博碩士論文 109223044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.191.181.231
姓名 魏名妤(Ming-Yu Wei)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用溫和水相法快速包封酵素並合成鋁基底之金屬有機骨架材料
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-1以後開放)
摘要(中) 由於酵素具有高效催化與專一性特定反應的展現,所以在工業上被 廣泛應用—造紙、紡織、清潔劑等。但也因為酵素在嚴苛環境下的不 穩定性,如有機溶劑,並且催化完後難以與產物在反應溶液中分離, 因此在應用上存在許多限制。對於如何能夠增加酵素穩定性與酵素固 定化實用性上的課題,顯得十分重要且有潛力。本實驗室於 2015 年
首次開發出以原位創新合成法(de novo),在水相室溫下以類沸石咪唑
骨架材料 ZIF-90 包覆過氧化氫酶(Catalase),利用金屬有機骨架材料
的孔洞性質,允許受質(substrate)進入材料催化,同時酵素受到孔洞材
料保護防止被大分子蛋白質水解酶分解,提供紡織工業漂白水處理議
題的一項有效方法。2017 年更進一步發表此生物性複合材料 enzyme@ZIF-90 研究,發現指出金屬有機骨架材料對酵素提供空間侷 限性的效果,此作用降低酵素在展開劑尿素的環境下所造成結構的展 開與失活程度。雖然此溫和水相合成系統可順利製備酵素類沸石咪唑 骨架材料生物複合體且具有良好催化效果,且可以抵抗較嚴苛的環境, 但受限於類沸石咪唑骨架材料小孔洞性質,在受質和酵素的選擇上造 成了限制。為了擴展更大孔洞 MOF 材料的水相綠色合成法,本實驗 室緊接著於 2019、2021 年成功使用 UiO-66 及 Zn-MOF-74 等大孔洞金屬有機骨架材料於包封酵素,更加延伸了此類生物性複合材料的應用範疇。
於醫療方面,使用鋁基在 20 世紀已有建樹,1926 年免疫學家
Alexander T. Glenny 首次使用鋁鹽作為疫苗之佐劑,經過實驗證實後 持續沿用之今。再來著眼於生物相容性,以鋁為基底的金屬有機骨架 材料,其被認為是最有前途的 MOFs 之一,由於其優異的骨架穩定性 已被廣泛研究。目前分類的大宗有 MIL(拉瓦錫材料研究所)、CAU (基爾大學)等,MIL 代表之一的材料 MIL-53 於 2003 年被發現、 被證實具有呼吸效應。
本篇論文成功在溫和水相下於一小時內快速合成鋁基底之金屬有 機骨架材料,並藉由提供不同幅度的加熱環境能使其更迅速被合成。 過程減少了有機溶劑的使用,更加符合現今對於綠色化學之環保提倡。 此材料並能夠成功包覆過氧化氫酶及脂肪酶,有鑒於該材料以金屬 鋁為基底,如此具有生物安全性及相容性,在動物測試等能夠相對減 少生物毒性,生物性複合材料領域中也擁有更廣的應用。疫苗方面, 佐劑對於疫苗上的助益亦相當顯著—能夠減少疫苗所需劑量、擴大疫 苗免疫、增加抗體反應的幅度等。因此利用鋁基 MOF 作為佐劑或是 其他生物製劑例如單株抗體(Monoclonal Antibody, Mab),將更具有應用潛力。
摘要(英) Enzymes have been widely used in industrial applications such as pulp and paper, texile, and detergents, due to their high efficiency and specificity in catalyzing reactions. However, there are lots of restrictions owing to their instability in harsh environments, i.e., organic solvent, and their difficulty in separating from productions in the reaction solution. Therefore, it is particularly important and potential for enzyme immobilization that can increase the stability and practicality of the enzyme. In our previous report in 2015, we developed an innovative one- pot de novo mild water-based approach to encapsulate an enzyme, catalase, into a zeolitic imidazolate framework-90(ZIF-90), a sub group of Metal- organic Frameworks (MOFs), in which MOFs is capable of protecting embedding enzyme from protease and maintaining its biological activity. Furtherly in 2017, our follow-up study on biocomposites was showing the MOF material is able to provide spatial confinement for enzymes, reducing the structural expansion under the environment of denature reagent such as urea. However, the small pores of the zeolitic imidazolate framework limit the selectivity of enzymes and substrates in the system of enzyme@ZIF-90. Afterward, our laboratory also reported about encapsulating enzymes with large-pore metal-organic frameworks, UiO-66 and Zn-MOF-74, via water-based approach in order to expand the applications of biocomposites.
