參考文獻 |
1. Weibel, G. L.; Ober, C. K., An Overview of Supercritical Co2 Applications in Microelectronics Processing. Microelectronic Engineering 2003, 65, 145-152.
2. Esfandiari, N., Production of Micro and Nano Particles of Pharmaceutical by Supercritical Carbon Dioxide. The Journal of Supercritical Fluids 2015, 100, 129-141.
3. Teoh, W. H.; Mammucari, R.; Foster, N. R., Solubility of Organometallic Complexes in Supercritical Carbon Dioxide: A Review. Journal of Organometallic Chemistry 2013, 724, 102-116.
4. Tabernero, A.; del Valle, E. M. M.; Galán, M. Á., A Comparison between Semiempirical Equations to Predict the Solubility of Pharmaceutical Compounds in Supercritical Carbon Dioxide. The Journal of Supercritical Fluids 2010, 52, 161-174.
5. Chrastil, J., Solubility of Solids and Liquids in Supercritical Gases. The Journal of Physical Chemistry 1982, 86, 3016-3021.
6. Adachi, Y.; Lu, B. C.-Y., Supercritical Fluid Extraction with Carbon Dioxide and Ethylene. Fluid Phase Equilibria 1983, 14, 147-156.
7. Kumar, S. K.; Johnston, K. P., Modelling the Solubility of Solids in Supercritical Fluids with Density as the Independent Variable. The Journal of Supercritical Fluids 1988, 1, 15-22.
8. Méndez-Santiago, J.; Teja, A. S., The Solubility of Solids in Supercritical Fluids. Fluid Phase Equilibria 1999, 158, 501-510.
9. Mehdizadeh, B.; Movagharnejad, K., A Comparison between Neural Network Method and Semi Empirical Equations to Predict the Solubility of Different Compounds in Supercritical Carbon Dioxide. Fluid Phase Equilibria 2011, 303, 40-44.
10. Lashkarbolooki, M.; Vaferi, B.; Rahimpour, M. R., Comparison the Capability of Artificial Neural Network (Ann) and Eos for Prediction of Solid Solubilities in Supercritical Carbon Dioxide. Fluid Phase Equilibria 2011, 308, 35-43.
11. Moussaoui, M.; Laidi, M.; Hanini, S.; Hentabli, M., Artificial Neural Network and Support Vector Regression Applied in Quantitative Structure-Property Relationship Modelling of Solubility of Solid Solutes in Supercritical Co 2. Kemija u industriji: Časopis kemičara i kemijskih inženjera Hrvatske 2020, 69, 611-630.
12. Abdi-Khanghah, M.; Bemani, A.; Naserzadeh, Z.; Zhang, Z., Prediction of Solubility of N-Alkanes in Supercritical Co2 Using Rbf-Ann and Mlp-Ann. Journal of CO2 Utilization 2018, 25, 108-119.
13. Van Der Waals, J. D.; Rowlinson, J. S., On the Continuity of the Gaseous and Liquid States; Courier Corporation, 2004.
14. Redlich, O.; Kwong, J. N., On the Thermodynamics of Solutions. V. An Equation of State. Fugacities of Gaseous Solutions. Chemical reviews 1949, 44, 233-244.
15. Soave, G., Equilibrium Constants from a Modified Redlich-Kwong Equation of State. Chemical engineering science 1972, 27, 1197-1203.
16. Peng, D.-Y.; Robinson, D. B., A New Two-Constant Equation of State. Industrial & Engineering Chemistry Fundamentals 1976, 15, 59-64.
17. Huron, M.-J.; Vidal, J., New Mixing Rules in Simple Equations of State for Representing Vapour-Liquid Equilibria of Strongly Non-Ideal Mixtures. Fluid Phase Equilibria 1979, 3, 255-271.
18. Michelsen, M. L., A Modified Huron-Vidal Mixing Rule for Cubic Equations of State. Fluid Phase Equilibria 1990, 60, 213-219.
