參考文獻 |
1. Qian, Q.; Asinger, P.A.; Lee, M.J.; Han, G.; Rodriguez, K.M.; Lin, S.; Benedetti, F.M.; Wu, A.X.; Chi, W.S.; Smith, Z.P., MOF-Based Membranes for Gas Separations. Chem. Rev. 2020, 120, 16, 8161–8266.
2. Li, J.; Jiang, L.; Chen, S.; Kirchon, A.; Li, B.; Li, Y.; Zhou, H. C., Metal−Organic Framework Containing Planar Metal-Binding Sites: Efficiently and Cost-Effectively Enhancing the Kinetic Separation of C2H2/C2H4. J. Am. Chem. Soc. 2019, 141, 9, 3807–3811.
3. Li, H.; Li, L.; Lin, R.B.; Zhou, W.; Zhang, Z.; Xiang, S.; Chen, B., Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem. Volume 1, Issue 1, July 2019, 100006.
4. Alezi, D.; Belmabkhout, Y.; Suyentin, M.; Bhatt, P. M.; Weselinski, L. J.; Solovyeva, V.; Adil, K.; Spanopoulos, I.; Trikalitis, P. N.; Emwas, A.-H.; Eddaoudi, M., MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O2, and CO2 Storage. J. Am. Chem. Soc. 2015, 137, 41, 13308–13318.
5. Stefaniak, K.R.; Epley, C.C.; Novak, J.J.; McAndrew, M.L.; Cornell, H.D.; Zhu, J.; McDaniel, D.K.; Davis, J.L.; Allen, I.C.; Morris, A.J.; Grove, T.Z., Photo-triggered release of 5-fluorouracil from a MOF drug delivery vehicle. Chem. Commun. 2018, 54, 7617-7620.
6. Ni, W.; Zhang, L.; Zhang, H.; Zhang, C.; Jiang, K.; Cao, X., Hierarchical MOF-on-MOF Architecture for pH/GSH-Controlled Drug Delivery and Fe-Based Chemodynamic Therapy. Inorg. Chem. 2022, 61, 7, 3281–3287.
7. Chen, W.; Cai, P.; Elumalai, P.; Zhang, P.; Feng, L.; Al-Rawashdeh, M.; Madrahimov, S.T.; Zhou, H.C., Site-Isolated Azobenzene-Containing Metal−Organic Framework for Cyclopalladated Catalyzed Suzuki-Miyuara Coupling in Flow. ACS Appl. Mater. Interfaces. 2021, 13, 51849−51854.
8. Gómez-Oliveira, E. P.; Méndez, N.; Iglesias, M.; Gutiérrez-Puebla, E.; Aguirre-Díaz, L. M.; Monge, M. A., Building a Green, Robust, and Efficient Bi-MOF Heterogeneous Catalyst for the Strecker Reaction of Ketones. Inorg. Chem. 2022, 61, 19, 7523–7529.
9. Zhao, R.; Wu, Y.; Liang, Z.; Gao, L.; Xia, W.; Zhao, Y.; Zou, R., Metal–organic frameworks for solid-state electrolytes. Energy Environ. Sci. 2020, 13, 2386.
10. Yang, H.; Liu, B.; Bright, J.; Kasani, S.; Yang, J.; Zhang, X.; Wu, N., A Single-Ion Conducting UiO-66 Metal−Organic Framework Electrolyte for All-Solid-State Lithium Batteries. ACS Applied Energy Materials 2020, 3, 4, 4007-4013.
11. Chen, C.; Xiong, D.; Gu, M.; Lu, C.; Yi, F.Y.; Ma, X., MOF-Derived Bimetallic CoFe-PBA Composites as Highly Selective and Sensitive Electrochemical Sensors for Hydrogen Peroxide and Nonenzymatic Glucose in Human Serum. ACS Appl. Mater. Interfaces. 2020, 12, 35365−35374.
12. Fu, H. R.; Wu, X. X.; Ma, L. F.; Wang, F.; Zhang, J., Dual-Emission SG7@MOF Sensor via SC−SC Transformation: Enhancing the Formation of Excimer Emission and the Range and Sensitivity of Detection. ACS Appl. Mater. Interfaces 2018, 10, 21, 18012–18020.
