博碩士論文 109223033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.146.221.204
姓名 趙子聿(Tzu-Yu Chao)  查詢紙本館藏   畢業系所 化學學系
論文名稱 Pt(100)修飾硫醇分子對銅沉積的影響及 修飾釕對一氧化碳氧化的活性探討
(Effect of Pt(100)-modified thiol molecules on copper deposition and the activity of modified ruthenium on carbon monoxide oxidation)
相關論文
★ 岐狀結構材料在鋰電池的應用★ Adsorption and Electrochemical Polymerization of Pyrrole on Au (100) Electrode as Examine by In Situ Scanning Tunneling Microscopy
★ Synthesis and Characterization of Cyclopentadithiophene (CDT) based Organic Photovoltaic and Pyrazine Contained Hole Transporting Small Molecules★ 有機碘化物在金、銠、鉑(111)電極和有機二硫醇化物在鉑(111)電極的吸附結構
★ STM研究銥(111)上碘、一氧化碳和一氧化氮的吸附及銅(100)上鎳和鉛的沈積★ 利用掃描式電子穿隧顯微鏡觀察鍍銅在鉑(111)及銠(111)電極表面
★ 使用in-situ STM和循環伏安儀研究銅和銀在碘修飾的鉑(100)電極之沈積過程★ 利用in-situ STM觀察銅(100)電極上鉛與鎳的沉積過程
★ 利用in-situ STM觀察硫酸根、氧及碘在釕(001)電極和醋酸、間苯三酚在銠(111)電極的吸附結構★ 掃描式電子穿隧顯微鏡及循環伏安法對 有機碘化物在鉑(111)電極上的研究
★ 半導體碘化鉛薄膜在單結晶銠電極上的研究★ 利用掃描式電子穿隧顯微鏡觀察汞薄膜在銥(111)電極上鹵素的吸附結構
★ 掃描式電子穿隧顯微鏡研究碘原子對汞在 銥(111)、鉑(111)及銠(111)上沈積的影響★ 掃描式電子穿隧顯微鏡對烷基及芳基硫醇分子在鉑(111)及金(111)上之研究
★ 掃描式電子穿隧顯微鏡研究一氧化碳、硫、硫醇分子及氯在釕(001)上的吸附結構★ 硫氧化物及聚賽吩衍生物 在金、鉑電極上之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 半導體製程中最常使用的矽晶圓通常以(100)晶面作為基底來進行後續一步步的製程,隨著線寬逐漸縮小,常常在填孔時產生缺陷,導致產品的良率降低,如果能讓每一步製程都保持整齊的排列堆積,且每一層整齊堆積,搭配有機硫化物對銅沉積的速度及方式進行控制,相信能減少缺陷的產生。本研究使用Pt(100)晶面作為載體,利用循環伏安法(Cyclic Voltammetry,CV)和掃描式電子穿隧顯微鏡(Scanning Tunneling Microscope,STM),探討Pt(100)上搭配使用無機添加物KCl,以及有機添加物-硫化物(MAA、MPS、MPA)對電鍍銅的影響以及表面的形貌變化。其中在僅有無機添加物時,可以觀察到銅在Pt(100)上有棋盤狀結構的生長方式;在電極上修飾有機硫化物後則沒有棋盤結構的產生,但銅仍然會以(100)的1 × 1結構進行堆積。其中MAA和MPS分子作為加速劑能使銅快速地進行沉積,並且在多層銅上可以觀察到轉置的現象;而MPA分子作為抑制劑完美的抑制了銅的生長,只要電位控制在一定範圍,便可以確保銅的沉積範圍可以被控制。再者,Pt(100)作為催化載體也比Pt(111)晶面效果更好,更多的活性位點,幫助一氧化碳氧化的電位負移,使電池的效率提高,搭配釕金屬的修飾,做出了極佳的催化活性。並觀察一氧化碳在Pt(100)電極上不同電位的吸附模式,3 × 7以及3 × 6結構。並觀察到釕金屬是屬於吸附成核後向上生長的金屬,並不會有層狀堆積。
摘要(英) The most commonly used silicon wafer in the semiconductor process is the (100) orientation, on which 3D electronic components are built. As the line width continued to shrink, producing a defect-free Cu fill is challenging. One of aspects of fabricating Cu interconnects involves a thorough understanding of Cu electroplating. Organicthiols have been indispensable ingredient in the formula in Cu deposition bath. However, the effect of these organic additives on the Cu deposition is still lacking.