19. Kwak, T.; Mansoori, G., Van Der Waals Mixing Rules for Cubic Equations of State. Applications for Supercritical Fluid Extraction Modelling. Chemical engineering science 1986, 41, 1303-1309.
20. Wong, D. S. H.; Sandler, S. I., A Theoretically Correct Mixing Rule for Cubic Equations of State. AIChE Journal 1992, 38, 671-680.
21. Chapman, W. G.; Jackson, G.; Gubbins, K. E., Phase Equilibria of Associating Fluids: Chain Molecules with Multiple Bonding Sites. Molecular Physics 1988, 65, 1057-1079.
22. Jackson, G.; Chapman, W. G.; Gubbins, K. E., Phase Equilibria of Associating Fluids: Spherical Molecules with Multiple Bonding Sites. Molecular Physics 1988, 65, 1-31.
23. Chapman, W. G.; Gubbins, K. E.; Jackson, G.; Radosz, M., New Reference Equation of State for Associating Liquids. Industrial & engineering chemistry research 1990, 29, 1709-1721.
24. Kraska, T.; Gubbins, K. E., Phase Equilibria Calculations with a Modified Saft Equation of State. 2. Binary Mixtures of N-Alkanes, 1-Alkanols, and Water. Industrial & engineering chemistry research 1996, 35, 4738-4746.
25. Kraska, T.; Gubbins, K. E., Phase Equilibria Calculations with a Modified Saft Equation of State. 1. Pure Alkanes, Alkanols, and Water. Industrial & engineering chemistry research 1996, 35, 4727-4737.
26. Huang, S. H.; Radosz, M., Equation of State for Small, Large, Polydisperse, and Associating Molecules. Industrial & Engineering Chemistry Research 1990, 29, 2284-2294.
27. Huang, S. H.; Radosz, M., Equation of State for Small, Large, Polydisperse, and Associating Molecules: Extension to Fluid Mixtures. Industrial & Engineering Chemistry Research 1991, 30, 1994-2005.
28. Gil-Villegas, A.; Galindo, A.; Whitehead, P. J.; Mills, S. J.; Jackson, G.; Burgess, A. N., Statistical Associating Fluid Theory for Chain Molecules with Attractive Potentials of Variable Range. The Journal of chemical physics 1997, 106, 4168-4186.
29. Gross, J.; Sadowski, G., Perturbed-Chain Saft: An Equation of State Based on a Perturbation Theory for Chain Molecules. Industrial & engineering chemistry research 2001, 40, 1244-1260.
30. Gross, J.; Sadowski, G., Application of the Perturbed-Chain Saft Equation of State to Associating Systems. Industrial & engineering chemistry research 2002, 41, 5510-5515.
31. Senol, I. In Ilke Senol Perturbed-Chain Statistical Association Fluid Theory ( Pc-Saft ) Parameters for Propane , Ethylene , and Hydrogen under Supercritical Conditions, 2011.
32. Wolbach, J. P.; Sandler, S. I., Using Molecular Orbital Calculations to Describe the Phase Behavior of Cross-Associating Mixtures. Industrial & engineering chemistry research 1998, 37, 2917-2928.
33. Justo-García, D. N.; García-Sánchez, F.; Díaz-Ramírez, N. L.; Romero-Martínez, A., Calculation of Critical Points for Multicomponent Mixtures Containing Hydrocarbon and Nonhydrocarbon Components with the Pc-Saft Equation of State. Fluid phase equilibria 2008, 265, 192-204.
34. Diamantonis, N. I.; Boulougouris, G. C.; Mansoor, E.; Tsangaris, D. M.; Economou, I. G., Evaluation of Cubic, Saft, and Pc-Saft Equations of State for the Vapor–Liquid Equilibrium Modeling of Co2 Mixtures with Other Gases. Industrial & Engineering Chemistry Research 2013, 52, 3933-3942.
35. Ruether, F.; Sadowski, G., Modeling the Solubility of Pharmaceuticals in Pure Solvents and Solvent Mixtures for Drug Process Design. J. Pharm. Sci. 2009, 98, 4205.
