博碩士論文 109223016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.145.167.121
姓名 詹崴傑(Wei-Chieh Chan)  查詢紙本館藏   畢業系所 化學學系
論文名稱 U-型環戊烷二噻吩小分子與噻吩吡嗪 介面染敏之開發
相關論文
★ Cycloiptycene分子之合成與自組裝行為之研究★ 含二噻吩蒽[3,2-b:2′,3′-d]噻吩單元之敏化染料太陽能電池
★ 以有機磷酸修飾電極表面功函數及對有機發光元件效率影響研究★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 具交聯結構之磺酸化聚馬來醯亞胺高分子質子傳導膜之開發與製備★ 有機薄膜電晶體材料苯三併環噻吩及苯四併環噻吩衍生物之開發
★ 有機薄膜電晶體高分子材料併環噻吩系列之開發★ 有機薄膜電晶體材料及可溶性有機薄膜電晶體材料衍生物之開發
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 具交聯結構之苯乙烯-馬來醯亞胺 接枝型高分子質子傳導膜之開發與製備
★ 有機薄膜電晶體材料苯三併環噻吩及可溶性聯噻吩衍生物之開發★ 可溶性有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 含benzotriazole 之D-π-A 共軛形光敏染料及其染料太陽能電池★ 有機薄膜電晶材料苯併環噻吩和可溶性硫醚噻吩衍生物之開發
★ 具咪唑鹽團聯高分子之陰離子傳導膜的開發與製備★ 可溶性有機薄膜電晶體材料三併環 及四併環噻吩衍生物之開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-19以後開放)
摘要(中) 本論文主要分為有機光伏打電池 (OPVs) 與鈣鈦礦太陽能電池的電洞
傳輸層 (HTLs) 與添加劑材料之開發。
第一部分,以環戊烷二噻吩(CDT)為核心,接上不同的分子基團:雙併噻吩 (TT) 和 噻吩吡嗪 (TP) 以延續共軛核心,並於末端接上拉電子基團茚酮 (IN)、二氯茚酮 (INCl) 和 二氰乙烯基 (DCV),製備出四個新型光
電材料 : IN-TT-CDT-b8 (1)、INCl-TT-CDT-b8 (2)、DCV-TT-CDT-b8 (3) 及DCV-TP-CDT-b8 (4)。此四種新開發之 NFA 材料不僅能應用於 OPV,也能作為添加劑應用於鈣鈦礦太陽能電池。
第二部分,以 TP 單元為核心,並以 D-π-A 的分子設計為目標,成功
開發出兩個電洞傳輸材料。首先於一側接上三苯基氨 (TPA) 基團,並於另
一側接上錨定基團 (anchoring group) : 氰乙酸乙烯基 (CA) 和二氰乙烯基(DCV),製備出兩個新型電洞傳輸材料 TP-CA (5) 和 TP-MN (6),以應用在鈣鈦礦太陽能電池。
這些新材料 皆透過 UV-vis 及 DPV 測量其光學及電化學性質(HOMO、LUMO 與能隙),且經 DSC 及 TGA 測量其熱穩定性。這些新開發有機光電材料正進行相關的元件測試。
摘要(英) Various organic optoelectronic materials were newly synthesized and characterized for the applications in organic photovoltaic cells (OPVs) and perovskite solar cells (PSCs).
At first, central cyclopentadithiophene (CDT) unit was coupled with two different π-spacers, 2-hexylthienothiophene (TT) and 2,3-bis(4-(octyloxy)phenyl)thieno[3,4-b]pyrazine (TP) to give conjugated TT-CDT and TP-CDT moieties. Then, the latter were end-capped with electron-withdrawing groups, such as dicyanomethylene indanone (IN), dichlorodicyanomethylene indanone (INCl), and dicyanovinyl (DCV), yielding four final compounds, IN-TTCDT-b8 (1), INCl
-TT-CDT-b8 (2), DCV-TT-CDT-b8 (3) and DCV-TP-CDTb8 (4), respectively. In addition to the application in OPVs, these newly developed non-fullerene acceptors could also be used as passivating agents in PSCs based on our recent studies.
Further, D-π-A based new hole-transporting materials, TP-CA (5) and TPMN (6), were developed for application in Sn-PSCs.