13. Soler-Illia, G.; Sanchez, C.; Lebeau, B.; Patarin, J., Chemical Strategies of Design Textured Materials: From Microporous and Mesoporous Oxides to Nanonetworks and Hierarchichal Structures. Chem. Rev. 2002, 102, 4093−4138
14. Tomic, E. A., Thermal Stability of Coordination Polymers. J. Appl. Polym. Sci. 1965 Volume9, Issue11, 3745-3752
15. Yaghi, O. M.; Li, G.; Li, H., Selective binding and removal of guest in a microporous metal-organic framework. Nature 1995 volume 378, 703–706
16. Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O. M., Design and Synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402,276
17. Li, J.; Cheng, S.; Zhao, Q.; Long, P.; Dong, J., Synthesis and hydrogen-storage behavior of metal-organic framework MOF-5. Int. J. Hydrog. Energy 2009, 34, 3, 1977-1382
18. Tsivion, E.; Head-Gordon, M., Methane Storage: Molecular Mechanisms Underlying RoomTemperature Adsorption in Zn4O(BDC)3 (MOF-5). J. Phys. Chem. C 2017, 121, 22, 12091–12100
19. Rubio-Martinez, M.; Avci-Camur, C.; Thornton, A.W.; Imaz, I.; Maspoch, D.; Hill, M. R., New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 2017, 46, 3453
20. Feng, L.; Wang, K. Y.; Day, G.S.; Ryder, M. R.; Zhou, H. C., Destruction of Metal-Organic Framework: Positive and Negative Aspects of Stability and Lability. Chem. Rev. 2020, 120, 23, 13087–13133
21. Wang, J. S.; Jin, F. Z.; Ma, H. C.; Li, X. B.; Liu, M. Y.; Kan, J. L.; Chen, G. J.; Dong, Y. B., Au@Cu(II)-MOF: Highly Efficient Bifunctional Heterogeneous Catalyst for Successive Oxidation−Condensation Reactions. Inorg. Chem. 2016, 55, 13, 6685–6691
22. Bai, L.; Zheng, H.; Ma, J.; Wang, J.; Chen, Z.; Huang, Q., Cyclodextrin-Assisted Synthesis of Pd/Co/C Nanopolyhedra by ZIF67 as a Highly Acid Tolerant Catalyst for Hexavalent Chromium Reduction. Inorg. Chem. 2019, 58, 13, 8884–8889
23. Müller, M.; Hermes, S.; Kähler, K.; van den Berg, M.; Muhler, M.; Fischer, R. A., Loading of MOF-5 with Cu and ZnO Nanoparticles by Gas-Phase Infiltration with Organometallic Precursors: Properties of Cu/ZnO@MOF-5 as Catalyst for Methanol Synthesis. Chem. Mater. 2008, 20, 14, 4576–4587
24. Shahmirzaee, M.; Hemmati-Sarapardeh, A.; Husein, M. M.; Schaffie, M.; Ranjbar, M., A review on zeolitic imidazolate frameworks use for crude oil spills cleanup. Advances in Geo-Energy Research, 2019, Vol. 3, No. 3, p. 320-342
25. Schelling, M.; Kim, M.; Otal, E.; Aguirre, M.; Hinestroza, J. P., Synthesis of a zinc–imidazole metal–organic framework (ZIF-8) using ZnO rods grown on cotton fabrics as precursors: arsenate absorption studies. Springer Cellulose. 2020, 27, 6399-6410
26. Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M., Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Acc. Chem. Res. 2010, 43, 1, 58–67
27. Rehman, S.; Liu, J.; Fang, Z.; Wang, J.; Ahmed, R.; Wang, C.; Bi, H., Heterostructured TiO2/C/Co from ZIF-67 Frameworks for MicrowaveAbsorbing Nanomaterials. ACS Appl. Nano Mater. 2019, 2, 7, 4451–4461.
28. Konno, H.; Nakasaka, Y.; Yasuda, K.; Ommata, M.; Masuda, T., Surfactant-assisted synthesis of nanocrystalline zeolitic imidazolate framework 8 and 67 for adsorptive removal of perfluorooctane sulfonate from aqueous solution. Catalysis Today, 2020, 352: 220-226.
29. Hunter-Sellars, E.; Saenz-Cavazos, P. A.; Houghton, A. R.; McIntyre, S. R.; Parkin, I. P.; & Williams, D. R., Sol–Gel Synthesis of High-Density Zeolitic Imidazolate Framework Monoliths via Ligand Assisted Methods: Exceptional Porosity, Hydrophobicity, and Applications in Vapor Adsorption. Advanced Functional Materials, 31(20).
30. Mahmoodi, N. M.; Taghizadeh, M.; Taghizadeh, A.; Abdi, J.; Hayati, B.; & Shekarchi, A. A., Bio-based magnetic metal-organic framework nanocomposite: Ultrasoundassisted synthesis and pollutant (heavy metal and dye) removal from aqueous media. Applied Surface Science, 2019, 480: 288-299.
