參考文獻 |
第五章 參考資料
1. Setya, C.; Deka, J.; Saikia, D.; Kao, H.-M.; Yang, Y.-C., Ultrafine bimetallic Ag-doped Ni nanoparticles embedded in cage-type mesoporous silica SBA-16 as superior catalysts for conversion of toxic nitroaromatic compounds. Journal of Hazardous Materials 2019, 384, 121270.
2. Weckhuysen, B. M.; Yu, J., Recent advances in zeolite chemistry and catalysis. Chem Soc Rev 2015, 44 (20), 7022-7024.
3. Wei, J.; Sun, Z.; Luo, W.; Li, Y.; Elzatahry, A. A.; Al-Enizi, A. M.; Deng, Y.; Zhao, D., New Insight into the Synthesis of Large-Pore Ordered Mesoporous Materials. Journal of the American Chemical Society 2017, 139 (5), 1706-1713.
4. Xie, Z.; Su, B.-L., Crystalline porous materials: from zeolites to metal-organic frameworks (MOFs). Frontiers of Chemical Science and Engineering 2020, 14.
5. He, Y.; Li, Z.; Ding, X.; Xu, B.; Wang, J.; Li, Y.; Chen, F.; Meng, F.; Song, W.; Zhang, Y., Nanoporous titanium implant surface promotes osteogenesis by suppressing osteoclastogenesis via integrin β1/FAKpY397/MAPK pathway. Bioact Mater 2021, 8, 109-123.
6. Lai, C.-Y.; Trewyn, B. G.; Jeftinija, D. M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V. S. Y., A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules. Journal of the American Chemical Society 2003, 125 (15), 4451-4459.
7. Deka, J. R.; Saikia, D.; Chen, P. H.; Chen, K. T.; Kao, H. M.; Yang, Y. C., N-functionalized mesoporous carbon supported Pd nanoparticles as highly active nanocatalyst for Suzuki-Miyaura reaction, reduction of 4-nitrophenol and hydrodechlorination of chlorobenzene. J. Ind. Eng. Chem. 2021, 104, 529-543.
8. Rao, N.; Wang, M.; Shang, Z.; Hou, Y.; Fan, G.; Li, J., CO2 Adsorption by Amine-Functionalized MCM-41: A Comparison between Impregnation and Grafting Modification Methods. Energy & Fuels 2018, 32 (1), 670-677.
9. Gao, M.; Zeng, J.; Liang, K.; Zhao, D.; Kong, B., Interfacial Assembly of Mesoporous Silica‐Based Optical Heterostructures for Sensing Applications. Advanced Functional Materials 2020, 30.
10. Yan, Y.; Chen, G.; She, P.; Zhong, G.; Yan, W.; Guan, B.; Yamauchi, Y., Mesoporous Nanoarchitectures for Electrochemical Energy Conversion and Storage. Advanced materials (Deerfield Beach, Fla.) 2020, 32, e2004654.
11. Chen, W.; Glackin, C. A.; Horwitz, M. A.; Zink, J. I., Nanomachines and Other Caps on Mesoporous Silica Nanoparticles for Drug Delivery. Accounts of Chemical Research 2019, 52 (6), 1531-1542.
12. Yang, B.; Chen, Y.; Shi, J., Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews 2019, 119 (8), 4881-4985.
13. Duan, L.; Wang, C.; Zhang, W.; Ma, B.; Deng, Y.; Li, W.; Zhao, D., Interfacial Assembly and Applications of Functional Mesoporous Materials. Chemical Reviews 2021, 121 (23), 14349-14429.
14. Ghaedi, H.; Zhao, M., Review on Template Removal Techniques for Synthesis of Mesoporous Silica Materials. Energy & Fuels 2022, 36 (5), 2424-2446.
15. Zhao, X. S.; Lu, G. Q.; Millar, G. J., Advances in Mesoporous Molecular Sieve MCM-41. Industrial & Engineering Chemistry Research 1996, 35 (7), 2075-2090.
16. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359 (6397), 710-712.
17. Hao, N.; Li, L.; Tang, F., Roles of particle size, shape and surface chemistry of mesoporous silica nanomaterials on biological systems. International Materials Reviews 2017, 62 (2), 57-77.
18. Bouchoucha, M.; Côté, M.-F.; C.-Gaudreault, R.; Fortin, M.-A.; Kleitz, F., Size-Controlled Functionalized Mesoporous Silica Nanoparticles for Tunable Drug Release and Enhanced Anti-Tumoral Activity. Chemistry of Materials 2016, 28 (12), 4243-4258.
19. Raman, N. K.; Anderson, M. T.; Brinker, C. J., Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas. Chemistry of Materials 1996, 8 (8), 1682-1701.
20. Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M., Silica-based mesoporous organic-inorganic hybrid materials. Angewandte Chemie (International ed. in English) 2006, 45 (20), 3216-51.
21. Monnier, A.; Schüth, F.; Huo, Q.; Kumar, D.; Margolese, D.; Maxwell, R. S.; Stucky, G. D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; Janicke, M.; Chmelka, B. F., Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures. Science 1993, 261 (5126), 1299-1303.
22. Zhao, D., An overview of the synthesis of ordered mesoporous materials. Chemical communications (Cambridge, England) 2012, 49.
23. Tarek A. Fayed, M. H. S., Marwa N. El‑Nahass, Fathy M. Hassan, Hybrid organic–inorganic mesoporous silicates as optical nanosensor for toxic metals detection. Chemical and Applied Biological Sciences 2014, 1 (2), 1-74.
24. Wu, S.-H.; Mou, C.-Y.; Lin, H.-P., Synthesis of mesoporous silica nanoparticles. Chem Soc Rev 2013, 42 (9), 3862-3875.
25. Soler-Illia, G.; Sanchez, C.; Lebeau, B.; Patarin, J., Chemical Strategies of Design Textured Materials: From Microporous and Mesoporous Oxides to Nanonetworks and Hierarchichal Structures. ChemInform 2003, 34.
26. Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth, F.; Stucky, G. D., Generalized synthesis of periodic surfactant/inorganic composite materials. Nature 1994, 368 (6469), 317-321.
27. Burkett, S. L.; Sims, S. D.; Mann, S., Synthesis of hybrid inorganic–organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors. Chemical Communications 1996, (11), 1367-1368.
28. Macquarrie, D. J., Direct preparation of organically modified MCM-type materials. Preparation and characterisation of aminopropyl–MCM and 2-cyanoethyl–MCM. Chemical Communications 1996, (16), 1961-1962.
29. Melde, B. J.; Holland, B. T.; Blanford, C. F.; Stein, A., Mesoporous Sieves with Unified Hybrid Inorganic/Organic Frameworks. Chemistry of Materials 1999, 11 (11), 3302-3308.
30. Mercier, L.; Pinnavaia, T. J., Direct Synthesis of Hybrid Organic−Inorganic Nanoporous Silica by a Neutral Amine Assembly Route: Structure−Function Control by Stoichiometric Incorporation of Organosiloxane Molecules. Chemistry of Materials 2000, 12 (1), 188-196.
31. Walcarius, A.; Delacôte, C., Rate of Access to the Binding Sites in Organically Modified Silicates. 3. Effect of Structure and Density of Functional Groups in Mesoporous Solids Obtained by the Co-Condensation Route. Chemistry of Materials 2003, 15 (22), 4181-4192.
32. Yokoi, T.; Yoshitake, H.; Tatsumi, T., Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di- and tri-amino-organoalkoxysilanes. Journal of Materials Chemistry 2004, 14 (6), 951-957.
33. Trébosc, J.; Wiench, J. W.; Huh, S.; Lin, V. S. Y.; Pruski, M., Solid-State NMR Study of MCM-41-type Mesoporous Silica Nanoparticles. Journal of the American Chemical Society 2005, 127 (9), 3057-3068.