The optical and electrochemical properties of these newly developed compounds were characterized by UV-vis spectroscopy and DPV. Chemical structures were characterized by 1H NMR, 13C NMR and mass spectrometry. Thermal properties were investigated by DSC and TGA. At present,
optoelectronic devices based on these new non-fullerene acceptors and hole
transporting materials are under optimization.
關鍵字(中) ★ 有機光伏打電池
★ 鈣鈦礦太陽能電池
★ 非富勒烯材料
★ 有機光電材料
關鍵字(英)
論文目次 摘要................................................................................................................i
Abstract .........................................................................................................ii
謝 誌............................................................................................................iii
目錄............................................................................................................... v
List of Figure...............................................................................................xii
List of Schemes..........................................................................................xiii
List of Tables..............................................................................................xvi
附錄...........................................................................................................xvii
第一章 緒論................................................................................................. 1
1-1 前言................................................................................................... 2
1-2 有機太陽能電池之概論...................................................................... 2
1-2-1 矽晶太陽能電池 ........................................................................ 4
1-2-2 無機化合物半導體太陽能電池 ................................................ 4
1-2-3 有機太陽能電池 ........................................................................ 5
1-3 有機光伏打電池之基本元件組成...................................................... 6
1-4 有機光伏打電池之運作原理.............................................................. 6
1-4-1 光子吸收 (Optical absorption).................................................... 7
1-4-2 激子擴散與分離 (Exction diffusion and dissociation)............... 8
1-4-3 電荷傳輸 (Charge transfer)......................................................... 8
1-4-4 電荷收集 (Charge collection) ..................................................... 8
vi
1-5 有機光伏打電池之元件演變.............................................................. 9
1-5-1 雙層式異質接面 (Bilayer heterojunction, PHJ)......................... 9
1-5-2 體異質接面 (Bulk heterojunction, BHJ) .................................. 9
1-5-3 串聯結構 .................................................................................... 10
1-6 有機光伏打電池參數介紹................................................................ 10
1-6-1 J-V 曲線................................................................................... 12
1-6-2 短路電流 (Short circuit current, Jsc) ........................................ 12
1-6-3 開環電壓 (Open circuit voltage, Voc)....................................... 13
1-6-4 外部量子效率 (Eternal quantum efficiency, EQE) .................. 13
1-13-5 填充因子 (Fill factor, FF) ....................................................... 13
1-13-6 能量轉換效率 (Power conversion efficiency, η, PCE)........... 13
1-7 有機光伏打電池材料........................................................................ 14
1-7-1 P-type 有機光伏打材料 (Donor)........................................... 14
1-7-2 N-type 有機光伏打材料 (Acceptor)...................................... 17
1-8 鈣鈦礦太陽能電池............................................................................ 25
1-8-1 鈣鈦礦太陽能電池簡介 ............................................................ 25
1-8-2 鈣鈦礦太陽能電池的組成 ........................................................ 27
1-8-3 工作原理 .................................................................................... 30
1-8-4 電洞傳輸材料 ............................................................................ 30
1-9 研究目的與動機................................................................................ 34
1-9-1 有機光伏打電池材料和鈣鈦礦太陽能電池添加劑................ 34
1-9-2 電洞傳輸材料 ............................................................................ 38