In this study, cyclic voltammetry and scanning electron tunneling microscope (STM) were used to explore the electrodeposition of Cu on a well-ordered Pt(100) electrode in formula containing organosulfur compounds such as mercaptoacetic acid (MAA), mercaptopropane sulfonic acid (MPS), mercaptopropionic acid (MPA). If the formula contained only H2SO4 + CuSO4 + KCl, Cu was deposited in a quasi layered fashion. High resolution STM imaging revealed atomic structures on this smooth Cu deposit, where Cu film arranged in a chessboard structure on Pt(100). All organic additives used in this study resulted in different textures of the Cu deposit and no chessboard structure was observed.
Among these additives, MAA and MPS modifiers on the Pt(100) electrode resulted in thicker Cu film than that produced by MPA in the same Cu plating bath. This contrast is reasoned by the reduction rate of Cu2+ at the modified Pt(100) electrode and the segregation rate of additive from the Pt substrate onto the Cu deposit.
Moreover, the electrocatalytic activity of Pt(100) toward the oxidation of carbon monoxide was examined. The as-produced Pt(100) electrode is more active than Pt(111) crystal face, as judged from a negative shift of the stripping potential of carbon monoxide. The poisoning effect of CO on Pt catalyst can be alleviated by depositing submonolayer ruthenium species. The spatial structures of CO on Pt(100) were examined by molecular resolution STM imaging.
關鍵字(中) ★ 鉑(100)
★ 電鍍銅
★ 硫醇分子
★ 一氧化碳氧化
關鍵字(英)
論文目次 摘要 I
Abstract II
謝誌 IV
目錄 V
圖目錄 IIX
表目錄 XVI
第一章、緒論 1
1-1銅製程技術 1
1-1-1 銅製程技術的發展簡介 1
1-1-2 超填孔電鍍 2
1-1-3 有機分子添加劑 4
1-1-4 無機添加物 6
1-1-5 研究動機 8
1-2 燃料電池的介紹 9
1-2-1 燃料電池的基本原理 9
1-2-2 一氧化碳分子在白金電極上的反應 9
1-2-3 一氧化碳分子在釕修飾鉑電極上氧化文獻回顧及研究動機 10
第二章、實驗部分 12
2-1 實驗藥品耗材 12
2-1-1 藥品 12
2-1-2 氣體 12
2-1-3 金屬線材 13
2-2 實驗儀器設備 14
2-2-1 循環伏安儀 (Cyclic Voltammetry,CV) 14
2-2-2 旋轉電極:RDE (Rotating Disk Electrode) 14
2-2-3 掃描式穿隧電子顯微鏡 (Scanning Tunneling Microscopy,STM) 14
2-2-4 研磨拋光機(Grinder and Polisher) 16
2-2-5 超音波振盪器(Ultrasonicator) 16
2-2-6 直流點焊機 (D.C. Spot Welder) 16
2-3 實驗步驟 21
2-3-1 Pt(100)單晶電極製備 21
2-3-2 Pt(100)STM電極製備 23
2-3-3 STM探針製備 23
2-3-4 循環伏安法(CV) 24
2-3-4-1實驗步驟 24
2-3-4-2 懸吊液面法 25
2-3-2-3 旋轉(RDE)懸吊液面法 25
2-3-5 掃描穿隧式電子顯微鏡(STM)實驗步驟 26
第三章、Pt(100)不同表面結構的製備方式與結果 29
