博碩士論文 109324003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.15.240.236
姓名 盧威韶(Wei-Shao Lu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討以Lactobacillus buchneri發酵Camellia sinensis生產γ-胺基丁酸與抗氧化活性之影響
(Evaluation of γ-Aminobutyric Acid Production and Antioxidant Activity of Camellia sinensis Fermented by Lactobacillus buchneri)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-6-30以後開放)
摘要(中) 茶 (Camellia sinensis) 的消耗量僅次於水,是被廣泛接受與消耗的飲品。茶葉製品與茶飲對人體的各種生理保健功效已被證實,如增強免疫力、止渴及降低膽固醇等。茶葉中各活性物質以多酚類化合物最為突出,不僅含量高、部分物質為茶葉特有並且其具有顯著的抗氧化活性。近期因保健與健康飲食的意識增長,人們開始尋求具有療效或功能性的茶飲。而由微生物發酵製成的後發酵茶,因其獨特的代謝物質與顯著的生物活性愈受重視。依特定菌株以及不同發酵條件,可製備出各式具特殊生物活性的後發酵茶。乳酸菌投入食品發酵工程歷史悠久,其具有顯著的功能性及作為益生菌的潛力,更擁有代謝生產GABA及多酚類物質的能力。本研究目的在於利用布氏乳桿菌 (Lactobacillus buchneri BCE119151) 發酵茶葉,並透過最適化發酵條件及各項發酵參數探討,以達到最適化生產GABA以及提升其抗氧化活性。
本研究將探討各發酵條件—茶葉粉末添加量、不同碳源及添加量、不同氮源及添加量、起始pH值、MSG濃度以及發酵溫度,並依菌種生長活性、生產GABA活性以及抗氧化活性等參數進行最適化討論。本研究成功以最適化發酵條件—添加4%茶葉粉末、3%蔗糖、4% MRSN medium、起始pH值6.0及發酵溫度37℃在發酵後達到GABA產量21.784 g/L、單位MSG對GABA轉化率YG/M 0.538 g/g、最大菌落數VCCmax 9.391 log CFU/mL、單位菌重對GABA轉化率YG/VCC 2.320 g/g、總多酚含量0.589 g GA/L、以及DPPH自由基清除能力40.14%。綜合上述結果,L. buchneri BCE119151菌種結合茶葉進行發酵,可發展出具有高生物活性的茶葉發酵成品,並將其應用於相關飲品以及保健食品的開發。
摘要(英) Tea (Camellia sinensis) is a widely accepted and consumed beverage, and the consumption of tea is merely second to water. The various physiological health effects of tea on the human body have been confirmed, such as enhancing immunity, quenching thirst, and lowering cholesterol. The most prominent active compounds in tea are polyphenols, which are not only high in content, but also have significant antioxidant activity. Recently, since the increase in awareness of health care and healthy diet, people begin to seek the therapeutic or functional teas. The post-fermentation tea made by microbial fermentation has attracted more attention because of its unique metabolites and significant biological activity. According to specific strains and different fermentation conditions, various post-fermented teas with special biological activities can be prepared. Lactic acid bacteria have significant functionality and potential as probiotics, and have the ability to produce GABA and polyphenols. In conclusion, this study aims to producing GABA by Lactobacillus buchneri BCE119151 fermented with Camellia sinensis and evaluating its antioxidant activity.
In this study, we discussed the fermentation conditions—the amount of tea powder added, different carbon sources and additions, different nitrogen sources and additions, initial pH value, MSG concentration, and fermentation temperature. Optimal conditions were carried out according to the parameters of bacterial growth activity, GABA production and antioxidant activity. Based on the results, the optimal conditions were addition of 4% tea powder, 3% sucrose, 4% MRSN medium, initial pH 6.0, and fermentation temperature 37℃. Under these conditions, BCE119151 showed 21.784 g/L GABA production, YG/M 0.538 g/g, VCCmax 9.391 log CFU/mL, YG/VCC 2.320 g/g, 0.589 g GA/L TPC, and 40.14% DPPH scavenging activity.