As we mention about medical treatment, the usage of aluminum-based materials has been done in 20th centuries. Aluminum salt was first used by the immunologist, Alexander T. Glenny, in 1926. And it continues been used until now after it was successfully verified through experiments. Recently, we are focusing on aluminum-based MOFs with biocompatibilites as one of the most promising MOFs which have been widely investigated because of their excellent framework stability. Nowadays the main categories are MIL (for Materials Institute Lavoisier), CAU (for Christian- Albrechts-University) etc. The representative material, MIL-53, was discovered in 2003 and it was verified that it has breathing effect.
In this study, we found that aluminum-based MOFs can be successfully synthesized in one hour via the mild water-based method. Additionally, the synthetic time can be adjusted in a shorten period as temperature raised. As the decrease of amount of organic solvent used among the synthetic process, it can be more close to the meaning of so-called ”green chemistry”. This material can also successfully encapsulate catalase and lipase. Because of its aluminum-based characteristic, this material with biocompatibility can lower the biotoxicity through animal testing, and it will pave the way for further applications owing to its extraordinary potential and performance. As it goes to vaccines, adjuvant has tremendous effect on vaccines, such as lower the dose of vaccines, enlarge the vaccines immune, and widen the extent of antibody reactions. Therefore, using aluminum-based MOFs as adjuvant or other biological products, like monoclonal antibody, will be more potential toward applications.
關鍵字(中) ★ 金屬有機骨架材料
★ 水相法
★ 酵素
關鍵字(英) ★ Metal-organic Frameworks
★ MOF
論文目次 摘要 ........................................................................................................... I ABSTRACT ............................................................................................ III
目錄 ......................................................................................................... VI
表目錄 ..................................................................................................... IX
圖目錄 ...................................................................................................... X
第 1 章 緒論 ......................................................................................... 1
1-1 金屬有機骨架材料 ..................................................................... 1
1-2 類沸石咪唑骨架材料-90............................................................ 5
1-3 金屬有機骨架材料-74................................................................ 7
1-4 金屬有機骨架材料 NH2-MIL-53(AL)........................................ 9
1-5 酵素固定化於 MOFS 的發展 ................................................... 10
1-6 研究動機以及目的 ................................................................... 13
第2章 實驗部分 ............................................................................... 15
2-1 實驗藥品................................................................................... 15
2-2 實驗儀器................................................................................... 18
2-2-1 實驗使用儀器 .................................................................... 18
2-2-2 實驗鑑定儀器 .................................................................... 19 vi
2-3 實驗儀器之原理....................................................................... 20
2-3-1 X 射線粉末繞射圖譜 ........................................................ 20
2-3-2 掃描式電子顯微鏡 ............................................................ 21
2-3-3 紫外光可見光分光光譜儀 ................................................ 22
2-4 酵素........................................................................................... 23
2-4-1 過氧化氫酶 ........................................................................ 23
2-4-2 脂肪酶 ................................................................................ 24
2-5 實驗步驟—MOFS CHEMICAL BIOLOGY ................................... 26
2-5-1 NH2-MIL-53(Al)材料的合成 ............................................ 26
2-5-2 NH2-MIL-53(Al)包覆過氧化氫酶的合成......................... 26
2-5-3 NH2-MIL-53(Al)包覆脂肪酶的合成................................. 27
2-5-4 偵測蛋白質濃度(Bradford Assay) .................................... 27
2-5-5 十二烷基硫酸鈉聚丙醯胺膠體電泳 (SDS-PAGE)......... 29
2-5-6 偵測過氧化氫酶之活性 .................................................... 31
2-5-7 偵測脂肪酶之活性 ............................................................ 33
