參考文獻 |
(1) Nagy, Z., Blaudeau, J. P., Hung, N. C., Curtiss, L. A., & Zurawski, D. J. (1995). Chloride ion catalysis of the copper deposition reaction. Journal of The Electrochemical Society, 142(6), L87.
(2) Huynh, T. M. T., Hai, N. T. M., & Broekmann, P. (2013). Quasi-reversible interaction of MPS and chloride on Cu (100) studied by in situ STM. Journal of the electrochemical society, 160(12), D3063.
(3) Lin, C. C., Hu, C. C., Lu, Y. T., & Guo, R. H. (2018). Reconsider the depolarization behavior of copper electrodeposition in the presence of 3-mercapto-1-propanesulfonate. Electrochemistry Communications, 91, 75-78.
(4) Lu, J. (2017). Adsorption of Benzyl Viologen and Polyethylene Glycol and their Displacement by 3-Mercapto-1 Propanesulfonate During Copper Electrodeposition (Doctoral dissertation, University of New Hampshire).
(5) Spendelow, J. S., Xu, Q., Goodpaster, J. D., Kenis, P. J., & Wieckowski, A. (2007). The role of surface defects in CO oxidation, methanol oxidation, and oxygen reduction on Pt (111). Journal of the Electrochemical Society, 154(12), F238.
(6) Waszczuk, P., Lu, G. Q., Wieckowski, A., Lu, C., Rice, C., & Masel, R. I. (2002). UHV and electrochemical studies of CO and methanol adsorbed at platinum/ruthenium surfaces, and reference to fuel cell catalysis. Electrochimica Acta, 47(22-23), 3637-3652.
(7) Koper, M. T. M., Lebedeva, N. P., & Hermse, C. G. M. (2002). Dynamics of CO at the solid/liquid interface studied by modeling and simulation of CO electro-oxidation on Pt and PtRu electrodes. Faraday discussions, 121, 301-311.
(8) Borg, A., Hilmen, A. M., & Bergene, E. (1994). STM studies of clean, CO-and O2-exposed Pt (100)-hex-R0. 7. Surface science, 306(1-2), 10-20.
(9) Zolfaghari, A., & Jerkiewicz, G. (1997). The temperature dependence of hydrogen and anion adsorption at a Pt (100) electrode in aqueous H2SO4 solution. Journal of Electroanalytical Chemistry, 420(1-2), 11-15.
(10) Sashikata, K., Sugata, T., Sugimasa, M., & Itaya, K. (1998). In situ scanning tunneling microscopy observation of a porphyrin adlayer on an iodine-modified Pt (100) electrode. Langmuir, 14(10), 2896-2902.
(11) Vogel, R., & Baltruschat, H. (1991). Iodine adlattice on Pt (100) observed by STM. Surface science, 259(3), L739-L742.
(12) Wakisaka, M., Yoneyama, T., Ashizawa, S., Hyuga, Y., Ohkanda, T., Uchida, H., & Watanabe, M. (2013). Structural variations of CO adlayers on a Pt (100) electrode in 0.1 M HClO 4 solution: an in situ STM study. Physical Chemistry Chemical Physics, 15(26), 11038-11047.
(13) Kibler, L. A., Cuesta, A., Kleinert, M., & Kolb, D. M. (2000). In-situ STM characterisation of the surface morphology of platinum single crystal electrodes as a function of their preparation. Journal of Electroanalytical Chemistry, 484(1), 73-82.
(14) Gómez, R., Orts, J. M., Álvarez-Ruiz, B., & Feliu, J. M. (2004). Effect of temperature on hydrogen adsorption on Pt (111), Pt (110), and Pt (100) electrodes in 0.1 M HClO4. The Journal of Physical Chemistry B, 108(1), 228-238.
(15) Molodkina, E. B., Danilov, A. I., & Feliu, J. M. (2016). Cu UPD at Pt (100) and stepped faces Pt (610), Pt (410) of platinum single crystal electrodes. Russian Journal of Electrochemistry, 52(9), 890-900.
(16) Molodkina, E. B., Ehrenburg, M. R., Danilov, A. I., & Feliu, J. M. (2016). Two-dimensional Cu deposition on Pt (100) and stepped surfaces of platinum single crystals. Electrochimica Acta, 194, 385-393.
(17) Bittner, A. M., Wintterlin, J., & Ertl, G. (1997). Strain relief during metal-on-metal electrodeposition: a scanning tunneling microscopy study of copper growth on Pt (100). Surface science, 376(1-3), 267-278.
(18) Chen, D., Ye, J., Xu, C., Li, X., Li, J., Zhen, C., ... & Sun, S. (2012). Interaction of citrate with Pt (100) surface investigated by cyclic voltammetry towards understanding the structure-tuning effect in nanomaterials synthesis. Science China Chemistry, 55(11), 2353-2358.
