參考文獻 |
1. Kim, J. Y.; Lee, J. W.; Jung, H. S.; Shin, H.; Park, N. G. High-Efficiency Perovskite Solar Cells. Chem. Rev. 2020, 120, 7867-7918.
2. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050-6051.
3. Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.
4. Huang, Y.; Li, L.; Liu, Z.; Jiao, H.; He, Y.; Wang, X.; Zhu, R.; Wang, D.; Sun, J.; Chen, Q.; et al. The intrinsic properties of FA(1−x)MAxPbI3 perovskite single crystals. J. Mater. Chem. A 2017, 5, 8537-8544.
5. Marinova, N.; Valero, S.; Delgado, J. L. Organic and perovskite solar cells: Working principles, materials and interfaces. J. Colloid Interface Sci. 2017, 488, 373-389.
6. Qi, B.; Wang, J. Open-circuit voltage in organic solar cells. J. Mater. Chem. 2012, 22, 24315-24325.
7. Wright, M.; Uddin, A. Organic—inorganic hybrid solar cells: A comparative review. Sol. Energy Mater Sol. Cells 2012, 107, 87-111.
8. Song, Z.; Watthage, S. C.; Phillips, A. B.; Heben, M. J. Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. J. Photonics Energy 2016, 6, 022001.
9. Zhou, J.; Yin, X.; Dong, Z.; Ali, A.; Song, Z.; Shrestha, N.; Bista, S. S.; Bao, Q.; Ellingson, R. J.; Yan, Y.; et al. Dithieno[3,2-b:2′,3′-d]pyrrole Cored p-Type Semiconductors Enabling 20 % Efficiency Dopant-Free Perovskite Solar Cells. Angew. Chem. Int. Ed. 2019, 58, 13717-13721.
10. Yuan, J.; Chen, Y.; Liu, X.; Xue, S. Dopant-free Hole-transporting Materials for CH3NH3PbI3 Inverted Perovskite Solar Cells with an Approximate Efficiency of 20%. ACS Appl. Energy. Mater. 2021, 4, 5756-5766.
11. Urieta-Mora, J.; Zimmermann, I.; Aragó, J.; Molina-Ontoria, A.; Ortí, E.; Martín, N.; Nazeeruddin, M. K. Dibenzoquinquethiophene- and Dibenzosexithiophene-Based Hole-Transporting Materials for Perovskite Solar Cells. Chem. Mater. 2018, 31, 6435-6442.
12. Ma, S.; Zhang, X.; Liu, X.; Ghadari, R.; Cai, M.; Ding, Y.; Mateen, M.; Dai, S. Pyridine-triphenylamine hole transport material for inverted perovskite solar cells. J. Energy Chem. 2021, 54, 395-402.
13. Nakar, R.; Ramos, F. J.; Dalinot, C.; Marques, P. S.; Cabanetos, C.; Leriche, P.; Sanguinet, L.; Kobeissi, M.; Blanchard, P.; Faure-Vincent, J.; et al. Cyclopentadithiophene and Fluorene Spiro-Core-Based Hole-Transporting Materials for Perovskite Solar Cells. J. Phys. Chem. C 2019, 123, 22767-22774.
14. Chen, J.; Xia, J.; Yu, H.-J.; Zhong, J.-X.; Wu, X.-K.; Qin, Y.-S.; Jia, C.; She, Z.; Kuang, D.-B.; Shao, G. Asymmetric 3D hole-transporting materials based on triphenylethylene for perovskite solar cells. Chem. Mater. 2019, 31, 5431-5441.
15. Li, X.; Sun, N.; Li, Z.; Chen, J.; Sun, Q.; Wang, H.; Hao, Y. A low-cost asymmetric carbazole-based hole-transporting material for efficient perovskite solar cells. New J. Chem. 2021, 45, 735-741.
16. Wu, C.; Liu, Y.; Liu, H.; Duan, C.; Pan, Q.; Zhu, J.; Hu, F.; Ma, X.; Jiu, T.; Li, Z.; et al. Highly Conjugated Three-Dimensional Covalent Organic Frameworks Based on Spirobifluorene for Perovskite Solar Cell Enhancement. J. Am. Chem. Soc. 2018, 140, 10016-10024.
17. Liu, Y.; Zhu, Y.; Alahakoon, S. B.; Egap, E. Synthesis of Imine-Based Covalent Organic Frameworks Catalyzed by Metal Halides and in Situ Growth of Perovskite@COF Composites. ACS Materials Lett. 2020, 2, 1561-1566.