第 3 章 結果與討論 ........................................................................... 35
3-1 優化 NH2-MIL-53(AL)的合成方法.......................................... 35
3-1-1 金屬離子與有機配體比值 ................................................ 35
3-1-2 電子加熱攪拌器 ................................................................ 38
3-1-3 超音波震盪器 .................................................................... 41
3-1-4 Tricine 緩衝溶液 ............................................................... 46
3-2 CAT@NH2-MIL-53(AL)之鑑定與活性實驗........................... 48
3-2-1 X 射線粉末繞射圖譜分析 ................................................ 48
3-2-2 掃描式電子顯微鏡影像分析 ............................................ 49
3-2-3 十二烷基硫酸鈉聚丙醯胺膠體電泳 (SDS-PAGE)......... 50
3-2-4 CA T@NH2-MIL-53(Al)的活性測定 ................................. 51
3-3 LIP@NH2-MIL-53(AL)之鑑定與活性實驗 ............................. 53
3-3-1 X射線粉末繞射圖譜分析 ................................................ 54
3-3-2 掃描式電子顯微鏡影像分析 ............................................ 55
3-3-3 十二烷基硫酸鈉聚丙醯胺膠體電泳 (SDS-PAGE)......... 56
3-3-4 LIP@NH2-MIL-53(Al)的活性測定 ................................... 57
第 4 章 結論以及未來展望 ............................................................... 60
參考文獻 ................................................................................................ 61
附錄 ........................................................................................................ 72
參考文獻 1. Singh, C.; Mukhopadhyay, S.; Hod, I, Metal–organic framework derived nanomaterials for electrocatalysis: recent developments for CO2 and N2 reduction. Nano Convergence, 8(1), 1-10. https://doi.org/10.1186/s40580-020-00251-6 (2021).
2. Yaghi, O. M.; Li, C.; Li, H, Selective binding and removal of guests in a microporous metal-organic framework. Nature 1995, 378 (6558), 703-706.
3. Li, H.; Eddaoudi,M.; O′Keeffe, M. Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402 (6759),276-279.
4. Yaghi, O. M.; O Keeffe, M.; Ockwig, N. W.; Chae, H. K: Eddaoudi, M.: Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423 (6941), 705-714.
5. Furukawa, H.; Cordova, K., O, Keeffe, M.; Yaghi, OM The chemistry and applications of metal-organic frameworks. Science 2013, 341 (6149), 1230444.
6. Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O′Keeffe, M.; Yaghi, O. M., Hydrogen storage in microporous metal-organic frameworks. Science 2003, 300 (5622), 1127-1129.
7. Yoon, M.; Srirambalaji, R.; Kim, K., Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. Chemical reviews 2012, 112 (2), 1196-1231.
8. Li, J.-R.; Kuppler, R. J.; Zhou, H.-C., Selective gas adsorption and
61
separation in metal-organic frameworks. Chemical Society Reviews 2009, 38 (5), 1477-1504.
9. Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal-organic framework materials as chemical sensors. Chemical reviews 2012, 112 (2), 1105-1125.
10. Betard, A.; Fischer, R. A., Metal-organic framework thin films: from fundamentals to applications. Chemical reviews 2012, 112 (2), 1055-1083.
11. Choi, K. M.; Jeong, H. M. Park, J. H.; Zhang, Y.-B.; Kang, J. K.; Yaghi, O. M.,Supercapacitors of nanocrystalline metal-organic frameworks. AS nano 2014, 8 (7), 7451-7457.
12. Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Ferey, G.; Morris, R. E.; Serre, C., Metal-organic frameworks in biomedicine. Chemical reviews 2012, 112 (2), 1232- 1268.
13. He, C.; Liu, D.; Lin, W., Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: nanoscale metal-organic frameworks and nanoscale coordination polymers. Chemical reviews 2015, 115 (19), 11079-11108.
14. Ding, M.; Flaig, R. W.; Jiang, H.-L.; Yaghi, O. M., Carbon capture and conversion using metal-organic frameworks and MOF- based materials. Chemical Society Reviews 2019, 48 (10), 2783- 2828.
15. Xu, W.; Yaghi, O. M., Metal -organic frameworks for water harvesting from air, anywhere, anytime. ACS central science 2020, 6 (8), 1348-1354.
16. Islamoglu, I.; Chen, Z.; Wasson, M. C.; Buru, C. I.; Kirlikovali, K. O.; Afrin, U.; Mian, M. R.; Farha, O. K., Metal-organic frameworks against toxic chemicals. Chemical reviews 2020, 120 (16), 8130-8160.
17. Khalaf Reyad Raslan, A., Synthesis and characterization of metal-organic framework aerogels 2015.
18. Stock, N.: Biswas, S., Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chemical reviews 2012, 112 (2), 933-969
19. Shieh, F. K.; Wang, S. C.; Leo, S. Y.; Wu, K. C. W., Water- based synthesis of zeolitic imidazolate framework-90 (ZIF-90) with a controllable particle size. Chemistry-A European Journal 2013, 19 (34), 11139-11142.
