博碩士論文 109324030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:3.136.236.178
姓名 王又卉(Yu-Hui Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以第一原理計算探討吸附銅團簇和銅鐵團簇的二氧化鈦對甲醇解離機制的影響
(First Principles Calculations Investigating the Effect of Copper and Iron Clusters on TiO2 Photocatalysts for Methanol Dissociation)
相關論文
★ 以第一原理計算鋰嵌入與擴散於具氧空缺之二氧化鈦結構★ 鋯金屬有機框架材料之碳氫氣體吸附與分離預測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-6-30以後開放)
摘要(中) 隨著工業發展,環保意識抬頭,許多人致力於實現環境永續發展,因此,減少工業發展產生的汙染物便成了重要的議題。光觸媒經常應用於環境汙染物的降解,因為具有低成本、效率高等特性,因此光觸媒的發展備受矚目。而二氧化鈦因其無毒、穩定、成本低廉、豐饒等特性成為最受關注的光觸媒材料,因此本研究通過第一原理計算探討二氧化鈦表面改質的特性,以期二氧化鈦能具有更廣泛的應用。
在這項研究中,我們討論了三種不同的結構,分別為未經改質的銳鈦礦 (101) 面、銅團簇吸附的銳鈦礦 (101) 面以及銅鐵雙金屬團簇吸附的銳鈦礦 (101) 面,並探討三種結構的電子結構、甲醇的吸附位點及甲醇的解離機制。模擬計算的結果表明,吸附金屬的銳鈦礦 (101) 面具有較小的帶隙,銅團簇吸附的銳鈦礦 (101) 面的帶隙為1.579 eV,銅鐵雙團簇吸附的銳鈦礦 (101) 面的帶隙為1.527 eV。意即經改質的銳鈦礦 (101) 面的應用範圍將不再受限於紫外光,拓展其應用於可見光和紅外光的環境。值得注意的是,雙金屬團簇改質的銳鈦礦 (101) 面具有較好的縮小帶隙的效應。此外,甲醇的光催化製氫反應也是光觸媒熱門的應用之一,因此甲醇的解離機制也是我們的研究重點,探討金屬團簇的改質是否具有降低甲醇解離反應能障的效應。本研究首先測試銳鈦礦 (101) 表面上所有可能的甲醇吸附位點,並經由結構優化的計算結果確定甲醇吸附於三種結構上最穩定的構型。接著進一步計算甲醇於三種不同結構上的解離機制,甲醇的解離分為兩步驟,雖然經金屬團簇改質的銳鈦礦 (101) 面於第二步都具有略高的能障,但第一步的甲醇解離能障於銅鐵團簇改質的銳鈦礦 (101) 面有變小的效應,這有利於甲醇解離反應的進行。
摘要(英) With the development of industry, the issue of environmental pollution is becoming an increasingly important issue that cannot be ignored. Many people are devoted to the sustainable development of the environment, therefore, the reduction of pollutants generated by industrial development has become an important issue. Photocatalysts are often used in the degradation of environmental pollutants, because of its low cost and high efficiency, so the development of photocatalysts has attracted much attention. Titanium dioxide is the most popular photocatalyst material because of its non-toxic, stable, low cost, and abundant. Therefore, this study investigates the properties of titanium dioxide modification by first principle calculations with the purpose of titanium dioxide having a wider application.
In this study, we discussed three different structures, pristine TiO2(101), Cu5/TiO2(101), and Cu4Fe/TiO2(101), and investigated the electronic structure, methanol adsorption sites, and methanol dissociation mechanism of the three structures. The results of the calculations show that TiO2(101) adsorbed with metal clusters have a smaller band gap of 1.579 eV for Cu5/TiO2(101) and 1.527 eV for Cu4Fe/TiO2(101). This means that the application of modified TiO2(101) surface is no longer limited to ultraviolet light, but expands its application to the visible and infrared light environment. It is worth noting that the bimetallic cluster-modified TiO2(101) shows a better band gap reduction effect. In addition, the photocatalytic hydrogen production reaction of methanol is one of the popular applications of photocatalysts, so the dissociation mechanism of methanol is the main concern of our study to investigate whether the TiO2(101) modification by adsorption of metal clusters has the effect of reducing the energy barrier of methanol dissociation reaction. In this study, all the possible methanol adsorption sites on TiO2(101) were tested and the most stable methanol adsorption configurations on the three structures were determined by geometry optimization calculations. Then, the dissociation mechanism of methanol on the three different structures was calculated. The dissociation mechanism of methanol is divided into two steps. Although TiO2(101) modified by metal clusters has a slightly higher energy barrier in the second step, the energy barrier in the first step has a smaller effect on Cu4Fe/TiO2(101), which facilitates the dissociation reaction of methanol.