34. Duan, Y.; Zheng, M.; Li, D.; Deng, D.; Wu, C.; Yang, Y., Synthesis of Pd/SBA-15 catalyst employing surface-bonded vinyl as a reductant and its application in the hydrogenation of nitroarenes. RSC Advances 2017, 7 (6), 3443-3449.
35. Mercier, L.; Pinnavaia, T. J., Heavy Metal Ion Adsorbents Formed by the Grafting of a Thiol Functionality to Mesoporous Silica Molecular Sieves: Factors Affecting Hg(II) Uptake. Environmental Science & Technology 1998, 32 (18), 2749-2754.
36. Ho, K. Y.; McKay, G.; Yeung, K. L., Selective Adsorbents from Ordered Mesoporous Silica. Langmuir 2003, 19 (7), 3019-3024.
37. Chircov, C.; Spoială, A.; Păun, C.; Crăciun, L.; Ficai, D.; Ficai, A.; Andronescu, E.; Turculeƫ, Ș. C., Mesoporous Silica Platforms with Potential Applications in Release and Adsorption of Active Agents. Molecules 2020, 25 (17), 3814.
38. Brunelli, N. A.; Venkatasubbaiah, K.; Jones, C. W., Cooperative Catalysis with Acid–Base Bifunctional Mesoporous Silica: Impact of Grafting and Co-condensation Synthesis Methods on Material Structure and Catalytic Properties. Chemistry of Materials 2012, 24 (13), 2433-2442.
39. Lei, C.; Shin, Y.; Liu, J.; Ackerman, E. J., Entrapping Enzyme in a Functionalized Nanoporous Support. Journal of the American Chemical Society 2002, 124 (38), 11242-11243.
40. Yang, C.-m.; Zibrowius, B.; Schüth, F., A novel synthetic route for negatively charged ordered mesoporous silica SBA-15. Chemical Communications 2003, (14), 1772-1773.
41. Han, L.; Sakamoto, Y.; Terasaki, O.; Li, Y.; Che, S., Synthesis of carboxylic group functionalized mesoporous silicas (CFMSs) with various structures. Journal of Materials Chemistry 2007, 17 (12), 1216-1221.
42. Tsai, C.-T.; Pan, Y.-C.; Ting, C.-C.; Vetrivel, S.; Chiang, A. S. T.; Fey, G. T. K.; Kao, H.-M., A simple one-pot route to mesoporous silicas SBA-15 functionalized with exceptionally high loadings of pendant carboxylic acid groups. Chemical Communications 2009, (33), 5018-5020.
43. Tsai, C. H.; Chang, W. C.; Saikia, D.; Wu, C. E.; Kao, H. M., Functionalization of cubic mesoporous silica SBA-16 with carboxylic acid via one-pot synthesis route for effective removal of cationic dyes. J Hazard Mater 2016, 309, 236-48.
44. Abedi, M.; Abolmaali, S. S.; Abedanzadeh, M.; Borandeh, S.; Samani, S. M.; Tamaddon, A. M., Citric acid functionalized silane coupling versus post-grafting strategy for dual pH and saline responsive delivery of cisplatin by Fe(3)O(4)/carboxyl functionalized mesoporous SiO(2) hybrid nanoparticles: A-synthesis, physicochemical and biological characterization. Materials science & engineering. C, Materials for biological applications 2019, 104, 109922.
45. Deka, J. R.; Saikia, D.; Lu, N.-F.; Chen, K.-T.; Kao, H.-M.; Yang, Y.-C., Space confined synthesis of highly dispersed bimetallic CoCu nanoparticles as effective catalysts for ammonia borane dehydrogenation and 4-nitrophenol reduction. Applied Surface Science 2021, 538, 148091.
46. Harmer, M.; Farneth, W.; Sun, Q., High Surface Area Nafion† Resin/Silica Nanocomposites: A New Class of Solid Acid Catalyst. Journal of The American Chemical Society - J AM CHEM SOC 1996, 118.