關鍵字(中) ★ 茶
★ γ-胺基丁酸
★ 抗氧化活性
★ 乳酸菌
關鍵字(英) ★ Tea
★ GABA
★ Antioxidant activity
★ Lactic acid bacteria
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 viii
表目錄 xii
一、 緒論 1
1-1 研究動機及目的 1
二、 文獻回顧 3
2-1 茶 3
2-1-1 茶的基本介紹 3
2-1-2 茶的成分組成 3
2-1-3 傳統茶葉的種類及製程 7
2-1-4 微生物後發酵茶 10
2-2 乳酸菌 20
2-2-1 乳酸菌的基本介紹 20
2-2-2 Lactobacillus buchneri菌種的基本介紹 24
2-3 γ-胺基丁酸 25
2-4 影響發酵工程的物化因子 29
2-4-1 培養基組成 30
2-4-2 pH值 32
2-4-3 溫度 33
2-4-4 攪拌速率 34
三、 材料與方法 35
3-1 實驗規劃 35
3-2 實驗材料 37
3-2-1 實驗菌株 37
3-2-2 實驗原料 37
3-2-3 實驗藥品 38
3-2-4 實驗儀器與設備 41
3-3 實驗方法 43
3-3-1 菌種保存 43
3-3-2 菌種固態培養 47
3-3-3 菌種液態種瓶培養 47
3-3-4 Lactobacillus buchneri BCE119151 發酵動力曲線測試 48
3-3-5 茶葉粉末製備 49
3-3-6 茶葉液態發酵最適化發酵條件探討 49
3-4 分析方法 53
3-4-1 菌體濃度分析 53
3-4-2 菌落數分析 54
3-4-3 pH值分析 54
3-4-4 還原糖濃度分析 55
3-4-5 總可溶糖濃度分析 57
3-4-6 麩胺酸鈉及-胺基丁酸濃度分析 58
3-4-7 沒食子酸及咖啡因濃度分析 61
3-4-8 兒茶素濃度分析 63
3-4-9 乳酸濃度分析 65
3-4-10 乙醇及醋酸濃度分析 67
3-4-11 GAD酵素活性分析 70
3-4-12 總多酚含量分析 71
3-4-13 DPPH自由基清除能力分析 72
3-4-14 茶色素含量分析 73
四、 結果與討論 74
4-1 Lactobacillus buchneri BCE119151菌種發酵動力學之探討 74
4-1-1 Lactobacillus buchneri BCE119151之生長曲線 74
4-1-2 Lactobacillus buchneri BCE119151之GABA發酵動力曲線 75
4-2 茶葉粉末添加量對發酵茶葉之影響 77
4-2-1 茶葉粉末添加量對L. buchneri BCE119151生長之影響 77
4-2-2 茶葉粉末添加量對發酵茶葉生產GABA之影響 79
4-2-3 茶葉粉末添加量對發酵茶葉抗氧化物質及活性之影響 82
4-2-4 茶葉粉末添加量對發酵茶葉影響之結論 84
4-3 碳源對發酵茶葉之影響 86
4-3-1 碳源對發酵茶葉生產GABA之影響 86
4-3-2 碳源對發酵茶葉抗氧化物質及活性之影響 90
4-3-3 Sucrose添加量對發酵茶葉生產GABA之影響 92
4-3-4 碳源對發酵茶葉影響之結論 93
4-4 氮源對發酵茶葉之影響 94
4-4-1 氮源對發酵茶葉生產GABA之影響 94
4-4-2 氮源對發酵茶葉抗氧化物質及活性之影響 98
4-4-3 MRSN medium添加量對發酵茶葉生產GABA之影響 100
4-4-4 氮源對發酵茶葉影響之結論 101
4-5 起始pH值對發酵茶葉之影響 102
4-5-1 起始pH值對L. buchneri BCE119151生長之影響 102
4-5-2 起始pH值對發酵茶葉生產GABA之影響 104
4-5-3 起始pH值對發酵茶葉抗氧化物質及活性之影響 107
4-5-4 起始pH值對發酵茶葉影響之結論 109
4-6 MSG濃度對發酵茶葉之影響 110
4-6-1 MSG濃度對發酵茶葉最適化生產GABA之探討 110
4-6-2 MSG濃度對發酵茶葉最適化生產GABA之結論 114
4-7 發酵溫度對發酵茶葉之影響 115
4-7-1 發酵溫度對L. buchneri BCE119151生長之影響 115
4-7-2 發酵溫度對發酵茶葉生產GABA之影響 116
4-7-3 發酵溫度對發酵茶葉抗氧化物質及活性之影響 119
4-7-4 發酵溫度對發酵茶葉影響之結論 121
4-8 最適化發酵操作條件之結論 123
4-9 最適化發酵條件之乳酸發酵茶成分探討 125
4-9-1 乳酸發酵茶中菌種代謝產物之探討 125
4-9-2 乳酸發酵茶中各兒茶素含量之探討 126
4-9-3 乳酸發酵茶中各茶色素含量之探討 128
4-9-4 乳酸發酵茶中沒食子酸含量之探討 129
4-9-5 乳酸發酵茶中咖啡因含量之探討 130
五、 結論與建議 131
5-1 結論 131
5-2 建議 133
參考文獻 134
參考文獻 [1] K. Chang, "World tea production and trade Current and future development," FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS, 2015.