關鍵字(中) ★ 二氧化鈦
★ 甲醇解離
★ 光觸媒
關鍵字(英) ★ anatase
★ methanol dissociation
★ photocatalyst
論文目次 Chapter 1 Background 1
1.1 Introduction 1
1.2 Modified TiO2 3
1.2.1 Experimental Study on Cu modified TiO2 photocatalysts 5
1.2.2 Computational Study on Cu modified TiO2 photocatalyst 8
1.2.3 Study on the mechanism of CH3OH decomposition on TiO2 10
1.2.4 Study on the CH3OH dissociation on Cu modified TiO2 15
1.3 Motivation 17
Chapter 2 Theory 18
2.1 First principles calculation 18
2.2 Density functional theory (DFT) 19
2.3 Hohenberg-Kohn Theorem 20
2.4 Kohn-Sham equation 21
2.5 Local density approximation (LDA) 22
2.6 Generalized gradient approximation (GGA) 22
2.7 GGA+U 23
2.8 Self-consistent field (SCF) 24
2.9 Bloch’s theorem 24
2.10 Pseudopotential 25
2.11 Cutoff energy 27
2.12 K-point 27
2.13 Spin polarization 28
2.14 Transitional state theory 28
Chapter 3 Computational Details 31
3.1 Software 32
3.2 Convergence testing 33
3.3 Pristine TiO2 37
3.4 Cu5 cluster adsorbed on anatase (101) surface 39
3.5 Cu4Fe cluster adsorb on anatase (101) surface 43
Chapter 4 Results and Discussion 46
4.1 Electronic structure 46
4.2 Adsorption of methanol 52
4.3 First step of dissociation of methanol adsorbed on three structures 59
4.4 Second step of dissociation of methanol adsorbed on three structures 68
4.5 Dissociation mechanism of methanol adsorbed on three structures 76
4.6 Mulliken charge 81
Chapter 5 Conclusions 84
Reference 86
參考文獻 1. Tan, S. S.; Zou, L.; Hu, E., Photocatalytic Reduction of Carbon Dioxide into Gaseous Hydrocarbon Using TiO2 Pellets. Catalysis today 2006, 115, 269-273.
2. Jafarzadeh, A.; Bal, K.; Bogaerts, A.; Neyts, E., CO2 Activation on TiO2-Supported Cu5 and Ni5 Nanoclusters: Effect of Plasma-Induced Surface Charging. The Journal of Physical Chemistry C 2019, 123, 6516-6525.
3. Lachheb, H.; Puzenat, E.; Houas, A.; Ksibi, M.; Elaloui, E.; Guillard, C.; Herrmann, J.-M., Photocatalytic Degradation of Various Types of Dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in Water by Uv-Irradiated Titania. Applied Catalysis B: Environmental 2002, 39, 75-90.
4. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W., Environmental Applications of Semiconductor Photocatalysis. Chemical reviews 1995, 95, 69-96.
5. Fujishima, A.; Rao, T. N.; Tryk, D. A., Titanium Dioxide Photocatalysis. Journal of photochemistry and photobiology C: Photochemistry reviews 2000, 1, 1-21.
6. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. nature 1972, 238, 37-38.
7. Chen, T.; Feng, Z.; Wu, G.; Shi, J.; Ma, G.; Ying, P.; Li, C., Mechanistic Studies of Photocatalytic Reaction of Methanol for Hydrogen Production on Pt/TiO2 by in Situ Fourier Transform Ir and Time-Resolved Ir Spectroscopy. The Journal of Physical Chemistry C 2007, 111, 8005-8014.
8. Wu, N.-L.; Lee, M.-S., Enhanced TiO2Photocatalysis by Cu in Hydrogen Production from Aqueous Methanol Solution. International Journal of Hydrogen Energy 2004, 29, 1601-1605.