第二章 實驗............................................................................................... 41
vii
2-1 有機半導體化合物名稱對照表........................................................ 42
2-2 實驗用品............................................................................................ 44
2-2-1 實驗所用之化學藥品 ................................................................ 44
2-2-2 實驗所用之溶劑除水方式 ........................................................ 47
2-3 實驗儀器............................................................................................ 48
2-3-1 核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR);
Bruker AVANCE 300 / 500 MHz................................................................ 48
2-3-2 紫外光 / 可見光吸收光譜 (Ultraviolet / visible spectrophotometer) ; U-3900 及 U-4100 型......................................................... 48
2-3-3 熱重分析儀 (Thermal Gravimetric Analyer, TGA); TGA
Instrument Q50 Series................................................................................. 49
2-3-4 電化學裝置 (Electrochemiacal Analyzer / Work- station);HCH
Instrumentent Model 621C ......................................................................... 49
2-3-5 示差熱掃描卡計 (Differential Scanning Calorimeter, DSC);
NETZSCH DSC 204 F1.............................................................................. 49
2-3-6 高解析質譜儀 (High Resolution Mass Spectrometer, HRMS);
JMS-700 HRMS.......................................................................................... 49
2-4 有機半導體化合物合成步驟............................................................ 50
(2-hexylthieno[3,4-b]thiophen-6-yl)trimethylstannane (TT-tin ; 10 ) 之
合成............................................................................................................. 50
bis(4-((2-ethylhexyl)oxy)phenyl)methanone (BP-diO-b8 ; 11 ) 之合成
..................................................................................................................... 52
3-bromo-2,2′-bithiophene (3-BrBT; 14)之合成.................................... 53
viii
4,4-bis(4-((2-ethylhexyl)oxy)phenyl)-4H-cyclopenta[2,1-b:3,4-
b′]dithiophene (CDT-b8 ; 16) 之合成........................................................ 54
2,6-dibromo-4,4-bis(4-((2-ethylhexyl)oxy)phenyl)-4H-cyclopenta[2,1-
b:3,4-b′]dithiophene (diBrCDT-b8 ; 17) 之合成 ....................................... 56
4,4-bis(4-((2-ethylhexyl)oxy)phenyl)-2,6-bis(2-hexylthieno[3,4-
b]thiophen-6-yl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene (TT-CDT-b8 ; 18)
之合成......................................................................................................... 57
6,6′-(4,4-bis(4-((2-ethylhexyl)oxy)phenyl)-4H-cyclopenta[2,1-b:3,4-
b′]dithiophene-2,6-diyl)bis(2-hexylthieno[3,4-b]thiophene-4-carbaldehyde)
(diCHO-TT-CDT-b8 ; 19) 之合成 ............................................................. 58
2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile ( IN ; 20) 之合
成................................................................................................................. 59
2-(5,6-dichloro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile
( INCl ; 22) 之合成 ..................................................................................... 59
2,2′-((2Z,2′Z)-(((4,4-bis(4-((2-ethylhexyl)oxy)phenyl)-4Hcyclopenta[2,1-b:3,4-b′]dithiophene-2,6-diyl)bis(2-hexylthieno[3,4-
b]thiophene-6,4-diyl))bis(methaneylylidene))bis(3-oxo-2,3-dihydro-1Hindene-2,1-diylidene))dimalononitrile (IN-TT-CDT-b8 ; 1) 之合成......... 61
2,2′-((2Z,2′Z)-(((4,4-bis(4-((2-ethylhexyl)oxy)phenyl)-4Hcyclopenta[2,1-b:3,4-b′]dithiophene-2,6-diyl)bis(2-hexylthieno[3,4-
b]thiophene-6,4-diyl))bis(methaneylylidene))bis(5,6-dichloro-3-oxo-2,3-
dihydro-1H-indene-2,1-diylidene))dimalononitrile ( INCl
-TT-CDT-b8 ; 2)
之合成......................................................................................................... 62
ix
2,2′-(((4,4-bis(4-((2-ethylhexyl)oxy)phenyl)-4H-cyclopenta[2,1-b:3,4-
b′]dithiophene-2,6-diyl)bis(2-hexylthieno[3,4-b]thiophene-6,4-
diyl))bis(methaneylylidene))dimalononitrile (DCV-TT-CDT-b8 ; 3) 之合
成................................................................................................................. 63
2,5-dibromo-3,4-dinitrothiophene (24) 之合成................................... 64
