博碩士論文 109324002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.222.119.19
姓名 黃宇(Yu Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 含磷酸膽鹼雙離子之功能性嵌段共聚物塗層於熱塑型聚氨酯導管
(Functional Diblock Copolymer Containing Zwitterionic Phosphocholine and CHicable Benzophenone for Medical Coating on Thermoplastic Polyurethane Catheter)
相關論文
★ 聚(4-乙烯基吡啶)和聚(2-乙烯基吡啶)薄膜的表面不穩定性★ 利用小角度X光散射和廣角度X光繞射探討聚環氧乙烷於醇類中的結晶現象
★ 溶劑品質對聚(苯乙烯-b-環氧乙烷)在四氫呋喃/醇類共溶劑中的鏈聚集、自組裝、微胞化的影響★ 可控矽烷化:以耐水解甲基丙烯酸酯氮矽三環 於矽基材上作為功能性高分子之構成單元
★ 光交聯及生物啟發磷膽鹽雙離子共聚物連續沉積醫療塗層於熱塑型聚氨酯材料★ 分子自組裝結構對雙離子高分子醫療塗層穩定性與抗汙功能的影響
★ 基於動態鍵的多功能丙烯酸交聯劑★ 連續微流道反應器中進行防污聚合物篩選
★ 用於聚氨酯植入物表面功能化具有潤滑和抗污性能之光交聯醫用塗層★ 高度纏結的雙離子水凝膠
★ Lubricant and Anti-fouling Coatings for Silicone Catheter★ 可聚合界面活性劑:膠囊化有機色料於水相溶液中展現膠體穩定性及於纖維素上的防水性能
★ 聚胜肽電解質材料合成及其性質研究分析★ 建立耐氧光聚合連續流反應器
★ 建立多功能芳香族雙硫鍵交聯丙烯酸彈性聚合物★ 熱誘導混合聚丙烯薄膜含雙離子共聚物的製備研究及其抗污性能的探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-1以後開放)
摘要(中) 熱塑性聚氨酯 (Thermoplastic polyurethane, TPU)是常見的生醫植入材料,具有優秀的生物相容性及機械性質。然而,TPU導管表面的高摩擦係數造成潤滑不足,嚴重影響病患的健康狀態。TPU的疏水性表面更易於吸引蛋白質與細菌的貼附,導致生醫材料長期使用下的不穩定與效能衰退。
為了克服這些缺點,我們選擇2-甲基丙烯醯氧乙基磷酸膽鹼 (MPC) ,以高生物相容性、親水性與防汙性質聞名的雙離子單體,應用於TPU表面改性。然而,礙於TPU表面的惰性與疏水性質,將親水性的MPC修飾並固定於TPU表面仍是一大挑戰。在本研究中,採用了帶有二苯甲酮基團的單體3-甲基丙烯醯氧基-2-羥基丙基-4-氧二苯甲酮 (MHPBP)。透過可逆加成-斷裂鏈轉移 (RAFT) 反應合成嵌段共聚物Poly (MPC-b-MHPBP),經由簡易的浸塗處理對TPU導管進行了表面修飾。高分子鏈中的疏水結構MHPBP能透過二苯甲酮基團抓取TPU表面的氫原子,進行烴基插入交聯反應 (CHic) 將共聚物固定於TPU基材表層,將TPU導管修飾成親水潤滑的的表面。共聚物通過核磁共振氫譜 (1H NMR) 確認其組成與轉化率,再透過溶解度試驗決定適用的塗層用溶劑。塗層溶液由黏度計、表面張力計與紫外-可見光分光光譜儀分析其黏度、表面張力與透明度等物理性質。共聚物通過浸塗法沉積,在吸收UV光源的輻射能量後,在TPU導管表面進行光接枝反應。完成表面修飾後,使用全反射-傅立葉轉換紅外線光譜儀 (ATR-FTIR) 及X射線光電子能譜儀 (XPS) 確認雙離子共聚物 Poly (MPC-b-MHPBP) 與導管表面的鍵結;塗層的親水性由水接觸角測量驗證,並透過拉伸機進行摩擦試驗測量潤滑效果;進行細菌與蛋白質貼附實驗以檢驗導管表面的防汙性能;最後使用原子力顯微鏡 (AFM) 與掃描式電子顯微鏡 (SEM) 觀察薄膜表面型態與粗糙度。
本研究中,透過簡易的改質方式,將雙離子共聚物Poly (MPC-b-MHPBP)修飾於TPU表面,使導管表面具有良好的潤滑與防汙性能。得益於簡單而快速的塗佈程序,該光起始型MPC嵌段共聚物有望作為一種有效的表面改性材料應用於醫療器材領域。
摘要(英) Thermoplastic polyurethane (TPU), is a common biomedical implant. However, the high friction and deficient lubrication of TPU catheters have a direct influence on the health status of each patient. Its hydrophobic surface also attracts bacterial adhesion and protein adsorption, resulting in long-term instability and failure of biomaterials.