20. Rabenau, A., The role of hydrothermal synthesis in preparative chemistry. Angewandte Chemie International Edition in English 1985, 24 (12), 1026-1040.
21. Ameloot, R.; Stappers, L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E., Patterned growth of metal-organic framework coatings by electrochemical synthesis. Chemistry of Materials 2009, 21 (13), 2580-2582.
22. Klinowski, J.; Paz, F. A. A.; Silva, P.; Rocha, J., Microwave- assisted synthesis of metal-organic frameworks. Dalton Transactions 2011, 40 (2), 321-330.
23. Pichon, A.; Lazuen-Garay, A.; James, S. L., Solvent-free synthesis of a microporous metal-organic framework. CrystEngComm 2006, 8 (3), 211-214.
24. Qiu, L.-G.; Li, Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chemical communications 2008, (31), 3642-3644. 25. Seetharaj, R.; Vandana, P.; Arya, P.; Mathew, S., Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture. Arabian journal of chemistry 2019, 12 (3), 295-315.
26. Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O′keeffe, M.; Yaghi, O. M., Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. 2009.
27. Morris, W.; Doonan, C. J. Furukawa, H.; Banerjee, R.; Yaghi, O. M., Crystals as molecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks. Journal of the American Chemical Society 2008, 130 (38), 12626-12627.
28. Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou, L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C.-W., Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal-organic framework microcrystals. Journal of the American Chemical Society 2015,
137 (13), 4276-4279.
29. Rosi, N. L.; Kim, J.; Eddaoudi, M.; Chen, B.; O′Keeffe, M.; Yaghi, O. M., Rod packings and metal- organic frameworks constructed from rod-shaped secondary building units. Journal of the American Chemical Society 2005, 127 (5), 1504-1518.
30. Lu, W.; Wei, Z.; Gu, Z.-Y.; Liu, T.-F.; Park, J.; Park, J.; Tian, J.; Zhang, M.; Zhang, Q; Gentle III, T., Tuning the structure and function of metal-organic frameworks via linker design. Chemical Society Reviews 2014, 43 (16), 5561-5593.
31. Rowell, J. L.; Yaghi, O. M., Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal- organic frameworks. Journal of the American Chemical Society 2006, 128 (4), 1304-1315.
32. Xiao, T.; Liu, D., The most advanced synthesis and a wide range of applications of MOF-74 and its derivatives. Microporous and Mesoporous Materials 2019, 283, 88-103.
33. Liu, Y.; Kabbour, H.; Brown, C. M.; Neumann, D. A.; Ahn, C. C., Increasing the density of adsorbed hydrogen with coordinatively unsaturated metal centers in metal- organic frameworks. Langmuir 2008, 24 (9), 4772-4777.
34. Deng, H.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S., Large-pore apertures in a series of metal-organic frameworks. science 2012, 336 (6084). 1018-1023.
35. Julien, P. A.; Uzarevié, K.; Katsenis, A. D.; Kimber, S. A.;
Wang, T.; Farha, O. K.; Zhang, Y.; Casaban, J.; Germann, L. S.; Etter, M., In situ monitoring and mechanism of the mechanochemical formation of a microporous MOF-74 framework. Journal of the American Chemical Society 2016, 138 (9), 2929- 2932.
36. Wei, T.-H.; Wu, S.-H.; Huang, Y.-D.; Lo, W.-S.; Williams, B. P.; Chen, S.-Y.; Yang, H.-C.; Hsu, Y.-S.; Lin, Z.-Y.; Chen, X.-H., Rapid mechanochemical encapsulation of biocatalysts into robust metal-organic frameworks. Nature communications 2019, 10 (1), 1- 8.
37. Shieh, F.-K.; Chou, L.-Y.; Hsu, P.-H. ; Chang, C.-C. ; Wang, T.- H. ; Lam, P.-K. ; Wei, M.-Y. ; Chen, C.-T. ; Chen, C.-Y., Rapid fabrication of biocomposites by encapsulating enzymes into Zn- MOF-74 via a mild water-based approach. ACS applied materials & interfaces 2021, 13(44), 52014-52022.
