374.
12. Fu, H. R.; Wu, X. X.; Ma, L. F.; Wang, F.; Zhang, J., Dual-Emission SG7@MOF Sensor via SC−SC Transformation: Enhancing the Formation of Excimer Emission and the Range and Sensitivity of Detection. ACS Appl. Mater. Interfaces 2018, 10, 21, 18012–18020.
13. Soler-Illia, G.; Sanchez, C.; Lebeau, B.; Patarin, J., Chemical Strategies of Design Textured Materials: From Microporous and Mesoporous Oxides to Nanonetworks and Hierarchichal Structures. Chem. Rev. 2002, 102, 4093−4138
14. Tomic, E. A., Thermal Stability of Coordination Polymers. J. Appl. Polym. Sci. 1965 Volume9, Issue11, 3745-3752
15. Yaghi, O. M.; Li, G.; Li, H., Selective binding and removal of guest in a microporous metal-organic framework. Nature 1995 volume 378, 703–706
16. Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M., Design and Synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402,276
17. Li, J.; Cheng, S.; Zhao, Q.; Long, P.; Dong, J., Synthesis and hydrogen-storage behavior of metal-organic framework MOF-5. Int. J. Hydrog. Energy 2009, 34, 3, 1977-1382
18. Tsivion, E.; Head-Gordon, M., Methane Storage: Molecular Mechanisms Underlying RoomTemperature Adsorption in Zn4O(BDC)3 (MOF-5). J. Phys. Chem. C 2017, 121, 22, 12091–12100
19. Rubio-Martinez, M.; Avci-Camur, C.; Thornton, A.W.; Imaz, I.; Maspoch, D.; Hill, M. R., New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 2017, 46, 3453
20. Feng, L.; Wang, K. Y.; Day, G.S.; Ryder, M. R.; Zhou, H. C., Destruction of Metal-Organic Framework: Positive and Negative Aspects of Stability and Lability. Chem. Rev. 2020, 120, 23, 13087–13133
21. Wang, J. S.; Jin, F. Z.; Ma, H. C.; Li, X. B.; Liu, M. Y.; Kan, J. L.; Chen, G. J.; Dong, Y. B., Au@Cu(II)-MOF: Highly Efficient Bifunctional Heterogeneous Catalyst for Successive Oxidation−Condensation Reactions. Inorg. Chem. 2016, 55, 13, 6685–6691
22. Bai, L.; Zheng, H.; Ma, J.; Wang, J.; Chen, Z.; Huang, Q., Cyclodextrin-Assisted Synthesis of Pd/Co/C Nanopolyhedra by ZIF67 as a Highly Acid Tolerant Catalyst for Hexavalent Chromium Reduction. Inorg. Chem. 2019, 58, 13, 8884–8889
23. Müller, M.; Hermes, S.; Kähler, K.; van den Berg, M.; Muhler, M.; Fischer, R. A., Loading of MOF-5 with Cu and ZnO Nanoparticles by Gas-Phase Infiltration with Organometallic Precursors: Properties of Cu/ZnO@MOF-5 as Catalyst for Methanol Synthesis. Chem. Mater. 2008, 20, 14, 4576–4587
24. Shahmirzaee, M.; Hemmati-Sarapardeh, A.; Husein, M. M.; Schaffie, M.; Ranjbar, M., A review on zeolitic imidazolate frameworks use for crude oil spills cleanup. Advances in Geo-Energy Research, 2019, Vol. 3, No. 3, p. 320-342
25. Schelling, M.; Kim, M.; Otal, E.; Aguirre, M.; Hinestroza, J. P., Synthesis of a zinc–imidazole metal–organic framework (ZIF-8) using ZnO rods grown on cotton fabrics as precursors: arsenate absorption studies. Springer Cellulose. 2020, 27, 6399-6410
26. Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M., Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Acc. Chem. Res. 2010, 43, 1, 58–67
27. Rehman, S.; Liu, J.; Fang, Z.; Wang, J.; Ahmed, R.; Wang, C.; Bi, H., Heterostructured TiO2/C/Co from ZIF-67 Frameworks for MicrowaveAbsorbing Nanomaterials. ACS Appl. Nano Mater. 2019, 2, 7, 4451–4461.
28. Konno, H.; Nakasaka, Y.; Yasuda, K.; Ommata, M.; Masuda, T., Surfactant-assisted synthesis of nanocrystalline zeolitic imidazolate framework 8 and 67 for adsorptive removal of perfluorooctane sulfonate from aqueous solution. Catalysis Today, 2020, 352: 220-226.
29. Hunter-Sellars, E.; Saenz-Cavazos, P. A.; Houghton, A. R.; McIntyre, S. R.; Parkin, I. P.; & Williams, D. R., Sol–Gel Synthesis of High-Density Zeolitic Imidazolate Framework Monoliths via Ligand Assisted Methods: Exceptional Porosity, Hydrophobicity, and Applications in Vapor Adsorption. Advanced Functional Materials, 31(20).