9. Kawai, T.; Sakata, T., Photocatalytic Hydrogen Production from Liquid Methanol and Water. Journal of the Chemical Society, Chemical Communications 1980, 694-695.
10. Sakata, T.; Kawai, T., Heterogeneous Photocatalytic Production of Hydrogen and Methane from Ethanol and Water. Chemical Physics Letters 1981, 80, 341-344.
11. Ghamsari, Z. S.; Bashiri, H., Hydrogen Production through Photoreforming of Methanol by Cu (S)/ TiO2 Nanocatalyst: Optimization and Simulation. Surfaces and Interfaces 2020, 21, 100709.
12. Chiarello, G. L.; Aguirre, M. H.; Selli, E., Hydrogen Production by Photocatalytic Steam Reforming of Methanol on Noble Metal-Modified TiO2. Journal of Catalysis 2010, 273, 182-190.
13. Chiarello, G. L.; Forni, L.; Selli, E., Photocatalytic Hydrogen Production by Liquid-and Gas-Phase Reforming of Ch3oh over Flame-Made TiO2 and Au/TiO2. Catalysis Today 2009, 144, 69-74.
14. Xu, C.; Yang, W.; Guo, Q.; Dai, D.; Chen, M.; Yang, X., Molecular Hydrogen Formation from Photocatalysis of Methanol on Anatase-Tio(2)(101). J Am Chem Soc 2014, 136, 602-5.
15. Kavan, L.; Grätzel, M.; Gilbert, S.; Klemenz, C.; Scheel, H., Electrochemical and Photoelectrochemical Investigation of Single-Crystal Anatase. Journal of the American Chemical Society 1996, 118, 6716-6723.
16. Shankar, R.; Shim, W. J.; An, J. G.; Yim, U. H., A Practical Review on Photooxidation of Crude Oil: Laboratory Lamp Setup and Factors Affecting It. Water Research 2015, 68, 304-315.
17. He, H.; Zapol, P.; Curtiss, L. A., Computational Screening of Dopants for Photocatalytic Two-Electron Reduction of CO2 on Anatase (101) Surfaces. Energy & Environmental Science 2012, 5, 6196-6205.
18. Wu, N.; Wang, J.; Tafen, D. N.; Wang, H.; Zheng, J.-G.; Lewis, J. P.; Liu, X.; Leonard, S. S.; Manivannan, A., Shape-Enhanced Photocatalytic Activity of Single-Crystalline Anatase TiO2 (101) Nanobelts. Journal of the American Chemical Society 2010, 132, 6679-6685.
19. Haa, M.-A.; Alexandrova, A. N., Oxygen Vacancies of Anatase (101): Extreme Sensitivity to the Density Functional Theory Method. Journal of chemical theory and computation 2016, 12, 2889-2895.
20. Setvín, M.; Aschauer, U.; Scheiber, P.; Li, Y.-F.; Hou, W.; Schmid, M.; Selloni, A.; Diebold, U., Reaction of O2 with Subsurface Oxygen Vacancies on TiO2 Anatase (101). Science 2013, 341, 988-991.
21. Iyemperumal, S. K.; Deskins, N. A., Activation of Co 2 by Supported Cu Clusters. Physical Chemistry Chemical Physics 2017, 19, 28788-28807.
22. Colón, G.; Maicu, M.; Hidalgo, M. s.; Navío, J., Cu-Doped TiO2 Systems with Improved Photocatalytic Activity. Applied Catalysis B: Environmental 2006, 67, 41-51.
23. Selloni, A., Anatase Shows Its Reactive Side. Nature Materials 2008, 7, 613-615.
24. Lazzeri, M.; Vittadini, A.; Selloni, A., Structure and Energetics of Stoichiometric Tio 2 Anatase Surfaces. Physical Review B 2001, 63, 155409.
25. Sharma, P. K.; Cortes, M. A. L.; Hamilton, J. W.; Han, Y.; Byrne, J. A.; Nolan, M., Surface Modification of TiO2 with Copper Clusters for Band Gap Narrowing. Catalysis Today 2019, 321, 9-17.
26. Yan, Y.; Yu, Y.; Huang, S.; Yang, Y.; Yang, X.; Yin, S.; Cao, Y., Adjustment and Matching of Energy Band of TiO2-Based Photocatalysts by Metal Ions (Pd, Cu, Mn) for Photoreduction of Co2 into Ch4. The Journal of Physical Chemistry C 2017, 121, 1089-1098.