[2] H. Lu, J. Zhang, Y. Yang, X. Yang, B. Xu, W. Yang, T. Tong, S. Jin, C. Shen, H. Rao, X. Li, H. Lu, D. Q. Fuller, L. Wang, C. Wang, D. Xu, and N. Wu, "Earliest tea as evidence for one branch of the Silk Road across the Tibetan Plateau," Scientific Reports, vol. 6, no. 1, p. 18955, 2016.
[3] L. M. Costa, S. T. Gouveia, and J. A. Nóbrega, "Comparison of Heating Extraction Procedures for Al, Ca, Mg, and Mn in Tea Samples," Analytical Sciences, vol. 18, no. 3, p. 313–318, 2002.
[4] A. Rietveld and S. Wiseman, "Antioxidant Effects of Tea: Evidence from Human Clinical Trials," The Journal of Nutrition, vol. 133, no. 10, p. 3285S–3292S, 2003.
[5] X.-Q. Zheng, Q.-S. Li, L.-P. Xiang, and Y.-R. Liang, "Recent Advances in Volatiles of Teas," Molecules, vol. 21, no. 3, p. 338, 2016.
[6] C.-T. Ho, X. Zheng, and S. Li, "Tea aroma formation," Food Science and Human Wellness, vol. 4, no. 1, p. 9–27, 2015.
[7] S. M. G. Saerens, F. Delvaux, K. J. Verstrepen, P. V. Dijck, J. M. Thevelein and F. R. Delvaux, "Parameters Affecting Ethyl Ester Production by Saccharomyces cerevisiae during Fermentation," Applied and Environmental Microbiology, vol. 74, no. 2, pp. 454-461, 2008.
[8] R. WANG, "BIOTRANSFORMATION OF GREEN TEA (CAMELLIA SINENSIS) WITH YEASTS AND LACTIC ACID BACTERIA," ScholarBank@NUS Repository, 24 01 2021.
[9] A. Amaretti, S. Raimondi, A. Leonardi, A. Quartieri, and M. Rossi, "Hydrolysis of the Rutinose-Conjugates Flavonoids Rutin and Hesperidin by the Gut Microbiota and Bifidobacteria," Nutrients, vol. 7, no. 4, pp. 2788-2800, 2015.
[10] A. Gramza, J. Korczak and R. Amarowicz, "Tea polyphenols - Their antioxidant properties and biological activity - A review," Pol J Food Nutr Sci, vol. 14/55, no. 3, pp. 219-235, 2005.
[11] Y. Dao, K. Zhang, X. Lu, Z. Lu, C. Liu, M. Liu, and Y. Luo, "Role of Glucose and 2-Oxoglutarate/Malate Translocator (OMT1) in the Production of Phenyllactic Acid and p-Hydroxyphenyllactic Acid, Two Food-Borne Pathogen Inhibitors," Journal of Agricultural and Food Chemistry, vol. 67, no. 20, pp. 5820-5826, 2019.
[12] S. N. Gummadi, B. Bhavya and N. Ashok, "Physiology, biochemistry and possible applications of microbial caffeine degradation," Applied Microbiology and Biotechnology, vol. 93, no. 2, pp. 545-554, 2012.
[13] M. Naranjo Pinta, I. Montoliu, A. M. Aura, T. Seppänen‐Laakso, D. Barron and S. Moco, "In Vitro Gut Metabolism of [U-13C]-Quinic Acid, The Other Hydrolysis Product of Chlorogenic Acid," Molecular Nutrition and Food Research, vol. 62, no. 22, p. 1800396, 2018.
[14] I. Reverón, B. De Las Rivas, R. Matesanz, R. Muñoz, and F. López De Felipe, "Molecular adaptation of Lactobacillus plantarum WCFS1 to gallic acid revealed by genome-scale transcriptomic signature and physiological analysis," Microbial Cell Factories, vol. 14, no. 1, p. 160, 2015.