thiophene-3,4-diamine (26) 之合成..................................................... 65
1,2-bis(4-((2-ethylhexyl)oxy)phenyl)ethane-1,2-dione (28) 之合成. 66
4-Bromo-N,N-bis(4-methoxyphenyl)aniline (TPA ; 29 ) 之合成...... 67
4-methoxy-N-(4-methoxyphenyl)-N-(4-(tributylstannyl) phenyl)aniline
(TPA-SnBu3 ; 30) 之合成 .......................................................................... 67
2,3-bis(4-((2-ethylhexyl)oxy)phenyl)thieno[3,4-b]pyrazine (TP-b8 ; 31)
之合成......................................................................................................... 68
7-bromo-2,3-bis(4-((2-ethylhexyl)oxy)phenyl)thieno[3,4-b]pyrazine-5-
carbaldehyde (CHO-TP-Br ; 33) 之合成................................................... 69
(4,4-bis(4-((2-hexyldecyl)oxy)phenyl)-4H-cyclopenta[2,1-b:3,4-
b′]dithiophene-2,6-diyl)bis(trimethylstannane) (diTin-CDT-b8 ; 34)之合成
..................................................................................................................... 70
7,7′-(4,4-bis(4-((2-ethylhexyl)oxy)phenyl)-4H-cyclopenta[2,1-b:3,4-
b′]dithiophene-2,6-diyl)bis(2,3-bis(4-((2-ethylhexyl)oxy)phenyl)thieno[3,4-
b]pyrazine-5-carbaldehyde) (diCHO-TP-CDT-b8 ; 35) 之合成 ............... 71
2,2′-(((4,4-bis(4-((2-ethylhexyl)oxy)phenyl)-4H-cyclopenta[2,1-b:3,4-
b′]dithiophene-2,6-diyl)bis(2,3-bis(4-((2-ethylhexyl)oxy)phenyl)thieno[3,4-
b]pyrazine-7,5-diyl))bis(methaneylylidene))dimalononitrile ( DCV-TP-
x
CDT-b8 ; 4 ) 之合成 .................................................................................. 72
7-(4-(bis(4-methoxyphenyl)amino)phenyl)-2,3-bis(4-((2-
ethylhexyl)oxy)phenyl)thieno[3,4-b]pyrazine-5-carbaldehyde (TPA-TP ;
36 ) 之合成................................................................................................. 74
(Z)-3-(7-(4-(bis(4-methoxyphenyl)amino)phenyl)-2,3-bis(4-((2-
ethylhexyl)oxy)phenyl)thieno[3,4-b]pyrazin-5-yl)-2-cyanoacrylic acid (TPCA ; 5 ) 之合成.......................................................................................... 75
2-((7-(4-(bis(4-methoxyphenyl)amino)phenyl)-2,3-bis(4-((2-
ethylhexyl)oxy)phenyl)thieno[3,4-b]pyrazin-5-yl)methylene)malononitrile
(TP-MN ; 6 ) 之合成.................................................................................. 76
第三章 結果與討論................................................................................... 78
3-1 有機半導體材料之光學性質探討................................................. 79
3-1-1 有機光伏打電池 (OPVs).......................................................... 79
3-1-2 鈣鈦礦太陽能電池 (PSCs)....................................................... 80
3-2 有機半導體材料之電化學性質探討................................................ 82
3-2-1 有機光伏打電池 (OPVs).......................................................... 83
3-2-2 鈣鈦礦太陽能電池 (PSCs)....................................................... 84
3-3 有機半導體材料之穩定性探討........................................................ 86
3-3-1 有機光伏打電池 (OPVs).......................................................... 86
3-3-2 鈣鈦礦太陽能電池 (PSCs)....................................................... 87
第四章 結論............................................................................................... 89
參考資料..................................................................................................... 91
xi
附 錄........................................................................................................... 99
參考文獻 1 Grätzel, M. Inorg. Chem. 2005, 44, 6841.
2 Chapin, D. M.; Fuller, C. C.; Person, G. L. J. Appl. Phys. 1954, 25, 676-677.
3 Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J.
Nat. Mater. 2011, 11, 44-48.
4 https://www.nrel.gov/pv/cell-efficiency.html
5https://www.narlabs.org.tw/xcscience/cont?xsmsid=0I148638629329404252&s
id=0K143524098971028797
6 https://kknews.cc/news/g5mobj8.html
7 http://www.china-nengyuan.com/baike/2115.html
8 Marinova, N.; Valero, S.; Delgado, J. L. J. Colloid Interface Sci. 2017, 488,
373-389.
9 McEvoy, A.; Markvart, T.; Castaner, L. Practical Handbook of Photovoltaics
(Second Edition), Academic Press., Switzerland, 2011.
10 Arkhipov, V. I.; Heremans, P.; Bässler, H. Appl. Phys. Lett. 2003, 82, 4605.
11
Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science, 1992, 258,
1474-1476.