36. Baird, Z. S.; Uusi-Kyyny, P.; Pokki, J.-P.; Pedegert, E.; Alopaeus, V., Vapor Pressures, Densities, and Pc-Saft Parameters for 11 Bio-Compounds. International Journal of Thermophysics 2019, 40, 1-36.
37. Mahmoudabadi, S. Z.; Pazuki, G., A Predictive Pc-Saft Eos Based on Cosmo for Pharmaceutical Compounds. Scientific reports 2021, 11, 1-18.
38. Hustad, O. S.; Jia, N.; Pedersen, K. S.; Memon, A.; Leekumjorn, S., High-Pressure Data and Modeling Results for Phase Behavior and Asphaltene Onsets of Gulf of Mexico Oil Mixed with Nitrogen. SPE Reservoir Evaluation & Engineering 2014, 17, 384-395.
39. Ebrahimi, M.; Mousavi-Dehghani, S.; Dabir, B.; Shahrabadi, A., The Effect of Aromatic Solvents on the Onset and Amount of Asphaltene Precipitation at Reservoir Conditions: Experimental and Modeling Studies. Journal of Molecular Liquids 2016, 223, 119-127.
40. Kikic, I.; Lora, M.; Bertucco, A., A Thermodynamic Analysis of Three-Phase Equilibria in Binary and Ternary Systems for Applications in Rapid Expansion of a Supercritical Solution (Ress), Particles from Gas-Saturated Solutions (Pgss), and Supercritical Antisolvent (Sas). Industrial & engineering chemistry research 1997, 36, 5507-5515.
41. Gross, J.; Sadowski, G., Perturbed-Chain Saft: An Equation of State Based on a Perturbation Theory for Chain Molecules. Ind. Eng. Chem. Res. 2001, 40, 1244.
42. Ruether, F.; Sadowski, G., Modeling the Solubility of Pharmaceuticals in Pure Solvents and Solvent Mixtures for Drug Process Design. Journal of Pharmaceutical Sciences 2009, 98, 4205-4215.
43. Wang, S.-W.; Chang, S.-Y.; Hsieh, C.-M., Measurement and Modeling of Solubility of Gliclazide (Hypoglycemic Drug) and Captopril (Antihypertension Drug) in Supercritical Carbon Dioxide. The Journal of Supercritical Fluids 2021, 174, 105244.
44. Sodeifian, G.; Hsieh, C.-M.; Derakhsheshpour, R.; Chen, Y.-M.; Razmimanesh, F., Measurement and Modeling of Metoclopramide Hydrochloride (Anti-Emetic Drug) Solubility in Supercritical Carbon Dioxide. Arabian Journal of Chemistry 2022, 15, 103876.
45. Liang, H.-H.; Li, J.-Y.; Wang, L.-H.; Lin, S.-T.; Hsieh, C.-M., Improvement to Pr+ Cosmosac Eos for Predicting the Vapor Pressure of Nonelectrolyte Organic Solids and Liquids. Industrial & Engineering Chemistry Research 2019, 58, 5030-5040.
46. Johnston, K. P.; Ziger, D. H.; Eckert, C. A., Solubilities of Hydrocarbon Solids in Supercritical Fluids. The Augmented Van Der Waals Treatment. Industrial & Engineering Chemistry Fundamentals 1982, 21, 191-197.
47. McHugh, M.; Paulaitis, M. E., Solid Solubilities of Naphthalene and Biphenyl in Supercritical Carbon Dioxide. Journal of chemical and engineering data 1980, 25, 326-329.
48. Barna, L.; Blanchard, J.-M.; Rauzy, E.; Berro, C., Solubility of Flouranthene, Chrysene, and Triphenylene in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 1996, 41, 1466-1469.
49. Miller, D. J.; Hawthorne, S. B.; Clifford, A. A.; Zhu, S., Solubility of Polycyclic Aromatic Hydrocarbons in Supercritical Carbon Dioxide from 313 K to 523 K and Pressures from 100 Bar to 450 Bar. Journal of Chemical & Engineering Data 1996, 41, 779-786.