27. Mancuso, A.; Sacco, O.; Sannino, D.; Pragliola, S.; Vaiano, V., Enhanced Visible-Light-Driven Photodegradation of Acid Orange 7 Azo Dye in Aqueous Solution Using Fe-N Co-Doped TiO2. Arabian Journal of Chemistry 2020, 13, 8347-8360.
28. Kaur, N.; Shahi, S. K.; Shahi, J. S.; Sandhu, S.; Sharma, R.; Singh, V., Comprehensive Review and Future Perspectives of Efficient N-Doped, Fe-Doped and (N,Fe)-Co-Doped Titania as Visible Light Active Photocatalysts. Vacuum 2020, 178.
29. Lin, Y.; Jiang, Z.; Zhu, C.; Zhang, R.; Hu, X.; Zhang, X.; Zhu, H.; Lin, S. H., The Electronic Structure, Optical Absorption and Photocatalytic Water Splitting of (Fe + ni)-Codoped TiO2: A Dft +U Study. International Journal of Hydrogen Energy 2017, 42, 4966-4976.
30. Chen, B.-R.; Nguyen, V.-H.; Wu, J. C.; Martin, R.; Kočí, K., Production of Renewable Fuels by the Photohydrogenation of CO2: Effect of the Cu Species Loaded onto TiO2 Photocatalysts. Physical Chemistry Chemical Physics 2016, 18, 4942-4951.
31. Yoong, L.; Chong, F. K.; Dutta, B. K., Development of Copper-Doped TiO2 Photocatalyst for Hydrogen Production under Visible Light. Energy 2009, 34, 1652-1661.
32. López, R.; Gómez, R.; Llanos, M. E., Photophysical and Photocatalytic Properties of Nanosized Copper-Doped Titania Sol–Gel Catalysts. Catalysis Today 2009, 148, 103-108.
33. Amorós-Pérez, A.; Cano-Casanova, L.; Lillo-Ródenas, M. Á.; Román-Martínez, M. C., Cu/ TiO2 Photocatalysts for the Conversion of Acetic Acid into Biogas and Hydrogen. Catalysis Today 2017, 287, 78-84.
34. Seriani, N.; Pinilla, C.; Crespo, Y., Presence of Gap States at Cu/TiO2 Anatase Surfaces: Consequences for the Photocatalytic Activity. The Journal of Physical Chemistry C 2015, 119, 6696-6702.
35. Guo, Q.; Xu, C.; Ren, Z.; Yang, W.; Ma, Z.; Dai, D.; Fan, H.; Minton, T. K.; Yang, X., Stepwise Photocatalytic Dissociation of Methanol and Water on TiO2 (110). Journal of the American Chemical Society 2012, 134, 13366-13373.
36. Xu, C.; Yang, W.; Guo, Q.; Dai, D.; Chen, M.; Yang, X., Molecular Hydrogen Formation from Photocatalysis of Methanol on TiO2 (110). Journal of the American Chemical Society 2013, 135, 10206-10209.
37. Xu, C.; Yang, W.; Guo, Q.; Dai, D.; Chen, M.; Yang, X., Molecular Hydrogen Formation from Photocatalysis of Methanol on Anatase-TiO2 (101). Journal of the American Chemical Society 2014, 136, 602-605.
38. Setvin, M.; Shi, X.; Hulva, J.; Simschitz, T.; Parkinson, G. S.; Schmid, M.; Di Valentin, C.; Selloni, A.; Diebold, U., Methanol on Anatase TiO2 (101): Mechanistic Insights into Photocatalysis. ACS catalysis 2017, 7, 7081-7091.
39. Lang, X.; Liang, Y.; Sun, L.; Zhou, S.; Lau, W.-M., Interplay between Methanol and Anatase TiO2 (101) Surface: The Effect of Subsurface Oxygen Vacancy. The Journal of Physical Chemistry C 2017, 121, 6072-6080.
40. Zhang, Z.; Bondarchuk, O.; White, J.; Kay, B. D.; Dohnálek, Z., Imaging Adsorbate O− H Bond Cleavage: Methanol on TiO2 (110). Journal of the American Chemical Society 2006, 128, 4198-4199.
41. Shen, M.; Henderson, M. A., Identification of the Active Species in Photochemical Hole Scavenging Reactions of Methanol on TiO2. The Journal of Physical Chemistry Letters 2011, 2, 2707-2710.