12 Mazhari, B. Sol. Energ Mat. Sol. C. 2006, 90, 1021-1033.
13 Boudreault, P.-L. T.; Najari, A.; Leclerc, M. Chem. Mater. 2011, 23, 456-469.
14
Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.;
Rispens, M. T.; Sanchez, L. Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 374-
380.
15 Schulze, K.; Riede, M.; Brier, E.; Reinold, E.; Bäuerle, P.; Leo, K. J. Appl. Phys.

92

2008, 104, 074511.
16 Fitzner, R.; Mena-Osteritz, E.; Mishra, A.; Schulz, G.; Reinold, E.; Weil, M.;
Körner, C.; Ziehlke, H.; Elschner, C.; Leo, K.; Riede, M.; Pfeiffer, M.; Uhrich, C.;
Bäuerle, P. J. Am. Chem. Soc. 2012, 134, 27, 11064–11067.
17 Cheng, M.; Chen, C.; Yang, X.; Huang, J.; Zhang, F.; Xu, B.; Sun, L. Chem.
Mater. 2015, 27, 1808-1814.
18 Sakai, J.; Taima, T.; Yamanari, T.; Saito, K. Sol. Energy Mater. Sol. C. 2009,
93, 1149.
19 Zhou, J.; Wan, X.; Liu, Y.; Long, G.; Wang, F.; Li, Z.; Zuo, L.; Li C.; Chen, Y.
Chem. Mater. 2011, 23, 4666-4668.
20 Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J.
Nat. Mater. 2011, 11, 44-48.
21 Chen, H. Y.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.; Yu, L.; Wu, Y.;
Li, G. Nat. photonics 2009, 3, 649-653.
22 He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y. Nat. photonics 2012, 6, 591-
595.
23 Qin, Y.; Ye, L.; Zhang, S.; Zhu, J.; Yang, B.; Ade, H.; Hou, J. J. Mater. Chem.
A, 2018, 6, 4324-4330.
24 Kroto, H. W.; Heath, J. R.; Obrien, S. C.; Curl, R. F.; Smalley, R. E. Nature
1985, 318, 162-163.
25 Pfuetzner, S.; Meiss, J.; Petrich, A.; Riede, M.; Leo, K. Appl. Phys. Lett. 2009,
94, 223307.
26 Hummelen, J. C.; Knight, B. W.; LePeq, F.; Wudl, F.; Yao, J.; Wilkins, C. L. J.
Org. Chem. 1995, 60, 532-538.
93

27 He, Y.; Chen, H. Y.; Hou, J.; Li, Y. J. Am. Chem. Soc. 2010, 132, 1377-1382.
28 Zhao, G.; He, Y.; Li, Y. Adv. Mater. 2010, 22, 4355-4358.
29 Dittmer, J. J.; Petritsch, K.; Marseglia, E. A.; Friend, R. H.; Rost, H.; Holmes,
A. B. Synth.Met. 1999, 102, 879-880.
30 Sharenko, A.; Proctor, C. M.; van der Poll, T. S.; Henson, Z. B.; Nguyen, T. Q.;
Bazan, G. C. Adv. Mater. 2013, 25, 4403-4406.
31 Singh, R.; Aluicio-Sarduy, E.; Kan, Z.; Ye, T.; MacKenzie, R. C. I.; Keivanidis,
P. E. J. Mater. Chem. A 2014, 2, 14348-14353.
32 Cai, Y.; Huo, L.; Sun, X.; Wei, D.; Tang, M.; Sun, Y. Adv. Energy Mater. 2015,
5, 1500032.
33 Jiang, W.; Ye, L.; Li, X.; Xiao, C.; Tan, F.; Zhao, W.; Hou, J.; Wang, Z. Chem.
Commun. 2014, 50, 1024-1026.
34 Sun, D.; Meng, D.; Cai, Y.; Fan, B.; Li, Y.; Jiang, W.; Hou, L.; Sun, Y.; Wang,
Z. J. Am. Chem. Soc. 2015, 137, 11156-11162.
35 Meng, D.; Sun, D.; Zhong, C.; Liu, T.; Fan, B.; Huo, L.; Li, Y.; Jiang, W., Choi,
H.; Kim, T.; Kim, J. Y.; Sun, Y.; Wang, Z. H.; Heeger, A. J. J. Am. Chem. Soc.