31. Ethiraj, J.; Palla, S.; Reinsch, H., Insights into high pressure gas adsorption properties of ZIF-67: Experimental and theoretical studies. Microporous and Mesoporous Materials. 2020, Volume 294, 109867.
32. Lin, K-Y.; Chang, H-A., Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water. Chemosphere. 2015, Volume 139, 624-631.
33. Pattengale, B.; Yang, S.; Lee, S.; Huang, J., Mechanistic Probes of Zeolitic Imidazolate Framework for Photocatalytic Application. ACS Catal. 2017, 7, 12, 8446–8453.
34. Mphuthi, L. E.; Erasmus, E.; Langner, E. H., Metal Exchange of ZIF 8 and ZIF-67 Nanoparticles with Fe(II) for Enhanced Photocatalytic Performance. ACS Omega 2021, 6, 47, 31632–31645.
35. Wu, X.; Yuan, J.; Guo, X. Q.; Ma, L. J.; Wu, G. Q.; Cheng, G. J.; Liu, Y.; Liu, F., Ultrahigh Sensitive Flexible Piezoresistive Sensor with Carbonized Metal−Organic Framework Fe3O4@MIL-100(Fe). ACS Appl. Electron. Mater. 2022, 4, 4, 1723–1731
36. Dong, S.; Peng, L.; Wei, W.; Huang, T., Three MOF-Templated Carbon Nanocomposites for Potential Platforms of Enzyme Immobilization with Improved Electrochemical Performance. ACS Appl. Mater. Interfaces 2018, 10, 17, 14665–14672.
37. Barylak, M.; Cendrowski, K.; & Mijowska, E., Application of Carbonized Metal−Organic Framework as Efficient Adsorbent of Cationic Dye. Ind. Eng. Chem. Res. 2018, 57, 14, 4867–4879.
38. Young, C.; Salunkhe, R. R.; Tang, J.; Hu, C. C.; Shahabuddin, M.; Yanmaz, E.; Hossain, M. S. A.; Kim, J. H.; Yamauchi, Y., Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: the effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte. Phys. Chem. Chem. Phys., 2016, 18, 29308.
39. Deng, K.; Gu, Y.; Gao, T.; Liao, Z.; Feng, Y.; Zhou, S.; Fang, Q.; Hu, C.; Lyu, L., Carbonized MOF-Coated Zero-Valent Cu Driving an Efficient Dual-Reaction-Center Fenton-like Water Treatment Process through Utilizing Pollutants and Natural Dissolved Oxygen. ACS EST Water 2022, 2, 1, 174–183.
40. Man, T.; Xu, C.; Liu, X. Y.; Li, D.; Tsung, C. K.; Pei, H.; Wan, Y.; Li, L., Hierarchically encapsulating enzymes with multi-shelled metal-organic frameworks for tandem biocatalytic reactions. Nature communications, 2022, 13.1: 1-12.
41. Liu, S.; Wang, J.; Yu, J., ZIF-8 derived bimodal carbon modified ZnO photocatalysts with enhanced photocatalytic CO 2 reduction performance. RSC Adv. 2016, 6, 59998-60006.
42. Kim, M.; Xu, X.; Xin, R.; Earnshaw, J.; Ashok, A.; Kim, J.; Park, T.; Nanjundan, A. K.; El-Said, W. A.; Yi, J. W.; Na, J.; Yamauchi, Y., KOH-Activated Hollow ZIF 8 Derived Porous Carbon: Nanoarchitectured Control for Upgraded Capacitive Deionization and Supercapacitor. ACS Appl. Mater. Interfaces 2021, 13, 44, 52034–52043.
43. Zhao, T.; Hui, Y.; Niamatullah; Li, Z., Controllable preparation of ZIF-67 derived catalyst for CO2 methanation. Molecular Catalysis. Volume 474, 2019, 110421.
44. Chen, T. Y.; Lin, L. Y.; Geng, D. S.; Lee, P. Y., Systematic synthesis of ZIF-67 derived Co3O4 and N-doped carbon composite for supercapacitors via successive oxidation and carbonization. Electrochimica Acta. Volume 376, 2021, 137986.
45. Zacho, S. L.; Mielby, J.; Kegnæs, S., Hydrolytic dehydrogenation of ammonia borane over ZIF-67 derived Co nanoparticle catalysts. Catal. Sci. Technol., 2018, 8, 4741-4746.
46. Wu, L.; Wang, W.; Zhang, S.; Mo, D.; Li, X., Fabrication and Characterization of Co-Doped Fe2O3 Spindles for the Enhanced Photo-Fenton Catalytic Degradation of Tetracycline. ACS Omega 2021, 6, 49, 33717–33727.