To overcome these disadvantages, 2-methacryloyloxyethyl phosphorylcholine (MPC) which is known as a biocompatible, hydrophilic and antifouling monomer, was adopted in TPU surface modification. Nevertheless, immobilization of MPC on TPU remains a challenge. Due to the inertness and hydrophobicity of TPU, hydrophilic MPC was found difficult to adhere on TPU. In this study, benzophenone monomer 3-methacryloyloxy-2-hydroxypropyl-4-oxybenzophenone (MHPBP) was developed. Diblock copolymer Poly (MPC-b-MHPBP) was synthesized via reversible addition-fragmentation chain transfer (RAFT) to modify TPU catheter via a simple dip coating process. MHPBP in the copolymer with hydrophobic domain was able to bind the copolymer to adjacent C-H groups on TPU surfaces via C, H insertion crosslinking (CHic) on the benzophenone group. The polymers were characterized by 1H nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), and solubility test. The coating solutions were analyzed by viscometer, surface tension, and UV-vis for transparency. The polymers were deposited via dip coating and photo-grafted on TPU tubes upon UV irradiation. The hydrophilicity of films was accessed by contact angle goniometer. The lubrication of modified TPU tube was measured by friction test using tensile machine. The immobilization of polymer on TPU substrate was studied with x-ray photoelectron spectroscopy (XPS). The roughness and morphology of coating films was characterized with atomic force microscopy (AFM). The antifouling properties were examined by bacterial adsorption test and protein adhesion test. In preliminary data, we found that the modified TPU surfaces became more hydrophilic, therefore provided good antifouling characteristic. Due to the simple, quick coating process, the photoreactive MPC-based diblock copolymer could be used as an efficient surface modifier.
關鍵字(中) ★ 光起始烴基插入交聯反應
★ 雙離子材料
★ 2-甲基丙烯醯氧乙基磷酸膽鹼
★ 可逆加成-斷裂鏈轉移聚合
★ 醫療塗層
★ 非特異性吸附
★ 熱塑型聚氨酯
關鍵字(英) ★ photo-induced C,H insertion crosslinking (CHic)
★ zwitterionic materials
★ 2-methacryloyloxyethyl phosphorylcholine (MPC)
★ reversible addition-fragmentation chain transfer (RAFT)
★ medical coatings
★ non-specific adsorption
★ thermoplastic polyurethane (TPU)
論文目次 中文摘要 i
Abstract iii
目錄 v
圖目錄 ix
表目錄 xi
化學品名詞簡稱 xii
聚合物名詞簡稱 xii
溶液名詞簡稱 xii
一、文獻回顧 1
1-1 熱塑型聚氨酯 1
1-1-1 熱塑型聚氨酯應用於醫療領域之優勢 1
1-1-2 熱塑型聚氨酯抗汙性能之缺陷 3
1-1-3 生物膜 3
1-1-4 熱塑性聚氨酯表面改質之研究 5
1-2 抗沾黏材料 8