2016, 138, 375-380.
36
Zhang, G.; Zhao, J.; Chow, P. C.; Jiang, K.; Zhang, J.; Zhu, Z.; Zhang, J.;
Huang, F.; Yan, H. Chem. Rev. 2018, 118, 3447-3507.
37 Winzenberg, K. N.; Kemppinen, P.; Scholes, F. H.; Collis, G. E.; Shu, Y.; Singh,
T. B.; Bilic, A.; Forsyth, C. M.; Watkins, S. E. Chem. Commun. 2013, 49, 6307-
6309.
38 Holliday, S.; Ashraf, R. S.; Nielsen, C. B.; Kirkus, M.; Röhr, J. A.; Tan, C. H.; Collado-Fregoso, E.; Knall. A. C.; Durrant, J. R.; Nelson, J.; McCulloch, I. J. Am.
Chem. Soc. 2015, 137, 898-904.
39 Zhang, H.; Liu, Y.; Sun, Y.; Li, M.; Ni, W.; Zhang, Q.; Wan, X.; Chen, Y. Sci.
China Chem. 2017, 60, 366-369.
40
Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv.
Mater. 2015, 27, 1170-1174.
41 Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. J. Am. Chem.
Soc. 2017, 139, 7148-7151.
42 Wan, J.; Zhang, L.; He, Q.; Liu, S.; Huang, B.; Hu, L.; Zhou, W.; Chen,
Y. Adv.Funct. Mater. 2020, 30, 1909760.
43 Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H. L.; Lau, T. K.; Lu, X.; Zhu,
C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Yong, C.; Ulanski, J.; Li, Y.; Zou,
Y.; Joule, 2019, 3, 1140–1151.
44 Liu,T.;Zhang, Y. D.;Shao, Y. I.;Ma, R. J.;Luo, Z. H.;Xiao, Y. Q.;Yang,
T.;Lu, X. H.;Yuan, Z. Y.;Yan, H.;Chen, Y. W.;Li, Y. F. Adv. Funct. Mater.
2020, 30, 2000456.
45 Li, C.; Zhou, J.D.; Song, J.L.; Xu, J.Q.; Zhang, H.T.; Zhang, X.N.; Guo, J.;
Zhu, L.; Wei, D.H.; Han, G.C.; Min J.; Zhang, Y.; Xie, Z.Q.; Yi, Y.P.; Yan, H.;
Gao, F.; Liu, F.; Sun, Y.M. Nat. Energy 2021,6, 605–613.
46 Li, S.; Zhan, L.; Jin, Y.; Zhou, G.; Lau, T. K.; Qin, R.; Shi, M.; Li, C. Z.; Zhu,
H.; Lu, X.; Zhang, F.; Chen, H. Adv. Mater., 2020, 2001160.
47 Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.;
Ren, J.; Chen, Z.; He, C.; Hao, X.; Wei, Z.; Hou, J. H. Adv. Mater., 2021, 2102420.
48 Patra, A.; Bendikov, M. J. Mater. Chem. 2010, 20, 422– 433.
49 Kang, I.; An, T. K.; Hong, J, A.; Yun, H, J.; Kim, R.; Chung, D, S.; Park, C,
E.; Kim, Y, H.; Kwon, S, K. Adv. Mater. 2013, 25, 524– 528.
50 Wang, J, L.; Liu, K, K.; Hong, L.; Ge, G, Y.; Zhang, C.; Hou, J. ACS Energy
Lett. 2018, 3, 2967– 2976.
51 Citation: H. Yu, Z. Qi, J. Zhang, Z. Wang, R. Sun, Y. Chang, H. Sun, W. Zhou,
J. Min, H. Ade, and H. Yan, J. Mater. Chem. A., 2020, 8, 23756.
52 Lin, F.; Jiang, K.; Kaminsky, W.; Zhu, Z.; Jen, A. K. Y.; J. Am. Chem. Soc. 2020,
142, 15246-15251.
53 Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131,
6050-6051.
54 Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon,
S. J.; Humphry-Baker R.; Yum, J. H.; Moser, J. E.; Gra¨tzel, M.; Park, N. G. Sci.
Rep. 2012, 2, 1-7.