47. Ahsan, M. A.; Santiago, A. R. P.; Rodriguez, A.; Maturano-Rojas, V.; Alvarado-Tenorio, B.; Bernal, R.; Noveron, J. C., Biomass-derived ultrathin carbon-shell coated iron nanoparticles as high-performance tri-functional HER, ORR and Fenton-like catalysts. Journal of Cleaner Production, 2020, 275, 124141.
48. Huang, X.; Zhou, H.; Yue, X.; Ran, S.; Zhu, J., Novel Magnetic Fe3O4/α-FeOOH Nanocomposites and Their Enhanced Mechanism for Tetracycline Hydrochloride Removal in the Visible Photo-Fenton Process. ACS Omega 2021, 6, 13, 9095–9103.
49. Celebi, M.; Karakas, K.; Ertas, I. E.; Kaya, M.; Zahmakiran, M., Palladium Nanoparticles Decorated Graphene Oxide: Active and Reusable Nanocatalyst for the Catalytic Reduction of Hexavalent Chromium(VI). ChemistrySelect. Volume 2, Issue 27, 2017, 8312-8319.
50. Vellaichamy, B.; Periakaruppan, P.; Nagulan, B., Reduction of Cr6+ from Wastewater Using a Novel in Situ-Synthesized PANI/MnO2/TiO2 Nanocomposite: Renewable, Selective, Stable, and Synergistic Catalysis. ACS Sustainable Chem. Eng. 2017, 5, 10, 9313–9324.
51. Prabakaran, E.; Pilllay, K., Self-Assembled Silver Nanoparticles Decorated on Exfoliated Graphitic Carbon Nitride/Carbon Sphere Nanocomposites as a Novel Catalyst for Catalytic Reduction of Cr(VI) to Cr(III) from Wastewater and Reuse for Photocatalytic Applications. ACS Omega 2021, 6, 51, 35221–35243.
52. Brunauer, S.; Emmett, P. H.; Teller, E., Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 2, 309–319.
53. Barrett, E. P.; Joyner, L. G.; Halenda, P. P., The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 1, 373–380.
54. Donohue, M.; Aranovich, G., Classification of Gibbs adsorption isotherms. Adv. Colloid Interface Sci. 1998, Volumes 76–77, Pages 137-152.
55. Sing, K. S. W.; Williams, R. T., Physisorption Hysteresis Loops and the Characterization of Nanoporous Materials. Adsorption Science & Technology. 2004, Volume: 22 issue: 10, 773-782.
56. Baskaran, S., Structure and Regulation of Teast Glycogen Synthase. Diss. 2010.
57. Bottom, R., Thermogravimetric analysis. Principles and applications of thermal analysis, 2008, 1, 87-118.
58. Yunos, N. F. D. M., High temperature phenomena occurring during reactions of agricultural wastes in electric arc furnace steelmaking: interactions with gas and slag phases. Doctor of philosophy, Faculty of Science School of Materials Science and Engineering, University of New South Wales, 347.(2012)
59. Marturi, N., Vision and visual servoing for nanomanipulation and nanocharacterization in scanning electron microscope. Diss. Université de Franche-Comté, 2013.
60. Thomas, S., Fabrication of thin films and nano columnar structures of Fe-Ni amorphous alloys and modification of its surface properties by thermal annealing and swift heavy ion irradiation for tailoring the magnetic properties. Diss. Cochin University of Science & Technology, 2009.
61. Vandenbroucke, A. M., Abatement of volatile organic compounds by combined use of non-thermal plasma and heterogeneous catalysis. Diss. Ghent University, 2015.
62. Isingizwe, F.; Perold, W., Superconducting Quantum Interference Device (SQUID) Magnetometers: Principles, Fabrication and Applications. Postgraduate diploma assay, 2010, May.
63. Fagaly, L., Superconducting quantum interference device instruments and applications. Review of Scientific Instruments, 2006, 77, 101101.
64. Marcon, P.; Ostanina, K., Overview of methods for magnetic susceptibility measurement. PIERS Proceedings. 2012, March
65. Li, R.; Che, R.; Liu, Q.; Su, S.; Li, Z.; Zhang, H.; Liu, J.; Liu, L.; Wang, J., : Hierarchically structured layered-double-hydroxides derived by ZIF-67 for uranium recovery from simulated seawater. J. Hazard Mater. 2017, 338, 167-176.
66. Zhou, Y. X.; Chen, Y. Z.; Cao, L.; Lu, J.; Jiang, H. L., Conversion of a metal–organic framework to N-doped porous carbon incorporating Co and CoO nanoparticles: direct oxidation of alcohols to esters. Chem. Commun. 2015, 51(39), 8292-8295. |