38. Wu, Tongrong; Prasetya, Nicholaus; Li, Kang (2020). Recent advances in aluminium-based metal-organic frameworks (MOF) and its membrane applications. Journal of Membrane Science, (), 118493–. doi:10.1016/j.memsci.2020.118493
39. Férey, G. et al. Hydrogen adsorption in the nanoporous metal- benzenedicarboxylate M(OH)(O2C–C6H4–CO2) (M = Al3+, Cr3+), MIL-53. Chemical Communications, 2976-2977, doi:10.1039/B308903G (2003).
40. Cheng, X.-Q., Zhang, A.-F., Hou, K.-K., Liu, M., Wang, Y.-X., Song, C.-S., Zhang, G.-L., Guo, X.-W., Size-and morphology- controlled NH 2-MIL-53 (Al) prepared in DMF–water mixed
solvents. Dalton Transactions 2013 ,42(37), 13698-13705.
41. Mounfield III, W. P.; Walton, K. S, Effect of synthesis solvent on the breathing behavior of MIL-53 (Al). Journal of colloid and interface science 2015, 447, 33-39.
42. Sorribas, S.; Zornoza, B.; Serra-Crespo, P.; Gascon, J.; Kapteijn, F.; Téllez, C.; Coronas, J, Synthesis and gas adsorption properties of mesoporous silica-NH2-MIL-53 (Al) core–shell
spheres. Microporous and Mesoporous Materials 2016, 225, 116- 121.
43. Keller, K. M.; Wong, C.-H., Enzymes for chemical synthesis. Nature 2001, 409 (6817), 232-240.
44. Schmid, A.; Dordick, J.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B., Industrial biocatalysis today and tomorrow. nature 2001, 409 (6817), 258-268.
45. Datta, S.; Christena, L. R.; Rajaram, Y. R. S., Enzyme immobilization: an overview on techniques and support materials. 3 Biotech 2013, 3 (1), 1-9.
46. Singh, R., Kumar, M., Mittal, A. et al. Microbial enzymes: industrial progress in 21st century. 3 Biotech 2016, 6, 174. https://doi.org/10.1007/s13205-016-0485-8
47. Chen, Y.; Lykourinou, V.; Vetromile, C.; Hoang, T.; Ming, L.-J.; Larsen, R. W.; Ma, S. How can proteins enter the interior of a MOF? Investigation of cytochrome c translocation into MOF consisting of mesoporous cages with microporous windows. Journal of the American Chemical Society 2012, 134 (32), 13188-13191.
48. Lykourinou, V.; Chen, Y.; Wang, X.-S.; Meng, L.; Hoang, T.; Ming, L. -J.; Musselman, R.I.; Ma, S., Immobilization of MP-11 into a mesoporous metal-organic framework, MP-11@mesoMOF: a new platform for enzymatic catalysis. Journal of the American Chemical Society 2011, 133 (27). 10382-10385.
49. Liu, D.-M.; Chen, J.; Shi, Y.-P., Advances on methods and easy separated support materials for enzymes immobilization. TrAC Trends in Analytical Chemistry 2018, 102, 332-342.
50. Wu, T.-G., Prasetya, N.; Li, K., Recent advances in aluminium- based metal-organic frameworks (MOF) and its membrane applications. Journal of Membrane Science 2020, 615, 118493.
51. Glenny, A. T., Pope, C. G., Waddington, H. & Wallace, U. Immunological notes. XVII–XXIV. The
Journal of Pathology and Bacteriology 29, 31-40, doi:https://doi.org/10.1002/path.1700290106 (1926).
52. Oakley, C. L. Alexander Thomas Glenny, 1882-1965. Biographical Memoirs of Fellows of the Royal
Society 12, 162-180, doi:doi:10.1098/rsbm.1966.0007 (1966).
53. Reed, S. G., Orr, M. T. & Fox, C. B. Key roles of adjuvants in modern vaccines. Nature Medicine 19,
1597-1608, doi:10.1038/nm.3409 (2013).
54. Matzinger, P. Tolerance, danger, and the extended family. Annual review of immunology 12, 991-1045 (1994).
55. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature
Immunology 9, 847-856, doi:10.1038/ni.1631 (2008).
56. Bragg, W. H.; Bragg, W. L., The reflection of X-rays by crystals. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 1913, 88 (605), 428-438.