55 Tian, X.; Stranks, S. D.; You, F. Sci. Adv. 2020, 6(31), eabb0055.
56 https://www.pv-magazine.com/2021/04/06/unist-epfl-claim-25-6-efficiencyworld-record-for-perovskite-solar-cell/
57 Nishimura, K.; Kamarudin, M, A.; Hirotani, D.; Hamada, K.; Shen, Q.; Iikubo,
S.; Minemoto, T.; Yoshino, K.; Hayase, S. Nano Energy, 2020, 74, 104858.
58 Slavney, A, H.; Hu, T.; Lindenberg, A, M.; Karunadasa, H, I. J. Am. Chem.
Soc. 2016, 138, 2138-2141.
59 Cortecchia, D.; Dewi, H, A.; Yin, J.; Bruno, A.; Chen, S.; Baikie, T.; Boix, P,
P.; Gratzel, M.; Mhaisalkar, S.; Soci, C.; Mathews, N. Inorg. Chem. 2016, 55,
1044-1052.
60 Konstantakou, M.; Stergiopoulos, T.; J. Mater. Chem. A, 2017, 5, 11518-11549.
61 Song, J. X.; Yin, X. X.; Li, Z. F.; Li, Y, W.; Rare Met. 2021, 40, 2730–2746.
62 Wu, Y.; Yang, X.; Chen, W.; Yue, Y.; Cai, M.; Xie, F.; Han, L. Nature Energy, 2016, 1, 1-7.
63 陳彥均, 不同膜厚之電子傳輸及電洞注入層對有機發光二極體之性質影
響分析. 聖約翰科技大學自動化及機電整合研究所碩士學位論文, 201
64 Chen,Y, C.; Huang, S, K.; Li, S, S.; Tsai, Y, Y.; Chen, C, P.; Chen, C,
W.; Chang, Y, J.; ChemSusChem, 2018, 11 , 3225-3233.
65 Deng, Z.; He, M.; Zhang, Y.; Ullah, F.; Ding, K.; Liang, J.; Zhang, Z.; Xu, H.;
Qiu, Y.; Xie, Z.; Shan, T.; Chen, Z.; Zhong, H.; Chen, C, C. Chem. Mater., 2021,
33, 285.
66 Cho, I.; Jeon, N.; Kwon, O.; Kim, D.; Jung, E.; Noh, J.; Seo, J.; Seok, S.; Park,
S. Chem. Sci., 2017, 8, 734.
67 Wang, Y, K.; Ma, H.; Chen, Q.; Sun, Q.; Liu, Z.; Sun, Z.; Jia, X.; Zhu, Y.; Zhang,
S.; Zhang, J.; Yuan, N.; Ding, J.; Zhou, Y.; Song, Bo.; Li, Y.; ACS Appl. Mater.
Interfaces. 2021, 13, 7705–7713.
68 Zhang, F.; Yao, Z.; Guo, Y.; Li, Y.; Bergstrand, J.; Brett, C. J.; Cai, B.; Hajian,
A.; Guo, Y.; Yang, X.; Gardner, J. M.; Widengren, J.; Roth, S. V.; Kloo, L.; Sun,
L. J. Am. Chem. Soc. 2019, 141, 19700.
69 Sun, X.; Li, Z.; Yu, X.; Wu, X.; Zhong, C.; Liu, D.; Lei, D.; Jen, A. K. Y.; Li,
Z.; Zhu, Z. Angew. Chem. Int. Ed. 2021, 60, 7227 – 7233.
70
Ke, W.; Priyanka, P.; Vegiraju, S.; Stoumpos, C. C.; Spanopoulos, I.; Soe,
Chen. M. M.; Marks, T. J.; Chen, M.; Kanatzidis, M. G.; J. Am. Chem. Soc.
2018, 140, 388.
71 S. Vegiraju, W. Ke, P. Priyanka, J. S. Ni, Y. C. Wu, I. Spanopoulos, S. L. Yau, T.
J. Marks, M. C. Chen, M. G. Kanatzidis, Adv. Funct. Mater. 2019, 29, 1905393.
72 Wadsworth, A.; Bristow, H.; Hamid, Z.; Babics, M.; Gasparini, N.; Boyle, C,
W.; Zhang, W.; Dong, Y.; Thorley, K.; Neophytou, J, M.; Ashraf, R.; Durrant, S,
J, R.; Baran ,D.; McCulloch, I. Adv. Funct. Mater. 2019, 29, 1808429.