42. Li, G.; Huang, J.; Chen, J.; Deng, Z.; Huang, Q.; Liu, Z.; Guo, W.; Cao, R., Highly Active Photocatalyst of Cu2O/TiO2 Octahedron for Hydrogen Generation. ACS Omega 2019, 4, 3392-3397.
43. Li, G.; Huang, J.; Deng, Z.; Chen, J.; Huang, Q.; Liu, Z.; Guo, W.; Cao, R., Highly Active Photocatalyst of CuOx Modified TiO2 Arrays for Hydrogen Generation. Crystal Growth & Design 2019, 19, 5784-5790.
44. Hohenberg, P.; Kohn, W., Inhomogeneous Electron Gas. Physical review 1964, 136, B864.
45. Kohn, W.; Sham, L., Quantum Density Oscillations in an Inhomogeneous Electron Gas. Physical Review 1965, 137, A1697.
46. Kohn, W., Nobel Lecture: Electronic Structure of Matter—Wave Functions and Density Functionals. Reviews of Modern Physics 1999, 71, 1253.
47. Anisimov, V. I.; Aryasetiawan, F.; Lichtenstein, A., First-Principles Calculations of the Electronic Structure and Spectra of Strongly Correlated Systems: The Lda+ U Method. Journal of Physics: Condensed Matter 1997, 9, 767.
48. Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T.; Joannopoulos, a. J., Iterative Minimization Techniques for Ab Initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients. Reviews of modern physics 1992, 64, 1045.
49. Alarco, J.; Talbot, P.; Mackinnon, I., Comparison of Functionals for Metal Hexaboride Band Structure Calculations. Modeling and Numerical Simulation of Material Science 2014, 4, 53-69.
50. Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith, D.; Andzelm, J., A Generalized Synchronous Transit Method for Transition State Location. Computational materials science 2003, 28, 250-258.
51. Schlegel, H. B., Geometry Optimization on Potential Energy Surfaces. In Modern Electronic Structure Theory: Part I, World Scientific: 1995; pp 459-500.
52. Monkhorst, H. J.; Pack, J. D., Special Points for Brillouin-Zone Integrations. Physical review B 1976, 13, 5188.
53. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Physical review letters 1996, 77, 3865.
54. Vanderbilt, D., Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Physical review B 1990, 41, 7892.
55. Li, R.-Q.; Li, D.-X.; Zhou, D.-T.; Qin, X.-M.; Yan, W.-J., Theoretical Studies on the Electronic Structures and Optical Properties of (Cu, C)-Codoped Rutile TiO2 from Gga+ U Calculations. Journal of Molecular Graphics and Modelling 2019, 90, 104-108.
56. Nolan, M.; Elliott, S. D., The P-Type Conduction Mechanism in Cu 2 O: A First Principles Study. Physical Chemistry Chemical Physics 2006, 8, 5350-5358.
57. Wu, D.; Zhang, Q.; Tao, M., Lsda+ U Study of Cupric Oxide: Electronic Structure and Native Point Defects. Physical Review B 2006, 73, 235206.
58. Carey, J. J.; Nolan, M., Dissociative Adsorption of Methane on the Cu and Zn Doped (111) Surface of CeO2. Applied Catalysis B: Environmental 2016, 197, 324-336.
59. Mathew, S.; Ganguly, P.; Rhatigan, S.; Kumaravel, V.; Byrne, C.; Hinder, S. J.; Bartlett, J.; Nolan, M.; Pillai, S. C., Cu-Doped TiO2: Visible Light Assisted Photocatalytic Antimicrobial Activity. Applied Sciences 2018, 8, 2067.
60. Yeh, H.-L.; Tai, S.-H.; Hsieh, C.-M.; Chang, B. K., First-Principles Study of Lithium Intercalation and Diffusion in Oxygen-Defective Titanium Dioxide. The Journal of Physical Chemistry C 2018, 122, 19447-19454.
61. Chen, Q. L.; Li, B.; Zheng, G.; He, K. H.; Zheng, A. S., First-Principles Calculations on Electronic Structures of Fe-Vacancy-Codoped TiO2 Anatase (1 0 1) Surface. Physica B: Condensed Matter 2011, 406, 3841-3846.