18. Wu, S.; Li, Z.; Li, M. Q.; Diao, Y.; Lin, F.; Liu, T.; Zhang, J.; Tieu, P.; Gao, W.; Qi, F.; et al. 2D metal-organic framework for stable perovskite solar cells with minimized lead leakage. Nat. Nanotechnol. 2020, 15, 934-940.
19. Izumi, S.; Higginbotham, H. F.; Nyga, A.; Stachelek, P.; Tohnai, N.; Silva, P.; Data, P.; Takeda, Y.; Minakata, S. Thermally Activated Delayed Fluorescent Donor-Acceptor-Donor-Acceptor pi-Conjugated Macrocycle for Organic Light-Emitting Diodes. J. Am. Chem. Soc. 2020, 142, 1482-1491.
20. Dobscha, J. R.; Debnath, S.; Fadler, R. E.; Fatila, E. M.; Pink, M.; Raghavachari, K.; Flood, A. H. Host-Host Interactions Control Self-assembly and Switching of Triple and Double Decker Stacks of Tricarbazole Macrocycles Co-assembled with anti-Electrostatic Bisulfate Dimers. Chem. Eur. J. 2018, 24, 9841-9852.
21. Targhi, F. F.; Jalili, Y. S.; Kanjouri, F. MAPbI3 and FAPbI3 perovskites as solar cells: Case study on structural, electrical and optical properties. Results Phys. 2018, 10, 616-627.
22. Wang, D. X.; Wang, M. X. Anion-pi interactions: generality, binding strength, and structure. J. Am. Chem. Soc. 2013, 135, 892-897.
23. Wang, M.-X.; Yang, H.-B. A general and high yielding fragment coupling synthesis of heteroatom-bridged calixarenes and the unprecedented examples of calixarene cavity fine-tuned by bridging heteroatoms. J. Am. Chem. Soc. 2004, 126, 15412-15422.
24. Wang, Y.-F.; Lu, H.-Y.; Shen, Y.-F.; Li, M.; Chen, C.-F. Novel oxacalix [2] arene [2] triazines with thermally activated delayed fluorescence and aggregation-induced emission properties. Chem. Commun. 2019, 55, 9559-9562.
25. Wu, T.; Li, X.; Qi, Y.; Zhang, Y.; Han, L. Defect Passivation for Perovskite Solar Cells: from Molecule Design to Device Performance. ChemSusChem 2021, 14, 4354-4376.
26. Wu, A.; Zhu, Y.; Yuan, J.; Li, Y.; Gao, M.; Cao, L.; Ding, J. One-Pot Synthesis of Oxacalixarene Derivatives with Tunable Cavity Size Using Miscellaneous Linkers. Synlett 2010, 2011, 52-56.
27. Liu, Y.; Chen, K.; Xing, K.; Wang, Y.; Jiang, H.; Deng, X.; Zhu, M.; Zhu, W. Conjugated and nonconjugated bipolar-transporting dinuclear europium(III) complexes involving triphenylamine and oxadiazole units: synthesis, photophysical and electroluminescent properties. Tetrahedron 2013, 69, 4679-4686.
28. Aucagne, V.; Berná, J.; Crowley, J. D.; Goldup, S. M.; Hänni, K. D.; Leigh, D. A.; Lusby, P. J.; Ronaldson, V. E.; Slawin, A. M.; Viterisi, A. Catalytic “Active-Metal” Template Synthesis of [2] Rotaxanes,[3] Rotaxanes, and Molecular Shuttles, and Some Observations on the Mechanism of the Cu (I)-Catalyzed Azide− Alkyne 1, 3-Cycloaddition. J. Am. Chem. Soc. 2007, 129, 11950-11963.
29. Lewis, J. E. M.; Bordoli, R. J.; Denis, M.; Fletcher, C. J.; Galli, M.; Neal, E. A.; Rochette, E. M.; Goldup, S. M. High yielding synthesis of 2,2′-bipyridine macrocycles, versatile intermediates in the synthesis of rotaxanes. Chem. Sci. 2016, 7, 3154-3161.
30. Long, R.; Yan, X.; Wu, Z.; Li, Z.; Xiang, H.; Zhou, X. Palladium-catalyzed direct arylation of phenols with aryl iodides. Org. Biomol. Chem. 2015, 13, 3571-3574. |