[15] M.-z. Zhu, N. Li, F. Zhou, J. Ouyang, D.-m. Lu, W. Xu, et al., "Microbial bioconversion of the chemical components in dark tea," Food Chemistry, vol. 312, p. 126043, 15 May 2020.
[16] Y. Wang, Z. Kan, H. J. Thompson, T. Ling, C.-T. Ho, D. Li, and X. Wan, "Impact of Six Typical Processing Methods on the Chemical Composition of Tea Leaves Using a Single Camellia sinensis Cultivar, Longjing 43," Journal of Agricultural and Food Chemistry, vol. 67, no. 19, pp. 5423-5436, 2019.
[17] J. Dong, X. Xu, Y. Liang, R. Head, and L. Bennett, "Inhibition of angiotensin converting enzyme (ACE) activity by polyphenols from tea (Camellia sinensis) and links to processing method," Food & Function, vol. 2, no. 6, p. 310, 2011.
[18] T. Tsushida, T. Murai, M. Omori and J. Okamoto, "Production of a New Type Tea Containing a High Level of γ-Aminobutyric Acid," Nippon Nogeikagaku Kaishi, vol. 61, no. 7, pp. 817-822, 1987.
[19] Y. Watanabe, K. Hayakawa, and H. Ueno, "Production of γ-Amino Butyric Acid in Tea Leaves with Treatment of Lactic Acid Bacteria," Chagyo Kenkyu Hokoku (Tea Research Journal), vol. 107, pp. 61-69, 2009.
[20] S. Lim, "Tea: chemistry and processing," Encyclopedia of Food and Health, pp. 268-272, 2016.
[21] Q. Wang, J. Gong, Y. Chisti and S. Sirisansaneeyakul, "Fungal Isolates from a Pu-Erh Type Tea Fermentation and Their Ability to Convert Tea Polyphenols to Theabrownins," Journal of Food Science, vol. 80, no. 4, pp. M809-M817, 2015.
[22] Dong, W. M., Fu, X. P., Li. L. F., "The isolation and enzyme producing characteristics of microorganisms from five Pu-er tea," Shi Pin Ke Ji, vol. 38, no. 6, pp. 22-25, 2013.
[23] Xiujuan Fu, W. S., Yongquan Xu, and Changwen Li, "The effects of different microorganisms on Pu-er tea fermentation," Cha ye ke xue, vol. 32, no. 4, pp. 325-330, 2012.
[24] Y. Lee, Z. Lin, G. Du, Z. Deng, H. Yang and W. Bai, "The fungal laccase-catalyzed oxidation of EGCG and the characterization of its products," Journal of the Science of Food and Agriculture, vol. 95, no. 13, pp. 2686-2692, 2014.
[25] G. Liu, Z. Duan, P. Wang, D. Fan, and C. Zhu, "Purification, characterization, and hypoglycemic properties of eurocristatine from Eurotium cristatum spores in Fuzhuan brick tea," RSC Advances, vol. 10, no. 37, pp. 22234-22241, 2020.
[26] J. Shi, J. Liu, D. Kang, Y. Huang, W. Kong, Y. Xiang, X. Zhu, Y. Duan, and Y. Huang, "Isolation and Characterization of Benzaldehyde Derivatives with Anti-Inflammatory Activities from Eurotium cristatum, the Dominant Fungi Species in Fuzhuan Brick Tea," ACS Omega, vol. 4, no. 4, pp. 6630-6636, 2019.
[27] Y. Xiao, K. Zhong, J. R. Bai, Y. P. Wu and H. Gao, "Insight into effects of isolated Eurotium cristatum from Pingwu Fuzhuan brick tea on the fermentation process and quality characteristics of Fuzhuan brick tea," Journal of The Science of Food and Agriculture, vol. 100, no. 9, pp. 3598-3607, 2020.
[28] H.-p. Lv, Y.-j. Zhang, Z. Lin and Y.-r. Liang, "Processing and chemical constituents of Pu-erh tea: A review," Food Research International, vol. 53, no. 2, pp. 608-618, 2013.
[29] L. Zhang, Z.-z. Zhang, Y.-b. Zhou, T.-j. Ling and X.-c. Wan, "Chinese dark teas: Postfermentation, chemistry and biological activities," Food Research International, vol. 53, no. 2, pp. 600-607, 2013.