50. Coutsikos, P.; Magoulas, K.; Tassios, D., Solubilities of P-Quinone and 9,10-Anthraquinone in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 1997, 42, 463-466.
51. Pérez, E.; Cabañas, A.; Sánchez-Vicente, Y.; Renuncio, J. A.; Pando, C., High-Pressure Phase Equilibria for the Binary System Carbon Dioxide+ Dibenzofuran. The Journal of Supercritical Fluids 2008, 46, 238-244.
52. Macnaughton, S. J.; Foster, N. R., Solubility of Ddt and 2, 4-D in Supercritical Carbon Dioxide and Supercritical Carbon Dioxide Saturated with Water. Industrial & engineering chemistry research 1994, 33, 2757-2763.
53. Huang, Z.; Kawi, S.; Chiew, Y., Solubility of Cholesterol and Its Esters in Supercritical Carbon Dioxide with and without Cosolvents. The Journal of supercritical fluids 2004, 30, 25-39.
54. Liu, T.; Li, S.; Zhou, R.; Jia, D.; Tian, S., Solubility of Triphenylmethyl Chloride and Triphenyltin Chloride in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2009, 54, 1913-1915.
55. Schmitt, W. J.; Reid, R. C., Solubility of Monofunctional Organic Solids in Chemically Diverse Supercritical Fluids. Journal of Chemical and Engineering Data 1986, 31, 204-212.
56. Reveco-Chilla, A. G.; Cabrera, A. L.; Juan, C.; Zacconi, F. C.; del Valle, J. M.; Valenzuela, L. M., Solubility of Menadione and Dichlone in Supercritical Carbon Dioxide. Fluid Phase Equilibria 2016, 423, 84-92.
57. Huang, Z.; Yang, X.-W.; Sun, G.-B.; Song, S.-W.; Kawi, S., The Solubilities of Xanthone and Xanthene in Supercritical Carbon Dioxide: Structure Effect. The Journal of supercritical fluids 2005, 36, 91-97.
58. Rodrigues, R. F.; Tashima, A. K.; Pereira, R. M.; Mohamed, R. S.; Cabral, F. A., Coumarin Solubility and Extraction from Emburana (Torresea Cearensis) Seeds with Supercritical Carbon Dioxide. The Journal of Supercritical Fluids 2008, 43, 375-382.
59. Yau, J.-S.; Tsai, F.-N., Solubilities of 1-Eicosanol and Eicosanoic Acid in Supercritical Carbon Dioxide from 308.2 to 328.2 K at Pressures to 21.26 Mpa. Journal of Chemical and Engineering Data 1994, 39, 827-829.
60. Yamini, Y.; Fat′hi, M. R.; Alizadeh, N.; Shamsipur, M., Solubility of Dihydroxybenzene Isomers in Supercritical Carbon Dioxide. Fluid Phase Equilibria 1998, 152, 299-305.
61. García-González, J.; Molina, M. J.; Rodríguez, F.; Mirada, F., Solubilities of Phenol and Pyrocatechol in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2001, 46, 918-921.
62. Garlapati, C.; Madras, G., Solubilities of Dodecanoic and Tetradecanoic Acids in Supercritical Co2 with and without Entrainers. Journal of Chemical & Engineering Data 2008, 53, 2637-2641.
63. Garlapati, C.; Madras, G., Solubilities of Hexadecanoic and Octadecanoic Acids in Supercritical Co2 with and without Cosolvents. Journal of Chemical & Engineering Data 2008, 53, 2913-2917.
64. Kramer, A.; Thodos, G., Solubility of 1-Octadecanol and Stearic Acid in Supercritical Carbon Dioxide. Journal of Chemical and Engineering Data 1989, 34, 184-187.
65. Stassi, A.; Bettini, R.; Gazzaniga, A.; Giordano, F.; Schiraldi, A., Assessment of Solubility of Ketoprofen and Vanillic Acid in Supercritical Co2 under Dynamic Conditions. Journal of Chemical & Engineering Data 2000, 45, 161-165.