62. Wu, H.-C.; Li, S.-H.; Lin, S.-W., Effect of Fe Concentration on Fe-Doped Anatase TiO2 from Gga+ U Calculations. International Journal of Photoenergy 2012, 2012.
63. Zhang, L.; Cole, J. M., Adsorption Properties of P-Methyl Red Monomeric-to-Pentameric Dye Aggregates on Anatase (101) Titania Surfaces: First-Principles Calculations of Dye/TiO2 Photoanode Interfaces for Dye-Sensitized Solar Cells. ACS applied materials & interfaces 2014, 6, 15760-15766.
64. Gesesse, G. D.; Wang, C.; Chang, B. K.; Tai, S.-H.; Beaunier, P.; Wojcieszak, R.; Remita, H.; Colbeau-Justin, C.; Ghazzal, M. N., A Soft-Chemistry Assisted Strong Metal–Support Interaction on a Designed Plasmonic Core–Shell Photocatalyst for Enhanced Photocatalytic Hydrogen Production. Nanoscale 2020, 12, 7011-7023.
65. Gao, P.; Yang, L.; Xiao, S.; Wang, L.; Guo, W.; Lu, J., Effect of Ru, Rh, Mo, and Pd Adsorption on the Electronic and Optical Properties of Anatase TiO2 (101): A Dft Investigation. Materials 2019, 12, 814.
66. Yang, L.; Gao, P.; Lu, J.; Guo, W.; Zhuang, Z.; Wang, Q.; Li, W.; Feng, Z., Mechanism Analysis of Au, Ru Noble Metal Clusters Modified on TiO2 (101) to Intensify Overall Photocatalytic Water Splitting. RSC advances 2020, 10, 20654-20664.
67. Halgren, T. A.; Lipscomb, W. N., The Synchronous-Transit Method for Determining Reaction Pathways and Locating Molecular Transition States. Chemical Physics Letters 1977, 49, 225-232.
68. Segall, M.; Lindan, P. J.; Probert, M. a.; Pickard, C. J.; Hasnip, P. J.; Clark, S.; Payne, M., First-Principles Simulation: Ideas, Illustrations and the Castep Code. Journal of physics: condensed matter 2002, 14, 2717.
69. Burdett, J. K.; Hughbanks, T.; Miller, G. J.; Richardson Jr, J. W.; Smith, J. V., Structural-Electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K. Journal of the American Chemical Society 1987, 109, 3639-3646.
70. Hashimoto, K.; Irie, H.; Fujishima, A., TiO2 Photocatalysis: A Historical Overview and Future Prospects. Japanese journal of applied physics 2005, 44, 8269.
71. Henderson, M. A., A Surface Science Perspective on TiO2 Photocatalysis. Surface Science Reports 2011, 66, 185-297.
72. Ma, Y.; Wang, X.; Jia, Y.; Chen, X.; Han, H.; Li, C., Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations. Chemical reviews 2014, 114, 9987-10043.
73. Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q., Anatase TiO2 Single Crystals with a Large Percentage of Reactive Facets. Nature 2008, 453, 638-641.
74. Pan, J.; Liu, G.; Lu, G. Q.; Cheng, H. M., On the True Photoreactivity Order of {001},{010}, and {101} Facets of Anatase TiO2 Crystals. Angewandte Chemie International Edition 2011, 50, 2133-2137.
75. Concepción, P.; Boronat, M.; García-García, S.; Fernández, E.; Corma, A., Enhanced Stability of Cu Clusters of Low Atomicity against Oxidation. Effect on the Catalytic Redox Process. ACS Catalysis 2017, 7, 3560-3568.
76. de Lara-Castells, M. P.; Hauser, A. W.; Ramallo-López, J. M.; Buceta, D.; Giovanetti, L. J.; López-Quintela, M. A.; Requejo, F. G., Increasing the Optical Response of TiO2 and Extending It into the Visible Region through Surface Activation with Highly Stable Cu5 Clusters. Journal of Materials Chemistry A 2019, 7, 7489-7500.
77. Calaminici, P.; Köster, A. M.; Russo, N.; Salahub, D. R., A Density Functional Study of Small Copper Clusters: Cun (N⩽5). The Journal of Chemical Physics 1996, 105, 9546-9556.