[30] Y. Yao, M. Wu, Y. Huang, C. Li, X. Pan, W. Zhu, et al., "Appropriately raising fermentation temperature beneficial to the increase of antioxidant activity and gallic acid content in Eurotium cristatum-fermented loose tea," LWT - Food Science and Technology, vol. 82, pp. 248-254, 2017.
[31] M. Ouyang, C. Xiong, Y. Tu, L. Cheng, H. Shu and W. Tang, "Effects of Eurotium cristatum on tea quality and antioxidant activity," Mycosystema, vol. 30, no. 2, pp. 343-348, 2011.
[32] L. Zhang, W.-W. Deng and X.-c. Wan, "Advantage of LC-MS metabolomics to identify marker compounds in two types of Chinese dark tea after different post-fermentation processes.," Food Sci Biotechnol, vol. 23, pp. 355-360, 2014.
[33] B. Palabhanvi and P. D. Belur, "Enhancing Gallic Acid Content in Green Tea Extract by Using Novel Cell-Associated Tannase of B acillus massiliensis," Journal of Food Biochemistry, vol. 5, pp. 528-535, 2013.
[34] H. Hao, H. Jian’an, L. Shi and L. Zhonghua, "Studies on the variation of polyphenol, carbohydrate and the number of Eurotium cristatum during the processing of Fu tea with fungus growing on the loose tea," Chinese Agricultural Science Bulletin, vol. 28, no. 15, pp. 227-232, 2012.
[35] Emiljanowicz, K. E., and Malinowska-Pańczyk, E., "Kombucha from alternative raw materials - The review," Critical Reviews in Food Science and Nutrition, vol. 60, no. 19, pp. 3185-3194, 2020.
[36] Z.-J. Z. Yu-Cheng Sui, H.-W. Wu, C.-B. Zhou, and X.-C. H. , . Jian Zhang, "Flavour chemical dynamics during fermentation of kombucha tea," Emirates Journal of Food and Agriculture, p. 732, 2018.
[37] Coelho, R. M. D., de Almeida, A. L., do Amaral, R. Q. G., da Mota, R. N., and de Sousa, P. H. M., "Kombucha: Review," International Journal of Gastronomy and Food Science, vol. 22, p. 100272, 2020.
[38] H. Michlmayr and W. Kneifel, "β-Glucosidase activities of lactic acid bacteria: mechanisms, impact on fermented food and human health," FEMS Microbiology Letters, vol. 352, no. 1, pp. 1-10, 2014.
[39] M. Horie, K. Nara, S. Sugino, A. Umeno, and Y. Yoshida, "Comparison of antioxidant activities among four kinds of Japanese traditional fermented tea," Food Science & Nutrition, vol. 5, no. 3, pp. 639-645, 2017.
[40] P. Xiao, Y. Huang, W. Yang, B. Zhang, and X. Quan, "Screening lactic acid bacteria with high yielding-acid capacity from pickled tea for their potential uses of inoculating to ferment tea products," Journal of Food Science and Technology, vol. 52, no. 10, p. 6727–6734, 2015.
[41] S. Chaikaew, S. Baipong, T. Sone, A. Kanpiengjai, N. Chui-Chai, K. Asano, et al., "Diversity of lactic acid bacteria from Miang, a traditional fermented tea leaf in northern Thailand and their tannin-tolerant ability in tea extract," Journal of Microbiology, vol. 55, no. 9, pp. 720-729, 2017.
[42] M. Hiasa, M. Kurokawa, K. Ohta, T. Esumi, H. Akita, K. Niki, et al., "Identification and purification of resorcinol, an antioxidant specific to Awa-ban (pickled and anaerobically fermented) tea," Food Research International, vol. 54, no. 1, pp. 72-80, 2013.
[43] H. Zhang, Y.-Z. Liu, W.-C. Xu, W.-J. Chen, S. Wu, and Y.-Y. Huang, "Metabolite and microbiome profilings of pickled tea elucidate the role of anaerobic fermentation in promoting high levels of gallic acid accumulation," Journal of Agricultural and Food Chemistry, vol. 68, no. 47, pp. 13751-13759, 2020.
[44] Y. Huang, X. Xiao, L. Cong, M. Wu, Y. Huang, and Y. Yao, "A fermented tea with high levels of gallic acid processed by anaerobic solid-state fermentation," LWT - Food Science and Technology, vol. 71, pp. 260-267, 2016.