3-1 Pt(100)的結構 29
3-2 Pt(100)不同的製備方式與結果 31
3-2-1 使用通有飽和氫氣之超純水(水冷)製備 31
3-2-2 使用碘蒸氣吸附-一氧化碳置換製備 35
3-2-3 使用氣體冷卻(氣冷)製備 43
3-2-3-1 方法開發介紹 43
3-2-3-2 空氣下冷卻置備 44
3-2-3-3 氮氣下冷卻置備 45
3-2-3-4 氮氣和一氧化碳混合氣體冷卻置備 45
3-2-3-5 氫氣下冷卻置備 46
3-2-4 背景資料補充 55
第四章 添加劑對銅沉積於Pt(100)上的影響 58
4-1 電化學方法於Pt(100)上進行銅沉積 58
4-1-1 0.1 M過氯酸 58
4-1-1-1 Pt(100)鍍銅之CV圖 58
4-1-1-2 Pt(100)鍍銅之STM圖 59
4-1-1-3 添加0.5 mM KCl 在Pt(100)鍍銅之CV圖 60
4-1-1-4 添加0.5 mM KCl 在Pt(100)鍍銅STM圖 60
4-1-1-5 關於銅沉積棋盤方格結構的成因 62

4-1-2 0.1 M硫酸 78
4-1-2-1 Pt(100)鍍銅之CV圖 78
4-1-2-2 Pt(100)鍍銅之STM圖 79
4-1-2-3 添加0.5 mM KCl 在Pt(100)鍍銅之CV圖 79
4-1-2-4 添加0.5 mM KCl 在Pt(100)鍍銅STM圖 80
4-2 電化學方法於Pt(100)表面修飾硫醇分子進行銅沉積 86
4-2-1 CV圖 ( 0.1 M硫酸 ) 86
4-2-1-1 浸泡硫醇分子(MAA、MPS、MPA) 10 mM溶液1分鐘 86
4-2-1-2 浸泡硫醇分子(MAA、MPS、MPA) 10 mM溶液1分鐘薄層銅沉積 86
4-2-1-3 浸泡硫醇分子(MAA、MPS、MPA) 10 mM溶液1分鐘厚層銅沉積 87
4-2-1-4 浸泡硫醇分子(MAA、MPS、MPA) 10 mM溶液1分鐘進行RDE實驗 88
4-2-2 STM圖 ( 0.1 M硫酸 ) 92
4-2-2-1 浸泡MAA硫醇分子50 μM溶液1分鐘鍍銅 92
4-2-2-2 浸泡MPS硫醇分子50 μM溶液1分鐘鍍銅 92
4-2-2-3 浸泡MPA硫醇分子50 μM溶液1分鐘鍍銅 93
第五章 三晶面修飾釕對一氧化碳的氧化活性探討 100
5-1 Pt(100)、(110)、(111)有無釕修飾對一氧化碳的氧化活性探討 100
5-1-1 Pt(100) 100
5-1-2 Pt(110) 106
5-1-3 Pt(111) 111
5-1-4 Pt(100)、(110)、(111)三晶面在修飾釕後對一氧化碳氧化的提前影響結果討論 116
5-2 Pt(100) 有無修飾釕吸附一氧化碳STM 觀察 118
5-2-1 Pt(100)吸附一氧化碳氧化STM圖 118
5-2-2 Pt(100)修飾釕吸附一氧化碳氧化STM圖 122
第六章 結論 126
6-1 如何製備完美的Pt(100)-1 × 1電極結論 126
6-2 Pt(100)修飾硫醇分子對銅沉積的影響結論 126
6-2-1 無修飾分子電鍍銅 126
6-2-2 修飾硫醇分子(MAA、MPS、MPA)電鍍銅 126
6-3 Pt三晶面有無修飾釕對一氧化碳的氧化活性探討結論 128
第七章 參考文獻 130
第八章 補充資料 - Pt(110) 135
8-1 Pt(110)的CV圖 137
8-2 Pt(110)在0.1 M過氯酸下的STM圖 137
8-2-1 Pt(110)在超純水中冷卻 137
8-2-2 Pt(110)用碘蒸氣修飾 137
8-2-3 Pt(110)用碘蒸氣修飾後利用一氧化碳進行置換 138
8-2-4 Pt(110)的表面進行銅沉積 138
8-3 參考文獻 145
參考文獻 (1) Nagy, Z., Blaudeau, J. P., Hung, N. C., Curtiss, L. A., & Zurawski, D. J. (1995). Chloride ion catalysis of the copper deposition reaction. Journal of The Electrochemical Society, 142(6), L87.
(2) Huynh, T. M. T., Hai, N. T. M., & Broekmann, P. (2013). Quasi-reversible interaction of MPS and chloride on Cu (100) studied by in situ STM. Journal of the electrochemical society, 160(12), D3063.
(3) Lin, C. C., Hu, C. C., Lu, Y. T., & Guo, R. H. (2018). Reconsider the depolarization behavior of copper electrodeposition in the presence of 3-mercapto-1-propanesulfonate. Electrochemistry Communications, 91, 75-78.