78. Cao, Z.; Wang, Y.; Zhu, J.; Wu, W.; Zhang, Q., Static Polarizabilities of Copper Cluster Monocarbonyls Cu N Co (N= 2− 13) and Selectivity of Co Adsorption on Copper Clusters. The Journal of Physical Chemistry B 2002, 106, 9649-9654.
79. Yang, M.; Jackson, K. A., First-Principles Investigations of the Polarizability of Small-Sized and Intermediate-Sized Copper Clusters. The Journal of chemical physics 2005, 122, 184317.
80. Jafarzadeh, A.; Bal, K. M.; Bogaerts, A.; Neyts, E. C., CO2 Activation on TiO2-Supported Cu5 and Ni5 Nanoclusters: Effect of Plasma-Induced Surface Charging. The Journal of Physical Chemistry C 2019, 123, 6516-6525.
81. Ling, W.; Dong, D.; Shi-Jian, W.; Zheng-Quan, Z., Geometrical, Electronic, and Magnetic Properties of Cunfe (N= 1–12) Clusters: A Density Functional Study. Journal of Physics and Chemistry of Solids 2015, 76, 10-16.
82. Deskins, N. A.; Dupuis, M., Electron Transport Via Polaron Hopping in Bulk TiO2: A Density Functional Theory Characterization. Physical Review B 2007, 75, 195212.
83. Assadi, M. H. N.; Hanaor, D. A., Theoretical Study on Copper′s Energetics and Magnetism in TiO2 Polymorphs. Journal of Applied Physics 2013, 113, 233913.
84. Dharmale, N.; Chaudhury, S.; Mahamune, R.; Dash, D., Comparative Study on Structural, Electronic, Optical and Mechanical Properties of Normal and High Pressure Phases Titanium Dioxide Using Dft. Materials Research Express 2020, 7, 054004.
85. Assadi, M. H. N.; Hanaor, D. A., The Effects of Copper Doping on Photocatalytic Activity at (101) Planes of Anatase TiO2: A Theoretical Study. Applied Surface Science 2016, 387, 682-689.
86. Guo, M.; Du, J., First-Principles Study of Electronic Structures and Optical Properties of Cu, Ag, and Au-Doped Anatase TiO2. Physica B: Condensed Matter 2012, 407, 1003-1007.
87. Jaiswal, R.; Bharambe, J.; Patel, N.; Dashora, A.; Kothari, D. C.; Miotello, A., Copper and Nitrogen Co-Doped TiO2 Photocatalyst with Enhanced Optical Absorption and Catalytic Activity. Applied Catalysis B: Environmental 2015, 168-169, 333-341.
88. Dashora, A.; Patel, N.; Kothari, D. C.; Ahuja, B. L.; Miotello, A., Formation of an Intermediate Band in the Energy Gap of TiO2 by Cu–N-Codoping: First Principles Study and Experimental Evidence. Solar Energy Materials and Solar Cells 2014, 125, 120-126.
89. Belošević-Čavor, J.; Batalović, K.; Koteski, V.; Radaković, J.; Rangel, C. M., Enhancing Photocatalytic Properties of Rutile TiO2 by Codoping with N and Metals – Ab Initio Study. International Journal of Hydrogen Energy 2015, 40, 9696-9703.
90. Setvin, M.; Shi, X.; Hulva, J.; Simschitz, T.; Parkinson, G. S.; Schmid, M.; Di Valentin, C.; Selloni, A.; Diebold, U., Methanol on Anatase TiO2 (101): Mechanistic Insights into Photocatalysis. ACS Catal 2017, 7, 7081-7091.
91. Lang, X.; Liang, Y.; Sun, L.; Zhou, S.; Lau, W.-M., Interplay between Methanol and Anatase TiO2 (101) Surface: The Effect of Subsurface Oxygen Vacancy. The Journal of Physical Chemistry C 2017, 121, 6072-6080.
92. Guo, Q.; Zhou, C.; Ma, Z.; Yang, X., Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Advanced Materials 2019, 31, 1901997.
93. Zhang, J.; Peng, C.; Wang, H.; Hu, P., Identifying the Role of Photogenerated Holes in Photocatalytic Methanol Dissociation on Rutile TiO2 (110). ACS Catalysis 2017, 7, 2374-2380.
指導教授 謝介銘 張博凱(Chieh-Ming Hsieh Bor-Kae Chang) 審核日期 2022-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明