[45] F. Leroy and L. De Vuyst, "Lactic acid bacteria as functional starter cultures for the food fermentation industry," Trends in Food Science & Technology, vol. 15, no. 4, pp. 67-78, 2004.
[46] F. A. C. Martinez, E. M. Balciunas, J. M. Salgado, J. M. D. González, A. Converti and R. P. de Souza Oliveira, "Lactic acid properties, applications and production: a review," Trends in food science & technology, vol. 30, no. 1, pp. 70-83, 2013.
[47] C. Wang, H. Han, X. Gu, Z. Yu and N. Nishino, "A survey of fermentation products and bacterial communities in corn silage produced in a bunker silo in China," Animal Science Journal, vol. 85, no. 1, pp. 32-36, 2014.
[48] R. E. Muck, E. M. G. Nadeau, T. A. Mcallister, F. E. Contreras-Govea, M. C. Santos, and L. Kung, "Silage review: Recent advances and future uses of silage additives," Journal of Dairy Science, vol. 101, no. 5, pp. 3980-4000, 2018.
[49] R. Dhakal, V. K. Bajpai, and K.-H. Baek, "PRODUCTION OF GABA (γ-AMINOBUTYRIC ACID) BY MICROORGANISMS: A REVIEW," Brazilian Journal of Microbiology, vol. 43, no. 4, pp. 1230-1241, 2012.
[50] N. Xu, L. Wei and J. Liu, "Biotechnological advances and perspectives of gamma-aminobutyric acid production," World Journal of Microbiology Biotechnology, vol. 33, no. 64, 2017.
[51] Y. Cui, K. Miao, S. Niyaphorn, and X. Qu, "Production of Gamma-Aminobutyric Acid from Lactic Acid Bacteria: A Systematic Review," International Journal of Molecular Sciences, vol. 21, no. 3, p. 995, 2020.
[52] N. Tajabadi, A. Ebrahimpour, A. Baradaran, R. Rahim, N. Mahyudin, M. Manap, F. Bakar, and N. Saari, "Optimization of γ-Aminobutyric Acid Production by Lactobacillus plantarum Taj-Apis362from Honeybees," Molecules, vol. 20, no. 4, pp. 6654-6669, 2015.
[53] A. Zhao, X. Hu, L. Pan and X. Wang, "Isolation and characterization of a gamma-aminobutyric acid producing strain Lactobacillus buchneri WPZ001 that could efficiently utilize xylose and corncob hydrolysate," Applied microbiology and biotechnology, vol. 99, no. 7, pp. 3191-3200, 2015.
[54] R. Forage, "Effect of environment on microbial activity," Comprehensive biotechnology, vol. 1, pp. 251-280, 1985.
[55] W.-C. Liao, C.-Y. Wang, Y.-T. Shyu, R.-C. Yu and K.-C. Ho, "Influence of preprocessing methods and fermentation of adzuki beans on c-aminobutyric acid (GABA) accumulation by lactic acid bacteria," Journal of Functional Foods, vol. 5, no. 3, pp. 1108-1115, 2013.
[56] Q. Lin, "Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA) production," Brazilian Journal of Microbiology, vol. 44, no. 1, pp. 183-187, 2013.
[57] G. L. Miller, "Use of dinitrosalicylic acid reagent for determination of reducing sugar," Analytical chemistry, vol. 31, no. 3, pp. 426-428, 1959.
[58] M. R. Rover, P. A. Johnston, B. P. Lamsal and R. C. Brown, "Total water-soluble sugars quantification in bio-oil using the phenol–sulfuric acid assay," Journal of Analytical and Applied Pyrolysis, vol. 104, pp. 194-201, 2013.
[59] N. Komatsuzaki, J. Shima, S. Kawamoto, H. Momose and T. Kimura, "Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods," Food microbiology, vol. 22, no. 6, pp. 497-504, 2005.
[60] O. H. Lowry, "Protein measurement with the Folin phenol reagent," J Biol Chem, vol. 193, no. 1, pp. 265-275, 1951.
[61] Q. Y. Zhu, R. M. Hackman, J. L. Ensunsa, R. R. Holt, and C. L. Keen, "Antioxidative Activities of Oolong Tea," Journal of Agricultural and Food Chemistry, vol. 50, no. 23, pp. 6929-6934, 2002.