47. M. Van Rhijn, W.; E. De Vos, D.; F. Sels, B.; D. Bossaert, W., Sulfonic acid functionalised ordered mesoporous materials as catalysts for condensation and esterification reactions. Chemical Communications 1998, (3), 317-318.
48. Margolese, D.; Melero, J. A.; Christiansen, S. C.; Chmelka, B. F.; Stucky, G. D., Direct Syntheses of Ordered SBA-15 Mesoporous Silica Containing Sulfonic Acid Groups. Chemistry of Materials 2000, 12 (8), 2448-2459.
49. Melero, J. A.; van Grieken, R.; Morales, G., Advances in the Synthesis and Catalytic Applications of Organosulfonic-Functionalized Mesostructured Materials. Chemical Reviews 2006, 106 (9), 3790-3812.
50. Das, D.; Lee, J.-F.; Cheng, S., Sulfonic acid functionalized mesoporous MCM-41 silica as a convenient catalyst for Bisphenol-A synthesis. Chemical Communications 2001, (21), 2178-2179.
51. Sasidharan, M.; Bhaumik, A., Novel and Mild Synthetic Strategy for the Sulfonic Acid Functionalization in Periodic Mesoporous Ethenylene-Silica. ACS Applied Materials & Interfaces 2013, 5 (7), 2618-2625.
52. Paniagua, M.; Cuevas, F.; Morales, G.; Melero, J. A., Sulfonic Mesostructured SBA-15 Silicas for the Solvent-Free Production of Bio-Jet Fuel Precursors via Aldol Dimerization of Levulinic Acid. ACS Sustainable Chemistry & Engineering 2021, 9 (17), 5952-5962.
53. Tahk, D.; Bang, S.; Hyung, S.; Lim, J.; Yu, J.; Kim, J.; Jeon, N. L.; Kim, H. N., Self-detachable UV-curable polymers for open-access microfluidic platforms. Lab on a chip 2020, 20 (22), 4215-4224.
54. Pirez, C.; Caderon, J.-M.; Dacquin, J.-P.; Lee, A. F.; Wilson, K., Tunable KIT-6 Mesoporous Sulfonic Acid Catalysts for Fatty Acid Esterification. ACS Catalysis 2012, 2 (8), 1607-1614.
55. Wang, Y.; Wang, D.; Tan, M.; Jiang, B.; Zheng, J.; Tsubaki, N.; Wu, M., Monodispersed Hollow SO3H-Functionalized Carbon/Silica as Efficient Solid Acid Catalyst for Esterification of Oleic Acid. ACS Applied Materials & Interfaces 2015, 7 (48), 26767-26775.
56. Trejda, M.; Kaszuba, A.; Nurwita, A.; Ziolek, M., Towards Efficient Acidic Catalysts via Optimization of SO(3)H-Organosilane Immobilization on SBA-15 under Increased Pressure: Potential Applications in Gas and Liquid Phase Reactions. Materials (Basel) 2021, 14 (23), 7226.
57. Yu, D.; Bai, J.; Wang, J.; Liang, H.; Li, C., Assembling formation of highly dispersed Pd nanoparticles supported 1D carbon fiber electrospun with excellent catalytic active and recyclable performance for Suzuki reaction. Applied Surface Science 2017, 399, 185-191.
58. Ruiz, O. N.; Fernando, K. A. S.; Wang, B.; Brown, N. A.; Luo, P. G.; McNamara, N. D.; Vangsness, M.; Sun, Y.-P.; Bunker, C. E., Graphene Oxide: A Nonspecific Enhancer of Cellular Growth. ACS Nano 2011, 5 (10), 8100-8107.
59. Eftekhari, A.; Fan, Z., Ordered mesoporous carbon and its applications for electrochemical energy storage and conversion. Materials Chemistry Frontiers 2017, 1 (6), 1001-1027.
60. Wei, J.; Zhou, D.; Sun, Z.; Deng, Y.; Xia, Y.; Zhao, D., A Controllable Synthesis of Rich Nitrogen-Doped Ordered Mesoporous Carbon for CO 2 Capture and Supercapacitors. Advanced Functional Materials 2013, 23.