66. Yun, S. J.; Liong, K. K.; Gurdial, G. S.; Foster, N. R., Solubility of Cholesterol in Supercritical Carbon Dioxide. Industrial & engineering chemistry research 1991, 30, 2476-2482.
67. Sparks, D. L.; Hernandez, R.; Estévez, L. A.; Meyer, N.; French, T., Solubility of Azelaic Acid in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2007, 52, 1246-1249.
68. Chen, Y.-P.; Chen, Y.-M.; Tang, M., Solubilities of Cinnamic Acid, Phenoxyacetic Acid and 4-Methoxyphenylacetic Acid in Supercritical Carbon Dioxide. Fluid Phase Equilibria 2009, 275, 33-38.
69. Charoenchaitrakool, M.; Dehghani, F.; Foster, N.; Chan, H., Micronization by Rapid Expansion of Supercritical Solutions to Enhance the Dissolution Rates of Poorly Water-Soluble Pharmaceuticals. Industrial & engineering chemistry research 2000, 39, 4794-4802.
70. Huang, Z.; Lu, W. D.; Kawi, S.; Chiew, Y. C., Solubility of Aspirin in Supercritical Carbon Dioxide with and without Acetone. Journal of Chemical & Engineering Data 2004, 49, 1323-1327.
71. Kotnik, P.; Škerget, M.; Knez, Z. e., Solubility of Nicotinic Acid and Nicotinamide in Carbon Dioxide at T=(313.15 to 373.15) K and P=(5 to 30) Mpa: Experimental Data and Correlation. Journal of Chemical & Engineering Data 2011, 56, 338-343.
72. Cortesi, A.; Kikic, I.; Alessi, P.; Turtoi, G.; Garnier, S., Effect of Chemical Structure on the Solubility of Antioxidants in Supercritical Carbon Dioxide: Experimental Data and Correlation. The Journal of Supercritical Fluids 1999, 14, 139-144.
73. Burgos-Solórzano, G.; Brennecke, J.; Stadtherr, M., Solubility Measurements and Modeling of Molecules of Biological and Pharmaceutical Interest with Supercritical Co2. Fluid Phase Equilibria 2004, 220, 57-69.
74. Li, W.; Jin, J.; Tian, G.; Zhang, Z., Single-Component and Mixture Solubilities of Ethyl P-Hydroxybenzoate and Ethyl P-Aminobenzoate in Supercritical Co2. Fluid phase equilibria 2008, 264, 93-98.
75. Asghari-Khiavi, M.; Yamini, Y., Solubility of the Drugs Bisacodyl, Methimazole, Methylparaben, and Iodoquinol in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2003, 48, 61-65.
76. Lucien, F. P.; Foster, N. R., Influence of Matrix Composition on the Solubility of Hydroxybenzoic Acid Isomers in Supercritical Carbon Dioxide. Industrial & engineering chemistry research 1996, 35, 4686-4699.
77. Cheng, K.-W.; Tang, M.; Chen, Y.-P., Solubilities of Benzoin, Propyl 4-Hydroxybenzoate and Mandelic Acid in Supercritical Carbon Dioxide. Fluid phase equilibria 2002, 201, 79-96.
78. Johannsen, M.; Brunner, G., Solubilities of the Xanthines Caffeine, Theophylline and Theobromine in Supercritical Carbon Dioxide. Fluid Phase Equilibria 1994, 95, 215-226.
79. Lucien, F. P.; Foster, N. R., Solubilities of Mixed Hydroxybenzoic Acid Isomers in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 1998, 43, 726-731.
80. Murga, R.; Sanz, M. a. T.; Beltrán, S.; Cabezas, J. L., Solubility of Three Hydroxycinnamic Acids in Supercritical Carbon Dioxide. The Journal of supercritical fluids 2003, 27, 239-245.
81. Murga, R.; Sanz, M. a. T.; Beltrán, S.; Cabezas, J. L., Solubility of Some Phenolic Compounds Contained in Grape Seeds, in Supercritical Carbon Dioxide. The journal of supercritical fluids 2002, 23, 113-121.