[62] M. Massaro, S. Riela, S. Guernelli, F. Parisi, G. Lazzara, A. Baschieri, et al., "A synergic nanoantioxidant based on covalently modified halloysite–trolox nanotubes with intra-lumen loaded quercetin," Journal of Materials Chemistry B, vol. 4, pp. 2229-2241, 2016.
[63] E. Roberts and R. Smith, "Spectrophotometric measurements of theaflavins and thearubigins in black tea liquors in assessments of quality in teas," Analyst, vol. 86, no. 1019, pp. 94-98, 1961.
[64] L. Yao, Y. Jiang, N. Caffin, B. D’arcy, N. Datta, X. Liu, et al., "Phenolic compounds in tea from Australian supermarkets," Food Chemistry, vol. 96, no. 4, pp. 614-620, 2006.
[65] M. Friedman, "Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas," Molecular Nutrition & Food Research, vol. 51, no. 1, pp. 116-134, 2007.
[66] Y. H. Jin, J. H. Hong, J.-H. Lee, H. Yoon, A. M. Pawluk, S. J. Yun, and J.-H. Mah, "Lactic Acid Fermented Green Tea with Levilactobacillus brevis Capable of Producing γ-Aminobutyric Acid," Fermentation, vol. 7, no. 3, p. 110, 2021.
[67] E.-J. Lee and S.-P. Lee, "Novel bioconversion of sodium glutamate to γ-amino butyric acid by co-culture of Lactobacillus plantarum K154 in Ceriporia lacerata culture broth," Food Science and Biotechnology, vol. 23, pp. 1997-2005, 2014.
[68] M. Skrajda-Brdak, I. Konopka, M. Tańska, and S. Czaplicki, "Changes in the content of free phenolic acids and antioxidative capacity of wholemeal bread in relation to cereal species and fermentation type," European Food Research and Technology, vol. 245, no. 10, pp. 2247-2256, 2019.
[69] D. T. Saa, R. Di Silvestro, G. Dinelli and A. Gianotti, "Effect of sourdough fermentation and baking process severity on dietary fibre and phenolic compounds of immature wheat flour bread," LWT - Food Science and Technology, vol. 83, pp. 26-32, 2017.
[70] C. Öztürk, M. Aksoy and Ö. İ. Küfrevioğlu, "Purifcation of tea leaf (Camellia sinensis) polyphenol oxidase by using afnity chromatography and investigation of its kinetic properties," Journal of Food Measurement and Characterization, vol. 14, pp. 31-38, 2020.
[71] M. K. Roy, M. Koide, T. P. Rao, T. Okubo, Y. Ogasawara and L. R. Juneja, "ORAC and DPPH assay comparison to assess antioxidant capacity of tea infusions: Relationship between total polyphenol and individual catechin content," International Journal of Food Sciences and Nutrition, vol. 61, no. 2, pp. 109-124, 2010.
[72] C. Groussard, I. Morel, M. Chevanne, M. Monnier, J. Cillard and A. Delamarche, "Free radical scavenging and antioxidant effects of lactate ion: an in vitro study," Journal of Applied Physiology, vol. 89, pp. 169-175, 2000.
[73] R. L. Scalzo, "Organic acids influence on DPPH scavenging by ascorbic acid," Food Chemistry, vol. 107, pp. 40-43, 2008.
[74] C. Liu, L. Zhao and G. Yu, "The Dominant Glutamic Acid Metabolic Flux to Produce γ-Amino Butyric Acid over Proline in Nicotiana tabacum Leaves under Water Stress Relates to its Significant Role in Antioxidant Activity," Journal of Integrative Plant Biology, vol. 53, no. 8, pp. 608-618, 2011.
[75] Y.-R. Cho, J.-Y. Chang and H.-C. Chang, "Production of γ-aminobutyric acid (GABA) by Lactobacillus buchneri Isolated from Kimchi and its Neuroprotective Effect on Neuronal Cells," Journal of Microbiology and Biotechnology, vol. 17, no. 1, pp. 104-109, 2007.
[76] D. A. Roth-Maier, S. I. Kettler and M. Kirchgessner, "Availability of vitamin B6 from different food sources," International Journal of Food Sciences and Nutrition, vol. 53, pp. 171-179, 2002.