57. Ford, B. J. , Bradbury, . Savile and Joy, . David C. (2019). scanning electron microscope. Encyclopedia Britannica. https://www.britannica.com/technology/scanning-electron- microscope (2019).
58. Schroeder, W.; Shelton, J. R.; Shelton, J. B.; Olson, B. M., Some amino acid sequences in bovine-liver catalase.Biochimica et Biophysica Acta (BBA)-Specialized Section on Enzymological Subjects 1964, 89 (1), 47-65.
59. Fita I; Silva AM; Murthy MRN; Rossmann MG, The Refined Structure of Beef Liver Catalase at 2.5 Angstroms Resolution. Acta Crystallogr.,B 1986 42, 497
60. Singh, A. K., Mukhopadhyay, M., Overview of fungal lipase: a review. Applied biochemistry and biotechnology 2012, 166 (2), 486- 520.
61. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 1976, 72 (1), 248- 254.
62. Egloff MP; Marguet F; Buono G; Verger R; Cambillau C; van Tilbeurgh H, "The 2.46 A resolution structure of the pancreatic lipase-colipase complex inhibited by a C11 alkyl phosphonate". Biochemistry 1995, 34 (9): 2751–62.
63. Barros, M.; Fleuri, L. F.; Macedo, G. A., Seed lipases: sources, applications and properties-a review. Brazilian Journal of Chemical Engineering 2010, 27, 15-29.
64. Ogura, Y.; Yamazaki, I., Steady-state kinetics of the catalase reaction in the presence of cyanide. The Journal of Biochemistry 1983, 94 (2), 403-408.
65. Jiang, Z.-Y.; Woollard, A. C.; Wolff, S. P., Hydrogen peroxide production during experimental protein glycation. FEBS letters 1990, 268 (1), 69-71.
66. Nelson, D. P.; Kiesow, L. A., Enthalpy of decomposition of hydrogen peroxide by catalase at 25 C (with molar extinction coefficients of H202 solutions in the UV). Analytical biochemistry 1972, 49 (2), 474-478.
67. Nadar, S. S., Rathod, V. K., Encapsulation of lipase within metal-organic framework (MOF) with enhanced activity intensified under ultrasound. Enzyme and Microbial Technology 2018, 108, 11- 20.
68. Lopes, D. B., Fraga, L. P., Fleuri, L. F., Macedo, G. A., Lipase and esterase: to what extent can this classification be applied accurately?. Food Science and Technology 2011, 31, 603-613.
69. Van Autryve, P.; Ratomahenina, R.; Riaublanc, A.; Mitrani, C.; Pina, M.; Graille, J.; Galzy, P., Spectrophotometry assay of lipase activity using Rhodamine 6G 1991
70. Lu, T., Zhang, L-C.., Sun, M.-X., Deng, D.-Y., Su, Y.-Y., Lv, Y., Amino-functionalized metal-organic frameworks nanoplates- based energy transfer probe for highly selective fluorescence detection of free chlorine. Analytical chemistry 2016, 88(6), 3413- 3420.
71. Li, C.-H., Zhu, L., Yang, W.-X., He, X., Zhao, S.-L., Zhang, X.- S., Tang, W.-Z., Wang, J.-L., Yue, T.-L., Li, Z.-H., Amino- functionalized Al–MOF for fluorescent detection of tetracyclines in milk. Journal of agricultural and food chemistry 2019, 67(4), 1277- 1283.
72. Xia, J. L., Huang, B., Nie, Z. Y., Wang, W., Production and characterization of alkaline extracellular lipase from newly isolated strain Aspergillus awamori HB-03. Journal of Central South University 2011, 18(5), 1425-1433.
73. Salwoom, L., Raja Abd. Rahman, R. N. Z., Salleh, A. B., Mohd. Shariff, F., Convey, P., & Mohamad Ali, M. S., New recombinant cold-adapted and organic solvent tolerant lipase from psychrophilic Pseudomonas sp. LSK25, isolated from Signy Island
Antarctica. International journal of molecular sciences 2019, 20(6), 1264.
74. Kanmani, P., Kumaresan, K., & Aravind, J, Gene cloning, expression, and characterization of the Bacillus amyloliquefaciens PS35 lipase. Brazilian Journal of Microbiology 2015, 46, 1235- 1243.
指導教授 謝發坤(Fa-Kuen Shieh) 審核日期 2022-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明