30. Mahmoodi, N. M.; Taghizadeh, M.; Taghizadeh, A.; Abdi, J.; Hayati, B.; & Shekarchi, A. A., Bio-based magnetic metal-organic framework nanocomposite: Ultrasoundassisted synthesis and pollutant (heavy metal and dye) removal from aqueous media. Applied Surface Science, 2019, 480: 288-299.
31. Ethiraj, J.; Palla, S.; Reinsch, H., Insights into high pressure gas adsorption properties of ZIF-67: Experimental and theoretical studies. Microporous and Mesoporous Materials. 2020, Volume 294, 109867.
32. Lin, K-Y.; Chang, H-A., Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere. 2015, Volume 139, 624-631.
33. Pattengale, B.; Yang, S.; Lee, S.; Huang, J., Mechanistic Probes of Zeolitic Imidazolate Framework for Photocatalytic Application. ACS Catal. 2017, 7, 12, 8446–8453.
34. Mphuthi, L. E.; Erasmus, E.; Langner, E. H., Metal Exchange of ZIF 8 and ZIF-67 Nanoparticles with Fe(II) for Enhanced Photocatalytic Performance. ACS Omega 2021, 6, 47, 31632–31645.
35. Wu, X.; Yuan, J.; Guo, X. Q.; Ma, L. J.; Wu, G. Q.; Cheng, G. J.; Liu, Y.; Liu, F., Ultrahigh Sensitive Flexible Piezoresistive Sensor with Carbonized Metal−Organic Framework Fe3O4@MIL-100(Fe). ACS Appl. Electron. Mater. 2022, 4, 4, 1723–1731
36. Dong, S.; Peng, L.; Wei, W.; Huang, T., Three MOF-Templated Carbon Nanocomposites for Potential Platforms of Enzyme Immobilization with Improved Electrochemical Performance. ACS Appl. Mater. Interfaces 2018, 10, 17, 14665–14672.
37. Barylak, M.; Cendrowski, K.; & Mijowska, E., Application of Carbonized Metal−Organic Framework as Efficient Adsorbent of Cationic Dye. Ind. Eng. Chem. Res. 2018, 57, 14, 4867–4879.
38. Young, C.; Salunkhe, R. R.; Tang, J.; Hu, C. C.; Shahabuddin, M.; Yanmaz, E.; Hossain, M. S. A.; Kim, J. H.; Yamauchi, Y., Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: the effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte. Phys. Chem. Chem. Phys., 2016, 18, 29308.
39. Deng, K.; Gu, Y.; Gao, T.; Liao, Z.; Feng, Y.; Zhou, S.; Fang, Q.; Hu, C.; Lyu, L., Carbonized MOF-Coated Zero-Valent Cu Driving an Efficient Dual-Reaction-Center Fenton-like Water Treatment Process through Utilizing Pollutants and Natural Dissolved Oxygen. ACS EST Water 2022, 2, 1, 174–183.
40. Man, T.; Xu, C.; Liu, X. Y.; Li, D.; Tsung, C. K.; Pei, H.; Wan, Y.; Li, L., Hierarchically encapsulating enzymes with multi-shelled metal-organic frameworks for tandem biocatalytic reactions. Nature communications, 2022, 13.1: 1-12.
41. Liu, S.; Wang, J.; Yu, J., ZIF-8 derived bimodal carbon modified ZnO photocatalysts with enhanced photocatalytic CO 2 reduction performance. RSC Adv. 2016, 6, 59998-60006.
42. Kim, M.; Xu, X.; Xin, R.; Earnshaw, J.; Ashok, A.; Kim, J.; Park, T.; Nanjundan, A. K.; El-Said, W. A.; Yi, J. W.; Na, J.; Yamauchi, Y., KOH-Activated Hollow ZIF 8 Derived Porous Carbon: Nanoarchitectured Control for Upgraded Capacitive Deionization and Supercapacitor. ACS Appl. Mater. Interfaces 2021, 13, 44, 52034–52043.
43. Zhao, T.; Hui, Y.; Niamatullah; Li, Z., Controllable preparation of ZIF-67 derived catalyst for CO2 methanation. Molecular Catalysis. Volume 474, 2019, 110421.
44. Chen, T. Y.; Lin, L. Y.; Geng, D. S.; Lee, P. Y., Systematic synthesis of ZIF-67 derived Co3O4 and N-doped carbon composite for supercapacitors via successive oxidation and carbonization. Electrochimica Acta. Volume 376, 2021, 137986.
45. Zacho, S. L.; Mielby, J.; Kegnæs, S., Hydrolytic dehydrogenation of ammonia borane over ZIF-67 derived Co nanoparticle catalysts. Catal. Sci. Technol., 2018, 8, 4741-4746.