1-2-1 聚乙烯吡咯烷酮(Polyvinylpyrrolidone, PVP) 8
1-2-2 雙離子高分子 9
1-2-3 2-甲基丙烯醯氧乙基磷酸膽鹼 (2-Methacryloyloxyethyl phosphorylcholine, MPC) 10
1-3 表面性質修飾方法 12
1-3-1 表面接枝 12
1-3-2 烴基插入交聯反應(C-H Insertion Crosslinking, CHic) 12
1-3-3 二苯甲酮(Benzophenone, BP) 13
1-3-4 二苯甲酮(BP)單體作為光起始劑之缺點 14
1-3-5 3-Methacryloyloxy-2-hydroxypropyl-4-oxybenzophenone (MHPBP) 14
1-4 自由基聚合反應 (Free radical polymerization) 15
1-4-1 可逆加成斷裂鏈轉移 (Reversible addition-fragmentation chain transfer, RAFT) 15
1-4-2 可逆加成-斷裂鏈轉移聚合反應機制 16
1-4-3 鏈轉移試劑 17
1-4-4 鏈轉移試劑之選擇 18
1-4-5 起始劑之選擇 19
1-5 商用醫療裝置親水塗料 19
二、研究目的 20
三、實驗材料與方法 22
3-1 藥品與設備 22
3-1-1 藥品清單 22
3-1-2 儀器設備清單 23
3-2 材料合成與製備 23
3-2-1 合成Poly(2-methacryloyloxyethyl phosphocholine) (PMPC) 23
3-2-2 合成3-methacryloyloxy-2-hydroxypropyl-4-oxybenzophenone (MHPBP) 24
3-2-3 合成Poly(MPC-b-MHPBP) (PMH) 24
3-2-4 熱塑性聚氨酯(TPU)基材準備 24
3-2-5 瓊脂平板(LB Agar Plate)製備 25
3-3 實驗方法 25
3-3-1 液態核磁共振氫譜 (1H NMR) 25
3-3-2 質譜法 (Mass Spectrometry, MS) 25
3-3-3 凝膠滲透層析儀 (Gel Permeation Chromatograph, GPC) 26
3-3-4 嵌段共聚物Poly(MPC-b-MHPBP)之溶解度 26
3-3-5 紫外-可見分光光度法 (Ultraviolet-Visible Spectrum Detector, UV-vis) 26
3-3-6 Poly(2-methacryloyloxyethyl phosphorylcholine-b-3-methacryloyloxy-2-hydroxypropyl-4-oxybenzophenone), P(MPC-b-MHPBP)導管修飾 27
3-3-7 衰減全反射式傅立葉轉換紅外光譜儀 (Attenuated Total Reflectance-Fourier-Transform Infrared Spectroscopy, ATR-FTIR) 27
3-3-8 X射線光電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS) 28
3-3-9 動態光散射儀 (Dynamic Light Scattering, DLS) 28
3-3-10 原子力顯微鏡 (Atomic Force Microscopy, AFM) 29
3-3-11 水下摩擦試驗 (Friction Test) 29
3-3-12 水接觸角測量 (Water Contact Angle Measurement) 30
3-3-13 蛋白質吸附測試 (Protein Adsorption Test) 30
3-3-14 細菌貼附測試 (Bacteria Adhesion Test) 31
3-3-15 統計學分析方法 31
四、結果與討論 32
4-1 聚合物性質測定 32
4-1-1 Poly (2-methacryloyloxyethyl phosphorylcholine-b-3-methacryloyloxy-2-hydroxypropyl-4-oxybenzophenone), P (MPC-b-MHPBP)鑑定 (1H NMR) 32
4-1-2 質譜法 (MS)鑑定3-methacryloyloxy-2-hydroxypropyl-4-oxybenzophenone (MHPBP) 34
4-1-3 共聚物Poly(MPC-b-MHPBP)不同溶劑比例中溶解度測試 35
4-1-4 紫外-可見分光光譜儀分析 (UV-vis) 36
4-1-5 塗層溶液中共聚物粒徑分析 (DLS) 37
4-2 塗層性質檢驗 38
4-2-1 導管表面官能基測定 (ATR-FTIR) 38
4-2-2 表面元素測定 (XPS) 40
4-3 塗層表面形貌鑑定 43
4-3-1 原子力顯微鏡 (AFM) 43
4-4 浸塗表面修飾功能性測定 44
4-4-1 水下摩擦試驗 44
4-4-2 水接觸角測量 49
4-4-3 細菌貼附試驗 50
4-4-4 蛋白質吸附試驗 56
五、結論 60
六、未來展望 61
七、參考文獻 62
參考文獻 1. L. C. Zheng, H. S. Sundaram, Z. Y. Wei, C. C. Li, and Z. F. Yuan, Applications of zwitterionic polymers. Reactive & Functional Polymers, 2017. 118: pp. 51-61.