(4) Lu, J. (2017). Adsorption of Benzyl Viologen and Polyethylene Glycol and their Displacement by 3-Mercapto-1 Propanesulfonate During Copper Electrodeposition (Doctoral dissertation, University of New Hampshire).
(5) Spendelow, J. S., Xu, Q., Goodpaster, J. D., Kenis, P. J., & Wieckowski, A. (2007). The role of surface defects in CO oxidation, methanol oxidation, and oxygen reduction on Pt (111). Journal of the Electrochemical Society, 154(12), F238.
(6) Waszczuk, P., Lu, G. Q., Wieckowski, A., Lu, C., Rice, C., & Masel, R. I. (2002). UHV and electrochemical studies of CO and methanol adsorbed at platinum/ruthenium surfaces, and reference to fuel cell catalysis. Electrochimica Acta, 47(22-23), 3637-3652.
(7) Koper, M. T. M., Lebedeva, N. P., & Hermse, C. G. M. (2002). Dynamics of CO at the solid/liquid interface studied by modeling and simulation of CO electro-oxidation on Pt and PtRu electrodes. Faraday discussions, 121, 301-311.
(8) Borg, A., Hilmen, A. M., & Bergene, E. (1994). STM studies of clean, CO-and O2-exposed Pt (100)-hex-R0. 7. Surface science, 306(1-2), 10-20.
(9) Zolfaghari, A., & Jerkiewicz, G. (1997). The temperature dependence of hydrogen and anion adsorption at a Pt (100) electrode in aqueous H2SO4 solution. Journal of Electroanalytical Chemistry, 420(1-2), 11-15.
(10) Sashikata, K., Sugata, T., Sugimasa, M., & Itaya, K. (1998). In situ scanning tunneling microscopy observation of a porphyrin adlayer on an iodine-modified Pt (100) electrode. Langmuir, 14(10), 2896-2902.
(11) Vogel, R., & Baltruschat, H. (1991). Iodine adlattice on Pt (100) observed by STM. Surface science, 259(3), L739-L742.
(12) Wakisaka, M., Yoneyama, T., Ashizawa, S., Hyuga, Y., Ohkanda, T., Uchida, H., & Watanabe, M. (2013). Structural variations of CO adlayers on a Pt (100) electrode in 0.1 M HClO 4 solution: an in situ STM study. Physical Chemistry Chemical Physics, 15(26), 11038-11047.
(13) Kibler, L. A., Cuesta, A., Kleinert, M., & Kolb, D. M. (2000). In-situ STM characterisation of the surface morphology of platinum single crystal electrodes as a function of their preparation. Journal of Electroanalytical Chemistry, 484(1), 73-82.
(14) Gómez, R., Orts, J. M., Álvarez-Ruiz, B., & Feliu, J. M. (2004). Effect of temperature on hydrogen adsorption on Pt (111), Pt (110), and Pt (100) electrodes in 0.1 M HClO4. The Journal of Physical Chemistry B, 108(1), 228-238.
(15) Molodkina, E. B., Danilov, A. I., & Feliu, J. M. (2016). Cu UPD at Pt (100) and stepped faces Pt (610), Pt (410) of platinum single crystal electrodes. Russian Journal of Electrochemistry, 52(9), 890-900.
(16) Molodkina, E. B., Ehrenburg, M. R., Danilov, A. I., & Feliu, J. M. (2016). Two-dimensional Cu deposition on Pt (100) and stepped surfaces of platinum single crystals. Electrochimica Acta, 194, 385-393.
(17) Bittner, A. M., Wintterlin, J., & Ertl, G. (1997). Strain relief during metal-on-metal electrodeposition: a scanning tunneling microscopy study of copper growth on Pt (100). Surface science, 376(1-3), 267-278.
(18) Chen, D., Ye, J., Xu, C., Li, X., Li, J., Zhen, C., ... & Sun, S. (2012). Interaction of citrate with Pt (100) surface investigated by cyclic voltammetry towards understanding the structure-tuning effect in nanomaterials synthesis. Science China Chemistry, 55(11), 2353-2358.
(19) Fernández, P. S., Fernandes Gomes, J., Angelucci, C. A., Tereshchuk, P., Martins, C. A., Camara, G. A., ... & Tremiliosi-Filho, G. (2015). Establishing a link between well-ordered Pt (100) surfaces and real systems: how do random superficial defects influence the electro-oxidation of glycerol?. ACS Catalysis, 5(7), 4227-4236.