46. Wu, L.; Wang, W.; Zhang, S.; Mo, D.; Li, X., Fabrication and Characterization of Co-Doped Fe2O3 Spindles for the Enhanced Photo-Fenton Catalytic Degradation of Tetracycline. ACS Omega 2021, 6, 49, 33717–33727.
47. Ahsan, M. A.; Santiago, A. R. P.; Rodriguez, A.; Maturano-Rojas, V.; Alvarado-Tenorio, B.; Bernal, R.; Noveron, J. C., Biomass-derived ultrathin carbon-shell coated iron nanoparticles as high-performance tri-functional HER, ORR and Fenton-like catalysts. Journal of Cleaner Production, 2020, 275, 124141.
48. Huang, X.; Zhou, H.; Yue, X.; Ran, S.; Zhu, J., Novel Magnetic Fe3O4/α-FeOOH Nanocomposites and Their Enhanced Mechanism for Tetracycline Hydrochloride Removal in the Visible Photo-Fenton Process. ACS Omega 2021, 6, 13, 9095–9103.
49. Celebi, M.; Karakas, K.; Ertas, I. E.; Kaya, M.; Zahmakiran, M., Palladium Nanoparticles Decorated Graphene Oxide: Active and Reusable Nanocatalyst for the Catalytic Reduction of Hexavalent Chromium(VI). ChemistrySelect. Volume 2, Issue 27, 2017, 8312-8319.
50. Vellaichamy, B.; Periakaruppan, P.; Nagulan, B., Reduction of Cr6+ from Wastewater Using a Novel in Situ-Synthesized PANI/MnO2/TiO2 Nanocomposite: Renewable, Selective, Stable, and Synergistic Catalysis. ACS Sustainable Chem. Eng. 2017, 5, 10, 9313–9324.
51. Prabakaran, E.; Pilllay, K., Self-Assembled Silver Nanoparticles Decorated on Exfoliated Graphitic Carbon Nitride/Carbon Sphere Nanocomposites as a Novel Catalyst for Catalytic Reduction of Cr(VI) to Cr(III) from Wastewater and Reuse for Photocatalytic Applications. ACS Omega 2021, 6, 51, 35221–35243.
52. Brunauer, S.; Emmett, P. H.; Teller, E., Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 2, 309–319.
53. Barrett, E. P.; Joyner, L. G.; Halenda, P. P., The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 1, 373–380.
54. Donohue, M.; Aranovich, G., Classification of Gibbs adsorption isotherms. Adv. Colloid Interface Sci. 1998, Volumes 76–77, Pages 137-152.
55. Sing, K. S. W.; Williams, R. T., Physisorption Hysteresis Loops and the Characterization of Nanoporous Materials. Adsorption Science & Technology. 2004, Volume: 22 issue: 10, 773-782.
56. Baskaran, S., Structure and Regulation of Teast Glycogen Synthase. Diss. 2010.
57. Bottom, R., Thermogravimetric analysis. Principles and applications of thermal analysis, 2008, 1, 87-118.
58. Yunos, N. F. D. M., High temperature phenomena occurring during reactions of agricultural wastes in electric arc furnace steelmaking: interactions with gas and slag phases. Doctor of philosophy, Faculty of Science School of Materials Science and Engineering, University of New South Wales, 347.(2012)
59. Marturi, N., Vision and visual servoing for nanomanipulation and nanocharacterization in scanning electron microscope. Diss. Université de Franche-Comté, 2013.
60. Thomas, S., Fabrication of thin films and nano columnar structures of Fe-Ni amorphous alloys and modification of its surface properties by thermal annealing and swift heavy ion irradiation for tailoring the magnetic properties. Diss. Cochin University of Science & Technology, 2009.
61. Vandenbroucke, A. M., Abatement of volatile organic compounds by combined use of non-thermal plasma and heterogeneous catalysis. Diss. Ghent University, 2015.
62. Isingizwe, F.; Perold, W., Superconducting Quantum Interference Device (SQUID) Magnetometers: Principles, Fabrication and Applications. Postgraduate diploma assay, 2010, May.
63. Fagaly, L., Superconducting quantum interference device instruments and applications. Review of Scientific Instruments, 2006, 77, 101101.
64. Marcon, P.; Ostanina, K., Overview of methods for magnetic susceptibility measurement. PIERS Proceedings. 2012, March
65. Li, R.; Che, R.; Liu, Q.; Su, S.; Li, Z.; Zhang, H.; Liu, J.; Liu, L.; Wang, J., : Hierarchically structured layered-double-hydroxides derived by ZIF-67 for uranium recovery from simulated seawater. J. Hazard Mater. 2017, 338, 167-176.
66. Zhou, Y. X.; Chen, Y. Z.; Cao, L.; Lu, J.; Jiang, H. L., Conversion of a metal–organic framework to N-doped porous carbon incorporating Co and CoO nanoparticles: direct oxidation of alcohols to esters. Chem. Commun. 2015, 51(39), 8292-8295.
指導教授 高憲明 審核日期 2022-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明