2. S. Bigot, G. Louarn, N. Kébir, and F. Burel, Straightforward approach to graft bioactive polysaccharides onto polyurethane surfaces using an ionic liquid. Applied surface science, 2014. 314: pp. 301-307.
3. F. J. Davis and G. R. Mitchell, Polyurethane based materials with applications in medical devices, in Bio-materials and prototyping applications in medicine. 2008, Springer. pp. 27-48.
4. M. Dong, Q. Li, H. Liu, C. Liu, E. K. Wujcik, Q. Shao, T. Ding, X. Mai, C. Shen, and Z. Guo, Thermoplastic polyurethane-carbon black nanocomposite coating: fabrication and solid particle erosion resistance. Polymer, 2018. 158: pp. 381-390.
5. C. H. Chen, C. F. Mao, M. S. Tsai, F. S. Yen, J. M. Lin, C. H. Tseng, and H. Y. Chen, Influence of surface modification on the dispersion of nanoscale α‐Al2O3 particles in a thermoplastic polyurethane matrix. Journal of applied polymer science, 2008. 110(1): pp. 237-243.
6. M. Abbasian, M. Seyyedi, and M. Jaymand, Modification of thermoplastic polyurethane through the grafting of well-defined polystyrene and preparation of its polymer/clay nanocomposite. Polymer Bulletin, 2020. 77(3): pp. 1107-1120.
7. M. Qiao, T. Ren, T.-S. Huang, J. Weese, Y. Liu, X. Ren, and R. Farag, N-Halamine modified thermoplastic polyurethane with rechargeable antimicrobial function for food contact surface. RSC advances, 2017. 7(3): pp. 1233-1240.
8. H. J. Kwon, Y. Lee, G. M. Seon, E. Kim, J. C. Park, H. Yoon, and K. D. Park, Zwitterionic sulfobetaine polymer-immobilized surface by simple tyrosinase-mediated grafting for enhanced antifouling property. Acta Biomaterialia, 2017. 61: pp. 169-179.
9. M. Liu, T. Liu, X. Chen, J. Yang, J. Deng, W. He, X. Zhang, Q. Lei, X. Hu, and G. Luo, Nano-silver-incorporated biomimetic polydopamine coating on a thermoplastic polyurethane porous nanocomposite as an efficient antibacterial wound dressing. Journal of nanobiotechnology, 2018. 16(1): pp. 1-19.
10. Z. Wu, H. Chen, X. Liu, and J. L. Brash, Hemocompatible polyurethane surfaces. Polymers for Advanced Technologies, 2012. 23(11): pp. 1500-1502.
11. P. Alves, S. Pinto, H. C. de Sousa, and M. H. Gil, Surface modification of a thermoplastic polyurethane by low‐pressure plasma treatment to improve hydrophilicity. Journal of Applied Polymer Science, 2011. 122(4): pp. 2302-2308.
12. X. Lai, P. Song, and L. Wang, Preparation and properties of epoxy-modified waterborne polyurethane/polyacrylate composite emulsion with the action of polmerizable emulsifier. Journal of Applied Science and Engineering, 2017. 20(1): pp. 87-94.