[77] H. D. Sa, J. Y. Park, S.-J. Jeong, K. W. Lee, and J. H. Kim,, "Characterization of Glutamate Decarboxylase (GAD) from Lactobacillus sakei A156 Isolated from Jeot-gal," Journal of Microbiology and Biotechnology, vol. 25, no. 5, pp. 696-703, 2015.
[78] J. Teng, Z. Gong, Y. Deng, L. Chen, Q. Li, Y. Shao, et al., "Purification, characterization and enzymatic synthesis of theaflavins of polyphenol oxidase isozymes from tea leaf (Camellia sinensis)," LWT - Food Science and Technology, vol. 84, pp. 263-270, 2017.
[79] X. Lu, C. Xie and Z. Gu, "Optimisation of fermentative parameters for GABA enrichment by Lactococcus lactis," Czech Journal of Food Sciences, vol. 27, no. 6, pp. 433-442, 2009.
[80] J. M. Villegas, L. Brown, G. Savoy De Giori, and E. M. Hebert, "Optimization of batch culture conditions for GABA production by Lactobacillus brevis CRL 1942, isolated from quinoa sourdough," LWT, vol. 67, pp. 22-26, 2016.
[81] A. Santos-Espinosa, L. M. Beltrán-Barrientos, R. Reyes-Díaz, M. Á. Mazorra-Manzano, A. Hernández-Mendoza, G. A. González-Aguilar, S. G. Sáyago-Ayerdi, B. Vallejo-Cordoba, and A. F. González-Córdova, "Gamma-aminobutyric acid (GABA) production in milk fermented by specific wild lactic acid bacteria strains isolated from artisanal Mexican cheeses," Annals of Microbiology, vol. 70, no. 1, 2020.
[82] Y. Shan, C. X. Man, X. Han, L. Li, Y. Guo, Y. Deng, T. Li, L. W. Zhang, and Y. J. Jiang, "Evaluation of improved γ-aminobutyric acid production in yogurt using Lactobacillus plantarum NDC75017," Journal of Dairy Science, vol. 98, no. 4, pp. 2138-2149, 2015.
[83] H. Li and Y. Cao, "Lactic acid bacterial cell factories for gamma-aminobutyric acid," Amino Acids, vol. 39, pp. 1107-1116, 2010.
[84] H. Li, T. Qiu, G. Huang, and Y. Cao, "Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation," Microbial Cell Factories, vol. 9, no. 1, p. 85, 2010.
[85] J.-J. Yu and S.-H. Oh, "γ-Aminobutyric Acid Production and Glutamate Decarboxylase Activity of Lactobacillus sakei OPK2-59 Isolated from Kimchi," The Korean Journal of Microbiology, vol. 47, no. 4, pp. 316-322, 2011.
[86] Y. Zhong, S. Wu, F. Chen, M. He, and J. Lin, "Isolation of high γ aminobutyric acid producing lactic acid bacteria and fermentation in mulberry leaf powders," Experimental and Therapeutic Medicine, vol. 18, pp. 147-153, 2019.
[87] S. Liu, K. A. Skinner-Nemec and T. D. Leathers, "Lactobacillus buchneri strain NRRL B-30929 converts a concentrated mixture of xylose and glucose into ethanol and other products," Journal of Industrial Microbiology and Biotechnology, vol. 35, no. 2, pp. 75-81, 2008.
[88] M. Li, Y. Xiao, K. Zhong, Y. Wu, and H. Gao, "Delving into the Biotransformation Characteristics and Mechanism of Steamed Green Tea Fermented by Aspergillus niger PW-2 Based on Metabolomic and Proteomic Approaches," Foods, vol. 11, no. 6, p. 865, 2022.
[89] T. PURWOKO, S. SURANTO, R. SETYANINGSIH and S. D. MARLIYANA, "Chlorogenic acid and caffeine content of fermented robusta bean," Biodiversitas Journal of Biological Diversity, vol. 23, no. 2, pp. 902-906, 2022.
[90] B. Zhou, C. Ma, H. Wang, and T. Xia, "Biodegradation of caffeine by whole cells of tea-derived fungi Aspergillus sydowii, Aspergillus niger and optimization for caffeine degradation," BMC Microbiology, vol. 18, no. 1, 2018.
[91] B. Zhou, C. Ma, H. Wang, T. Xia, X. Li and Y. Wu, "Application of Aspergillus sydowii NRRL250 to degrade caffeine in pu‐erh tea," American Journal of Agriculture and Forestry, vol. 6, no. 6, pp. 162-168, 2018.
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2022-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明