61. Li, Z.; Guo, K.; Chen, X., Controllable synthesis of nitrogen-doped mesoporous carbons for supercapacitor applications. RSC Advances 2017, 7 (49), 30521-30532.
62. Saikia, D.; Deka, J. R.; Lin, C.-W.; Zeng, Y.-H.; Lu, B.-J.; Kao, H.-M.; Yang, Y.-C., Ordered mesoporous carbon with tubular framework supported SnO2 nanoparticles intertwined in MoS2 nanosheets as an anode for advanced lithium-ion batteries with outstanding performances. Electrochimica Acta 2021, 380, 138195.
63. Deka, J. R.; Saikia, D.; Chen, P.-H.; Chen, K.-T.; Kao, H.-M.; Yang, Y.-C., N-functionalized mesoporous carbon supported Pd nanoparticles as highly active nanocatalyst for Suzuki-Miyaura reaction, reduction of 4-nitrophenol and hydrodechlorination of chlorobenzene. J. Ind. Eng. Chem. 2021, 104, 529-543.
64. Bergna, D.; Varila, T.; Romar, H.; Lassi, U., Comparison of the Properties of Activated Carbons Produced in One-Stage and Two-Stage Processes. C 2018, 4 (3), 41.
65. Tamon, H.; Ishizaka, H.; Yamamoto, T.; Suzuki, T., Preparation of mesoporous carbon by freeze drying. Carbon 1999, 37 (12), 2049-2055.
66. Yasuda, H.; Tamai, H.; Ikeuchi, M.; Kojima, S., Extremely large mesoporous carbon fibers synthesized by the addition of rare earth metal complexes and their unique adsorption behaviors. Advanced Materials 1997, 9 (1), 55-58.
67. Ozaki, J.; Endo, N.; Ohizumi, W.; Igarashi, K.; Nakahara, M.; Oya, A.; Yoshida, S.; Iizuka, T., Novel preparation method for the production of mesoporous carbon fiber from a polymer blend. Carbon 1997, 35 (7), 1031-1033.
68. Liang, C.; Hong, K.; Guiochon, G. A.; Mays, J. W.; Dai, S., Synthesis of a Large-Scale Highly Ordered Porous Carbon Film by Self-Assembly of Block Copolymers. Angewandte Chemie International Edition 2004, 43 (43), 5785-5789.
69. Serrà, A.; Vallés, E., Microemulsion-Based One-Step Electrochemical Fabrication of Mesoporous Catalysts. Catalysts 2018, 8 (9), 395.
70. Ding, Q.; Hu, X., Mesoporous Materials as Catalyst support for Wastewater Treatment. Madridge Journal of Nanotechnology & Nanoscience 2019, 4 (2).
71. Ryoo, R.; Joo, S. H.; Jun, S., Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. The Journal of Physical Chemistry B 1999, 103 (37), 7743-7746.
72. Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M., Ordered Mesoporous Carbons. Advanced Materials 2001, 13 (9), 677-681.
73. Wang, J.; Liu, Q., An Ordered Mesoporous Aluminosilicate Oxynitride Template to Prepare N-Incorporated Ordered Mesoporous Carbon. The Journal of Physical Chemistry C 2007, 111 (20), 7266-7272.
74. Wu, Z.; Yang, Y.; Gu, D.; Li, Q.; Feng, D.; Chen, Z.; Tu, B.; Webley, P. A.; Zhao, D., Silica-Templated Synthesis of Ordered Mesoporous Tungsten Carbide/Graphitic Carbon Composites with Nanocrystalline Walls and High Surface Areas via a Temperature-Programmed Carburization Route. Small 2009, 5 (23), 2738-2749.
75. Wu, Z.; Pang, J.; Lu, Y., Synthesis of highly-ordered mesoporous carbon/silica nanocomposites and derivative hierarchically mesoporous carbon from a phenyl-bridged organosiloxane. Nanoscale 2009, 1 (2), 245-249.