(19) Fernández, P. S., Fernandes Gomes, J., Angelucci, C. A., Tereshchuk, P., Martins, C. A., Camara, G. A., ... & Tremiliosi-Filho, G. (2015). Establishing a link between well-ordered Pt (100) surfaces and real systems: how do random superficial defects influence the electro-oxidation of glycerol?. ACS Catalysis, 5(7), 4227-4236.
(20) Clavilier, J., & Armand, D. (1986). Electrochemical induction of changes in the distribution of the hydrogen adsorption states on Pt (100) and Pt (111) surfaces in contact with sulphuric acid solution. Journal of electroanalytical chemistry and interfacial electrochemistry, 199(1), 187-200.
(21) Furuya, N., Ichinose, M., & Shibata, M. (1999). Structural changes at the Pt (100) surface with a great number of potential cycles. Journal of Electroanalytical Chemistry, 460(1-2), 251-253.
(22) Rodes, A., Zamakhchari, M. A., El Achi, K., & Clavilier, J. (1991). Electrochemical behaviour of Pt (100) in various acidic media: Part I. On a new voltammetric profile of Pt (100) in perchloric acid and effects of surface defects. Journal of electroanalytical chemistry and interfacial electrochemistry, 305(1), 115-129.
(23) Abe, K., Uchida, H., & Inukai, J. (2019). Electro-oxidation of CO saturated in 0.1 M HClO4 on basal and stepped Pt single-crystal electrodes at room temperature accompanied by surface reconstruction. Surfaces, 2(2), 315-325.
(24) Matsushima, H., Taranovskyy, A., Haak, C., Gründer, Y., & Magnussen, O. M. (2009). Reconstruction of Cu (100) electrode surfaces during hydrogen evolution. Journal of the American Chemical Society, 131(30), 10362-10363.
(25) Xie, Y., Yang, Y., Muller, D. A., Abruña, H. D., Dimitrov, N., & Fang, J. (2020). Enhanced ORR kinetics on Au-Doped Pt–Cu porous films in alkaline media. Acs Catalysis, 10(17), 9967-9976.
(26) Han, J. Y. (2012). The effects of additives on the nucleation and growth kinetics of electrodeposited copper nanostructures and thin films (Doctoral dissertation, Science: Department of Chemistry).
(27) Bae, S. E., & Gewirth, A. A. (2006). In situ ec-stm studies of mps, sps, and chloride on cu (100): Structural studies of accelerators for dual damasce
(28) Yen, P., Tu, H., Wu, H., Chen, S., Vogel, W., Yau, S., & Dow, W. P. (2011). In Situ Scanning Tunneling Microscopy Study of 3-Mercaptopropanesulfonate Adsorbed on Pt (111) and Electrodeposition of Copper in 0.1 M KClO4+ 1 mM HCl (pH 3). The Journal of Physical Chemistry C, 115(16), 8110-8116.
(29) Zhao, S., Pang, K., Wang, X., & Xiao, N. (2020). Function of Sulfhydryl (–HS) Group During Microvia Filling by Copper Plating. Journal of The Electrochemical Society, 167(11), 112502.
(30) Farias, M. J., Camara, G. A., & Feliu, J. M. (2015). Understanding the CO preoxidation and the intrinsic catalytic activity of step sites in stepped Pt surfaces in acidic medium. The Journal of Physical Chemistry C, 119(35), 20272-20282.
(31) Reier, T., Oezaslan, M., & Strasser, P. (2012). Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. Acs Catalysis, 2(8), 1765-1772.
(32) Wei, J., Liao, W. C., Lei, J., Yau, S., & Chen, Y. X. (2018). Electrified interfaces of Pt (332) and Pt (997) in acid containing CO and KI: as probed by in situ scanning tunneling microscopy. The Journal of Physical Chemistry C, 122(45), 26111-26119.
(33) Rudnev, A. V., Kuzume, A., Fu, Y., & Wandlowski, T. (2014). CO Oxidation on Pt (100): New insights based on combined voltammetric, microscopic and spectroscopic experiments. Electrochimica acta, 133, 132-145.
(34) Vitus, C. M., Chang, S. C., Schardt, B. C., & Weaver, M. J. (1991). In situ scanning tunneling microscopy as a probe of adsorbate-induced reconstruction at ordered monocrystalline electrodes: carbon monoxide on platinum (100). The Journal of Physical Chemistry, 95(20), 7559-7563.
(35) Soares, D. M., Wasle, S., Weil, K. G., & Doblhofer, K. (2002). Copper ion reduction catalyzed by chloride ions. Journal of Electroanalytical Chemistry, 532(1-2), 353-358. |