73 Lee, J.; Ko, S. J.; Lee H.; Huang, J.; Zhu, Z.; Seifrid, M.; Vollbrecht, J.;Brus,
V. V.; Karki, A.; Wang, H.; Cho, K.; Nguyen, T. Q.; Bazan G. C. ACS Energy Lett.
2019, 4, 1401-1409.
74 Li, S.; Sun, Y.; Zhou, B.; Fu, Q.; Meng, L.; Yang, Y.; Wang, J.; Yao, Z.; Wan,
97

X.; Chen, Y. ACS Applied Materials & Interfaces. 2021, 13, (34), 40766-40777.
75
Zhang, M.; Dai, S.; Chandrabose, S.; Chen, K.; Liu, K.; Qin, M.; Lu, X.;
Hodgkiss, J, M.; Zhou, H.; Zhan, X. J. Am. Chem. Soc., 2018, 140, 14938–14944.
76 Song, C.; Li, X.; Wang, Y.; Fu, S.; Wan, L.; Liu, S.; Zhang, W.; Song, W.; Fang,
J. J. Mater. Chem. A, 2019, 7, 19881–19888.
77 C. Lu, M. Paramasivam, K. Park, C. H. Kim. H. K. Kim, ACS Appl. Mater.
Interfaces, 2019, 11, 14011–14022.
78 Afraj, S. N.; Velusamy, A.; Chen, C. Y.; Ni, J. S.; Ezhumalai, Y.; Pan, C. H.;
Chen, K. Y.; Yau, S. L.; Liu, C. L.; Chiang, C. H.; Wu, C. G.; Chen. M. C. J. Mater.
Chem. A, 2022, 10, 11254–11267
79 Kim, G. W.; Choi, H.; Kim, M.; Lee, J.; Son, S. Y.; Park, T. Advanced Energy
Materials, 2020, 10(8), 1903403.
80 Xu, P.; Liu, P.; Li, Y.; Xu, B.; Kloo, L.; Sun, L.; Hua, Y. ACS Appl. Mater.
Interfaces. 2018, 10, 19697-19703.
81 Afraj, S, N.; Zheng, D.; Velusamy, A.; Ke, W.; Cuthriell, S.; Zhang, X.; Yao,
C.; Lin, C.; Ni, J, S.; Wasielewski, M, R.; Huang, W.; Yu, J.; Pan, C, H.; Schaller,
R, D.; Chen, M, C.; Kanatzidis, M, G.; Facchetti, A.; Marks, T, J. ACS Energy
Lett. 2022, 7, 2118–2127.
82 Ok, S. A.; Jo, B.; Somasundaram, S.; Woo, H. J.; Lee, D. W.; Li, Z.; Kim, B.
G.; Kim, J. H.; Song, Y. J.; Ahn, T. K.; Park, S.; Park, H. J. Nat. Commun. 2018,
9, 4537.
83 Wang, Y.; Chen, W.; Wang, L.; Tu, B.; Chen, T.; Liu, B.; Yang, K.; Koh, C. W.;
Zhang, X. H.; Sun, H. L.; Chen, G. C.; Feng, X. Y.; Woo, H. Y.; Djurisič , A. B.;
He, Z. B.; Guo, X. G. Adv. Mater. 2019, 31, 1902781.
84 Dyaga B.; Sasikumara, M.; Narendra R, C.; Jayathirtha R, V.; Someshwar P.
Solar Energy. 2018, 174, 130–138.
85 Wang, Y.; Liao, Q.; Chen, J.; Huang, W.; Zhuang, X.; Tang, Y.; Li, B.; Yao, X.; Feng, X.; Zhang, X.; Su, M.; He, Z.; Tobin. J. M.; Facchetti, A.; Guo, X. J. Am.
Chem. Soc. 2020, 142, 16632-16643
指導教授 陳銘洲(Ming-Chou Chen) 審核日期 2022-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明