參考文獻 |
1. Yamaguchi, M.; Dimroth, F.; Geisz, J. F.; Ekins-Daukes, N. J. Multi-junction solar cells paving the way for super high-efficiency. J. Appl. Phys. 2021, 129, 240901-240915.
2. Ahmadpanah, F. S.; Orouji, A. A.; Gharibshahian, I. Improving the efficiency of CIGS solar cells using an optimized p-type CZTSSe electron reflector layer. J Mater Sci: Mater Electron. 2021, 32, 22535-22547.
3. Wu, Y.; Fan, Q.; Fan, B.; Qi, F.; Wu, Z.; Lin, F. R.; Li, Y.; Lee, C.-S.; Woo, H. Y.; Yip, H.-L.; et al. Non-Fullerene Acceptor Doped Block Copolymer for Efficient and Stable Organic Solar Cells. ACS Energy Lett. 2022, 7, 2196-2202.
4. Chang, P. H.; Sil, M. C.; Reddy, K. S. K.; Lin, C. H.; Chen, C. M. Polyimide-Based Covalent Organic Framework as a Photocurrent Enhancer for Efficient Dye-Sensitized Solar Cells. ACS Appl Mater Interfaces. 2022, 14, 25466-25477.
5. Kim, H.; Lim, J.; Sohail, M.; Nazeeruddin, M. K. Superhalogen Passivation for Efficient and Stable Perovskite Solar Cells. Solar RRL. 2022, n/a, 2200013.
6. Lu, H.; Liu, Y.; Ahlawat, P.; Mishra, A.; Tress, W. R.; Eickemeyer, F. T.; Yang, Y.; Fu, F.; Wang, Z.; Avalos, C. E.; et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science. 2020, 370, eabb8985.
7. Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep. 2012, 2, 591.
8. Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.-b.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science. 2014, 345, 542-546.
9. Lu, H.; Liu, Y.; Ahlawat, P.; Mishra, A.; Tress, W. R.; Eickemeyer, F. T.; Yang, Y.; Fu, F.; Wang, Z.; Avalos, C. E.; et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science. 2020, 370, eabb8985.
10. Kim, G.; Min, H.; Lee, K. S.; Lee, D. Y.; Yoon, S. M.; Seok, S. I. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science. 2020, 370, 108-112.
11. Schulz, P. Interface Design for Metal Halide Perovskite Solar Cells. ACS Energy Lett. 2018, 3, 1287-1293.
12. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050-6051.
13. Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ. Sci. 2015, 8, 1602-1608.
14. Said, A. A.; Xie, J.; Zhang, Q. Recent Progress in Organic Electron Transport Materials in Inverted Perovskite Solar Cells. Small. 2019, 15, e1900854.
15. Yang, G.; Tao, H.; Qin, P.; Ke, W.; Fang, G. Recent progress in electron transport layers for efficient perovskite solar cells. J. Mater. Chem. A. 2016, 4, 3970-3990.
16. Yu, H.; Ryu, J.; Lee, J. W.; Roh, J.; Lee, K.; Yun, J.; Lee, J.; Kim, Y. K.; Hwang, D.; Kang, J.; et al. Large Grain-Based Hole-Blocking Layer-Free Planar-Type Perovskite Solar Cell with Best Efficiency of 18.20%. ACS Appl. Mater. Interfaces. 2017, 9, 8113-8120.
17. Liu, X.; Shi, X.; Liu, C.; Ren, Y.; Wu, Y.; Yang, W.; Alsaedi, A.; Hayat, T.; Kong, F.; Liu, X.; et al. A Simple Carbazole-Triphenylamine Hole Transport Material for Perovskite Solar Cells. J. Phys. Chem. C. 2018, 122, 26337-26343.
18. Sun, N.; Gao, W.; Dong, H.; Liu, Y.; Liu, X.; Wu, Z.; Song, L.; Ran, C.; Chen, Y. Architecture of p-i-n Sn-Based Perovskite Solar Cells: Characteristics, Advances, and Perspectives. ACS Energy Lett. 2021, 6, 2863-2875.
19. Kung, P. K.; Li, M. H.; Lin, P. Y.; Chiang, Y. H.; Chan, C. R.; Guo, T. F.; Chen, P. A Review of Inorganic Hole Transport Materials for Perovskite Solar Cells. Adv. Mater. Interfaces. 2018, 5, 180882.
20. Ren, G.; Han, W.; Deng, Y.; Wu, W.; Li, Z.; Guo, J.; Bao, H.; Liu, C.; Guo, W. Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review. J. Mater. Chem. A. 2021, 9, 4589-4625.