76. Xing, Y.; Wang, Y.; Zhou, C.; Zhang, S.; Fang, B., Simple Synthesis of Mesoporous Carbon Nanofibers with Hierarchical Nanostructure for Ultrahigh Lithium Storage. ACS Applied Materials & Interfaces 2014, 6 (4), 2561-2567.
77. Wang, X.; Qiu, M.; Smith, R. L.; Yang, J.; Shen, F.; Qi, X., Ferromagnetic Lignin-Derived Ordered Mesoporous Carbon for Catalytic Hydrogenation of Furfural to Furfuryl Alcohol. ACS Sustainable Chemistry & Engineering 2020, 8 (49), 18157-18166.
78. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666-669.
79. Kim, K. L.; Lee, W.; Hwang, S. K.; Joo, S. H.; Cho, S. M.; Song, G.; Cho, S. H.; Jeong, B.; Hwang, I.; Ahn, J.-H.; Yu, Y.-J.; Shin, T. J.; Kwak, S. K.; Kang, S. J.; Park, C., Epitaxial Growth of Thin Ferroelectric Polymer Films on Graphene Layer for Fully Transparent and Flexible Nonvolatile Memory. Nano Letters 2016, 16 (1), 334-340.
80. Ahn, Y.; Jeong, Y.; Lee, D.; Lee, Y., Copper Nanowire–Graphene Core–Shell Nanostructure for Highly Stable Transparent Conducting Electrodes. ACS Nano 2015, 9 (3), 3125-3133.
81. Furue, R.; Koveke, E. P.; Sugimoto, S.; Shudo, Y.; Hayami, S.; Ohira, S.-I.; Toda, K., Arsine gas sensor based on gold-modified reduced graphene oxide. Sensors and Actuators B: Chemical 2017, 240, 657-663.
82. Tavakoli, M. M.; Tavakoli, R.; Hasanzadeh, S.; Mirfasih, M. H., Interface Engineering of Perovskite Solar Cell Using a Reduced-Graphene Scaffold. The Journal of Physical Chemistry C 2016, 120 (35), 19531-19536.
83. Liu, L.; Niu, Z.; Chen, J., Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chem Soc Rev 2016, 45 (15), 4340-4363.
84. Wu, S.; Xu, R.; Lu, M.; Ge, R.; Iocozzia, J.; Han, C.; Jiang, B.; Lin, Z., Lithium-Ion Batteries: Graphene-Containing Nanomaterials for Lithium-Ion Batteries (Adv. Energy Mater. 21/2015). Advanced Energy Materials 2015, 5 (21).
85. Hu, M.; Yao, Z.; Hui, K. N.; Hui, K. S., Novel mechanistic view of catalytic ozonation of gaseous toluene by dual-site kinetic modelling. Chemical Engineering Journal 2017, 308, 710-718.
86. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958, 80 (6), 1339-1339.
87. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M., Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4 (8), 4806-4814.
88. Gopal, A., A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomaterial. Journal of Nanomedicine & Nanotechnology 2015, 6, 1000253.
89. Abdolhosseinzadeh, S.; Asgharzadeh, H.; Seop Kim, H., Fast and fully-scalable synthesis of reduced graphene oxide. Sci Rep 2015, 5, 10160-10160.
90. Li, J.; Song, Y.; Wang, Y.; Zhang, H., Ultrafine PdCu Nanoclusters by Ultrasonic-Assisted Reduction on the LDHs/rGO Hybrid with Significantly Enhanced Heck Reactivity. ACS Applied Materials & Interfaces 2020, 12 (45), 50365-50376.
91. Pei, X.; Li, Y.; Lu, L.; Jiao, H.; Gong, W.; Zhang, L., Highly Dispersed Pd Clusters Anchored on Nanoporous Cellulose Microspheres as a Highly Efficient Catalyst for the Suzuki Coupling Reaction. ACS Applied Materials & Interfaces 2021, 13 (37), 44418-44426.