13. J. Gallo, M. Holinka, and C. S. Moucha, Antibacterial surface treatment for orthopaedic implants. International journal of molecular sciences, 2014. 15(8): pp. 13849-13880.
14. Z. K. Zander and M. L. Becker, Antimicrobial and antifouling strategies for polymeric medical devices. 2018, ACS Publications.
15. P. Singha, J. Pant, M. J. Goudie, C. D. Workman, and H. Handa, Enhanced antibacterial efficacy of nitric oxide releasing thermoplastic polyurethanes with antifouling hydrophilic topcoats. Biomaterials science, 2017. 5(7): pp. 1246-1255.
16. R. C. Feneley, I. B. Hopley, and P. N. Wells, Urinary catheters: history, current status, adverse events and research agenda. Journal of medical engineering & technology, 2015. 39(8): pp. 459-470.
17. Z. Khatoon, C. D. McTiernan, E. J. Suuronen, T.-F. Mah, and E. I. Alarcon, Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon, 2018. 4(12): pp. e01067.
18. P. Stoodley, K. Sauer, D. G. Davies, and J. W. Costerton, Biofilms as complex differentiated communities. Annual review of microbiology, 2002. 56(1): pp. 187-209.
19. L. Schmüser, N. Encinas, M. Paven, D. J. Graham, D. G. Castner, D. Vollmer, H. J. Butt, and T. Weidner, Candle soot-based super-amphiphobic coatings resist protein adsorption. Biointerphases, 2016. 11(3): pp. 031007.
20. P. A. Cadieux, G. R. Wignall, R. Carriveau, and J. D. Denstedt. Implications of biofilm formation on urological devices. in AIP Conference Proceedings. 2008. American Institute of Physics.
21. M. Crouzet, C. Le Senechal, V. S. Brözel, P. Costaglioli, C. Barthe, M. Bonneu, B. Garbay, and S. Vilain, Exploring early steps in biofilm formation: set-up of an experimental system for molecular studies. BMC microbiology, 2014. 14(1): pp. 1-12.
22. B. K. D. Ngo and M. A. Grunlan, Protein resistant polymeric biomaterials. 2017, ACS Publications.
23. S. Williams, N. Venkateswaran, T. O’Donnell, P. Crisalli, S. Helmy, M. Napoli, and S. Pennathur, Assessing Stability, Durability, and Protein Adsorption Behavior of Hydrophilic Silane Coatings in Glass Microchannels. J Anal Bioanal Tech, 2016. 7(318): pp. 2.
24. S. Jasmee, G. Omar, M. Nordin, N. Masripan, and A. Kamarolzaman. Hydrophobicity performance of thermoplastic polyurethane coated with TiO2 under thermal aging effect. in 1st Colloquium Paper: ADVANCED MATERIALS AND MECHANICAL ENGINEERING RESEARCH (CAMMER′18). 2018. Penerbit Universiti, Universiti Teknikal Malaysia Melaka.
25. P. Alves, J. Coelho, J. Haack, A. Rota, A. Bruinink, and M. Gil, Surface modification and characterization of thermoplastic polyurethane. European Polymer Journal, 2009. 45(5): pp. 1412-1419.
26. P. Alves, R. Cardoso, T. R. Correia, B. P. Antunes, I. Correia, and P. Ferreira, Surface modification of polyurethane films by plasma and ultraviolet light to improve haemocompatibility for artificial heart valves. Colloids and Surfaces B: Biointerfaces, 2014. 113: pp. 25-32.
27. S. Rahim, M. S. Ghamsari, and S. Radiman, Surface modification of titanium oxide nanocrystals with PEG. Scientia Iranica, 2012. 19(3): pp. 948-953.
28. B. Butruk, P. Ziętek, and T. Ciach, Simple method of fabrication of hydrophobic coatings for polyurethanes. Open Chemistry, 2011. 9(6): pp. 1039-1045.