82. Murga, R.; Sanz, M. T.; Beltrán, S.; Cabezas, J. L., Solubility of Syringic and Vanillic Acids in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2004, 49, 779-782.
83. Van Leer, R. A.; Paulaitis, M. E., Solubilities of Phenol and Chlorinated Phenols in Supercritical Carbon Dioxide. Journal of Chemical and Engineering Data 1980, 25, 257-259.
84. Weijun, H.; Suming, C.; Fu, T.; Zhenxiang, Y., Study on Thermodynamic Characteristics of Cinnamic Acid Derivatives. ACTA PHYSICO-CHIMICA SINICA 1994, 10, 151-153.
85. Hojjati, M.; Yamini, Y.; Khajeh, M.; Vatanara, A., Solubility of Some Statin Drugs in Supercritical Carbon Dioxide and Representing the Solute Solubility Data with Several Density-Based Correlations. The Journal of supercritical fluids 2007, 41, 187-194.
86. Chen, J.-W.; Tsai, F.-N., Solubilities of Methoxybenzoic Acid Isomers in Supercritical Carbon Dioxide. Fluid phase equilibria 1995, 107, 189-200.
87. Li, Q.; Zhang, Z.; Zhong, C.; Liu, Y.; Zhou, Q., Solubility of Solid Solutes in Supercritical Carbon Dioxide with and without Cosolvents. Fluid Phase Equilibria 2003, 207, 183-192.
88. Dobbs, J. M.; Wong, J. M.; Johnston, K. P., Nonpolar Co-Solvents for Solubility Enhancement in Supercritical Fluid Carbon Dioxide. Journal of Chemical and Engineering Data 1986, 31, 303-308.
89. Hollar Jr, W. E.; Ehrlich, P., Solubility of Naphthalene in Mixtures of Carbon Dioxide and Ethane. Journal of Chemical and Engineering Data 1990, 35, 271-275.
90. Smith, G.; Wormald, C., Solubilities of Naphthalene in (Co2+ C2h6) and (Co2+ C3h8) up to 333 K and 17.7 Mpa. Fluid phase equilibria 1990, 57, 205-222.
91. Lemert, R. M.; Johnston, K. P., Solubilities and Selectivities in Supercritical Fluid Mixtures near Critical End Points. Fluid Phase Equilibria 1990, 59, 31-55.
92. Dixon, D. J.; Johnston, K. P., Molecular Thermodynamics of Solubilities in Gas Antisolvent Crystallization. AIChE Journal 1991, 37, 1441-1449.
93. Van Alsten, J. G.; Eckert, C. A., Effect of Entrainers and of Solute Size and Polarity in Supercritical Fluid Solutions. Journal of Chemical and Engineering Data 1993, 38, 605-610.
94. Anitescu, G.; Tavlarides, L., Solubilities of Solids in Supercritical Fluids—Ii. Polycyclic Aromatic Hydrocarbons (Pahs)+ Co2/Cosolvent. The Journal of Supercritical Fluids 1997, 11, 37-51.
95. Pérez, E.; Cabañas, A.; Renuncio, J. A. R.; Sánchez-Vicente, Y.; Pando, C., Cosolvent Effect of Methanol and Acetic Acid on Dibenzofuran Solubility in Supercritical Carbon Dioxide. Journal of Chemical & Engineering Data 2008, 53, 2649-2653.
96. Ramírez-Vélez, N.; Piña-Martinez, A.; Jaubert, J.-N.; Privat, R., Parameterization of Saft Models: Analysis of Different Parameter Estimation Strategies and Application to the Development of a Comprehensive Database of Pc-Saft Molecular Parameters. Journal of Chemical & Engineering Data 2020, 65, 5920-5932.
97. Gross, J.; Sadowski, G., Application of the Perturbed-Chain Saft Equation of State to Associating Systems. Ind. Eng. Chem. Res. 2002, 41, 5510.
98. Aspen Polymer Plus V7.1 Database. |