92. Li, B.; Zeng, H. C., Minimalization of Metallic Pd Formation in Suzuki Reaction with a Solid-State Organometallic Catalyst. ACS Applied Materials & Interfaces 2020, 12 (30), 33827-33837.
93. Wang, S.-B.; Zhu, W.; Ke, J.; Lin, M.; Zhang, Y.-W., Pd–Rh Nanocrystals with Tunable Morphologies and Compositions as Efficient Catalysts toward Suzuki Cross-Coupling Reactions. ACS Catalysis 2014, 4 (7), 2298-2306.
94. Fu, Q.; Meng, Y.; Fang, Z.; Hu, Q.; Xu, L.; Gao, W.; Huang, X.; Xue, Q.; Sun, Y.-P.; Lu, F., Boron Nitride Nanosheet-Anchored Pd–Fe Core–Shell Nanoparticles as Highly Efficient Catalysts for Suzuki–Miyaura Coupling Reactions. ACS Applied Materials & Interfaces 2017, 9 (3), 2469-2476.
95. Fu, W.; Zhang, Z.; Zhuang, P.; Shen, J.; Ye, M., One-pot hydrothermal synthesis of magnetically recoverable palladium/reduced graphene oxide nanocomposites and its catalytic applications in cross-coupling reactions. Journal of Colloid and Interface Science 2017, 497, 83-92.
96. Lu, Y.; Ye, T.-N.; Park, S.-W.; Li, J.; Sasase, M.; Abe, H.; Niwa, Y.; Kitano, M.; Hosono, H., Intermetallic ZrPd3-Embedded Nanoporous ZrC as an Efficient and Stable Catalyst of the Suzuki Cross-Coupling Reaction. ACS Catalysis 2020, 10 (24), 14366-14374.
97. Kim, T.-W.; Kleitz, F.; Paul, B.; Ryoo, R., MCM-48-like Large Mesoporous Silicas with Tailored Pore Structure: Facile Synthesis Domain in a Ternary Triblock Copolymer−Butanol−Water System. Journal of the American Chemical Society 2005, 127 (20), 7601-7610.
98. Zhang, Y.; Nishi, N.; Koya, I.; Sakka, T., Simultaneous Synthesis of One-and Two-Dimensional Gold Nanostructures/Reduced Graphene Oxide Composites in the Redox-Active Ionic Liquid/Water Interfacial System. Chemistry of Materials 2020, 32 (15), 6374-6383.
99. Aceto, M., 8 - The Use of ICP-MS in Food Traceability. In Advances in Food Traceability Techniques and Technologies, Espiñeira, M.; Santaclara, F. J., Eds. Woodhead Publishing: 2016; pp 137-164.
100. Kim, S.; Varga, G.; Seo, M.; Sápi, A.; Rácz, V.; Gómez-Pérez, J. F.; Sebők, D.; Lee, J.; Kukovecz, Á.; Kónya, Z., Nesting Well-Defined Pt Nanoparticles within a Hierarchically Porous Polymer as a Heterogeneous Suzuki–Miyaura Catalyst. ACS Applied Nano Materials 2021, 4 (4), 4070-4076.
101. Narkhede, N.; Uttam, B.; Rao, C. P., Calixarene-Assisted Pd Nanoparticles in Organic Transformations: Synthesis, Characterization, and Catalytic Applications in Water for C–C Coupling and for the Reduction of Nitroaromatics and Organic Dyes. ACS Omega 2019, 4 (3), 4908-4917.
102. Fu, W.; Zhang, Z.; Zhuang, P.; Shen, J.; Ye, M., One-pot hydrothermal synthesis of magnetically recoverable palladium/reduced graphene oxide nanocomposites and its catalytic applications in cross-coupling reactions. J Colloid Interface Sci 2017, 497, 83-92.
103. Li, B.; Zeng, H. C., Minimalization of Metallic Pd Formation in Suzuki Reaction with a Solid-State Organometallic Catalyst. ACS Appl Mater Interfaces 2020, 12 (30), 33827-33837. |