(20) Clavilier, J., & Armand, D. (1986). Electrochemical induction of changes in the distribution of the hydrogen adsorption states on Pt (100) and Pt (111) surfaces in contact with sulphuric acid solution. Journal of electroanalytical chemistry and interfacial electrochemistry, 199(1), 187-200.
(21) Furuya, N., Ichinose, M., & Shibata, M. (1999). Structural changes at the Pt (100) surface with a great number of potential cycles. Journal of Electroanalytical Chemistry, 460(1-2), 251-253.
(22) Rodes, A., Zamakhchari, M. A., El Achi, K., & Clavilier, J. (1991). Electrochemical behaviour of Pt (100) in various acidic media: Part I. On a new voltammetric profile of Pt (100) in perchloric acid and effects of surface defects. Journal of electroanalytical chemistry and interfacial electrochemistry, 305(1), 115-129.
(23) Abe, K., Uchida, H., & Inukai, J. (2019). Electro-oxidation of CO saturated in 0.1 M HClO4 on basal and stepped Pt single-crystal electrodes at room temperature accompanied by surface reconstruction. Surfaces, 2(2), 315-325.
(24) Matsushima, H., Taranovskyy, A., Haak, C., Gründer, Y., & Magnussen, O. M. (2009). Reconstruction of Cu (100) electrode surfaces during hydrogen evolution. Journal of the American Chemical Society, 131(30), 10362-10363.
(25) Xie, Y., Yang, Y., Muller, D. A., Abruña, H. D., Dimitrov, N., & Fang, J. (2020). Enhanced ORR kinetics on Au-Doped Pt–Cu porous films in alkaline media. Acs Catalysis, 10(17), 9967-9976.
(26) Han, J. Y. (2012). The effects of additives on the nucleation and growth kinetics of electrodeposited copper nanostructures and thin films (Doctoral dissertation, Science: Department of Chemistry).
(27) Bae, S. E., & Gewirth, A. A. (2006). In situ ec-stm studies of mps, sps, and chloride on cu (100): Structural studies of accelerators for dual damasce
(28) Yen, P., Tu, H., Wu, H., Chen, S., Vogel, W., Yau, S., & Dow, W. P. (2011). In Situ Scanning Tunneling Microscopy Study of 3-Mercaptopropanesulfonate Adsorbed on Pt (111) and Electrodeposition of Copper in 0.1 M KClO4+ 1 mM HCl (pH 3). The Journal of Physical Chemistry C, 115(16), 8110-8116.
(29) Zhao, S., Pang, K., Wang, X., & Xiao, N. (2020). Function of Sulfhydryl (–HS) Group During Microvia Filling by Copper Plating. Journal of The Electrochemical Society, 167(11), 112502.
(30) Farias, M. J., Camara, G. A., & Feliu, J. M. (2015). Understanding the CO preoxidation and the intrinsic catalytic activity of step sites in stepped Pt surfaces in acidic medium. The Journal of Physical Chemistry C, 119(35), 20272-20282.
(31) Reier, T., Oezaslan, M., & Strasser, P. (2012). Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. Acs Catalysis, 2(8), 1765-1772.
(32) Wei, J., Liao, W. C., Lei, J., Yau, S., & Chen, Y. X. (2018). Electrified interfaces of Pt (332) and Pt (997) in acid containing CO and KI: as probed by in situ scanning tunneling microscopy. The Journal of Physical Chemistry C, 122(45), 26111-26119.
(33) Rudnev, A. V., Kuzume, A., Fu, Y., & Wandlowski, T. (2014). CO Oxidation on Pt (100): New insights based on combined voltammetric, microscopic and spectroscopic experiments. Electrochimica acta, 133, 132-145.
(34) Vitus, C. M., Chang, S. C., Schardt, B. C., & Weaver, M. J. (1991). In situ scanning tunneling microscopy as a probe of adsorbate-induced reconstruction at ordered monocrystalline electrodes: carbon monoxide on platinum (100). The Journal of Physical Chemistry, 95(20), 7559-7563.
(35) Soares, D. M., Wasle, S., Weil, K. G., & Doblhofer, K. (2002). Copper ion reduction catalyzed by chloride ions. Journal of Electroanalytical Chemistry, 532(1-2), 353-358.
指導教授 姚學麟(Shueh-Lin Yau) 審核日期 2022-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明