21. Shao, J.-Y.; Zhong, Y.-W. Design of small molecular hole-transporting materials for stable and high-performance perovskite solar cells. Chem. Phys. Rev. 2021, 2, 021302.
22. Wang, Y.; Liao, Q.; Chen, J.; Huang, W.; Zhuang, X.; Tang, Y.; Li, B.; Yao, X.; Feng, X.; Zhang, X.; et al. Teaching an Old Anchoring Group New Tricks: Enabling Low-Cost, Eco-Friendly Hole-Transporting Materials for Efficient and Stable Perovskite Solar Cells. J. Am. Chem. Soc. 2020, 142, 16632-16643.
23. Zhang, H.; Mao, Y.; Xu, J.; Li, S.; Guo, F.; Zhu, L.; Wang, J.; Wu, Y. Methylthiophene terminated D–π–D molecular semiconductors as multifunctional interfacial materials for high performance perovskite solar cells. J. Mater. Chem. C. 2022, 10, 1862-1869.
24. Zhu, H.; Shen, Z.; Pan, L.; Han, J.; Eickemeyer, F. T.; Ren, Y.; Li, X.; Wang, S.; Liu, H.; Dong, X.; et al. Low-Cost Dopant Additive-Free Hole-Transporting Material for a Robust Perovskite Solar Cell with Efficiency Exceeding 21%. ACS Energy Lett. 2020, 6, 208-215.
25. Ren, M.; Wang, J.; Xie, X.; Zhang, J.; Wang, P. Double-Helicene-Based Hole-Transporter for Perovskite Solar Cells with 22% Efficiency and Operation Durability. ACS Energy Lett. 2019, 4, 2683-2688.
26. Jeong, M.; Choi, I. W.; Go, E. M.; Cho, Y.; Kim, M.; Lee, B.; Jeong, S.; Jo, Y.; Choi, H. W.; Lee, J.; et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science. 2020, 369, 1615-1620.
27. Chang, Y. M.; Li, C. W.; Lu, Y. L.; Wu, M. S.; Li, H.; Lin, Y. S.; Lu, C. W.; Chen, C. P.; Chang, Y. J. Spherical Hole-Transporting Interfacial Layer Passivated Defect for Inverted NiOx-Based Planar Perovskite Solar Cells with High Efficiency of over 20%. ACS Appl. Mater. Interfaces. 2021, 13, 6450-6460.
28. Sonigara, K. K.; Shao, Z.; Prasad, J.; Machhi, H. K.; Cui, G.; Pang, S.; Soni, S. S. Organic Ionic Plastic Crystals as Hole Transporting Layer for Stable and Efficient Perovskite Solar Cells. Adv. Funct. Mater. 2020, 30, 2001460.
29. Wang, Y.; Yang, Y.; Uhlik, F.; Slanina, Z.; Han, D.; Yang, Q.; Yuan, Q.; Yang, Y.; Zhou, D.-Y.; Feng, L. Enhancing photovoltaic performance of inverted perovskite solar cells via imidazole and benzoimidazole doping of PC61BM electron transport layer. Organic Electronics. 2020, 78, 105573.
30. Tingare, Y. S.; Su, C.; Lin, J. H.; Hsieh, Y. C.; Lin, H. J.; Hsu, Y. C.; Li, M. C.; Chen, G. L.; Tseng, K. W.; Yang, Y. H.; et al. Benzimidazole Based Hole‐Transporting Materials for High‐performance Inverted Perovskite Solar Cells. Adv. Funct. Mater. 2022, n/a, 2201933.
31. Xu, P.; Liu, P.; Li, Y.; Xu, B.; Kloo, L.; Sun, L.; Hua, Y. D-A-D-Typed Hole Transport Materials for Efficient Perovskite Solar Cells: Tuning Photovoltaic Properties via the Acceptor Group. ACS Appl. Mater. Interfaces. 2018, 10, 19697-19703.
32. Alinezhad, H.; Salehian, F.; Biparva, P. Synthesis of Benzimidazole Derivatives Using Heterogeneous ZnO Nanoparticles. Synthetic Communications. 2011, 42, 102-108.
33. Jia, H.; Yao, Y.; Zhao, J.; Gao, Y.; Luo, Z.; Du, P. A novel two-dimensional nickel phthalocyanine-based metal–organic framework for highly efficient water oxidation catalysis. J. Mater. Chem. A. 2018, 6, 1188-1195.
34. Shao, J.; Chang, J.; Chi, C. Linear and star-shaped pyrazine-containing acene dicarboximides with high electron-affinity. Org. Biomol. Chem. 2012, 10, 7045-7052. |