29. D. Xu, Y. Su, L. Zhao, F. Meng, C. Liu, Y. Guan, J. Zhang, and J. Luo, Antibacterial and antifouling properties of a polyurethane surface modified with perfluoroalkyl and silver nanoparticles. Journal of Biomedical Materials Research Part A, 2017. 105(2): pp. 531-538.
30. D. Xie, L. Howard, and R. Almousa, Surface modification of polyurethane with a hydrophilic, antibacterial polymer for improved antifouling and antibacterial function. Journal of biomaterials applications, 2018. 33(3): pp. 340-351.
31. L. Hou, Y. Peck, X. Wang, and D. Wang, Surface patterning and modification of polyurethane biomaterials using silsesquioxane-gelatin additives for improved endothelial affinity. Science China Chemistry, 2014. 57(4): pp. 596-604.
32. F. Kara, E. A. Aksoy, Z. Yuksekdag, N. Hasirci, and S. Aksoy, Synthesis and surface modification of polyurethanes with chitosan for antibacterial properties. Carbohydrate Polymers, 2014. 112: pp. 39-47.
33. S. Aroua, E. G. V. Tiu, M. Ayer, T. Ishikawa, and Y. Yamakoshi, RAFT synthesis of poly (vinylpyrrolidone) amine and preparation of a water-soluble C 60-PVP conjugate. Polymer Chemistry, 2015. 6(14): pp. 2616-2619.
34. P. Franco and I. De Marco, The Use of Poly (N-vinyl pyrrolidone) in the Delivery of Drugs: A Review. Polymers, 2020. 12(5): pp. 1114.
35. S. Robinson and P. A. Williams, Inhibition of protein adsorption onto silica by polyvinylpyrrolidone. Langmuir, 2002. 18(23): pp. 8743-8748.
36. M. Sun, H. Qiu, C. Su, X. Shi, Z. Wang, Y. Ye, and Y. Zhu, Solvent-Free graft-from polymerization of Polyvinylpyrrolidone imparting ultralow bacterial fouling and improved biocompatibility. ACS Applied Bio Materials, 2019. 2(9): pp. 3983-3991.
37. D. A. Ashmore, A. Chaudhari, B. Barlow, B. Barlow, T. Harper, K. Vig, M. Miller, S. Singh, E. Nelson, and S. Pillai, Evaluation of E. coli inhibition by plain and polymer-coated silver nanoparticles. Revista do Instituto de Medicina Tropical de São Paulo, 2018. 60.
38. C. Wu, Y. Zhou, H. Wang, J. Hu, and X. Wang, Formation of antifouling functional coating from deposition of a zwitterionic-co-nonionic polymer via “grafting to” approach. Journal of Saudi Chemical Society, 2019. 23(8): pp. 1080-1089.
39. E. Van Andel, I. De Bus, E. J. Tijhaar, M. M. Smulders, H. F. Savelkoul, and H. Zuilhof, Highly specific binding on antifouling zwitterionic polymer-coated microbeads as measured by flow cytometry. ACS applied materials & interfaces, 2017. 9(44): pp. 38211-38221.
40. H.-W. Chien, C.-C. Tsai, W.-B. Tsai, M.-J. Wang, W.-H. Kuo, T.-C. Wei, and S.-T. Huang, Surface conjugation of zwitterionic polymers to inhibit cell adhesion and protein adsorption. Colloids and Surfaces B: Biointerfaces, 2013. 107: pp. 152-159.
41. T. P. Vales, J.-P. Jee, W. Y. Lee, S. Cho, G. M. Lee, H.-J. Kim, and J. S. Kim, Development of poly (2-methacryloyloxyethyl phosphorylcholine)-functionalized hydrogels for reducing protein and bacterial adsorption. Materials, 2020. 13(4): pp. 943.
42. K. Ishihara, Successful development of biocompatible polymers designed by natures original inspiration. Procedia Chemistry, 2012. 4: pp. 34-38.
43. Y. Iwasaki and K. Ishihara, Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces. Science and Technology of Advanced Materials, 2012. 13(6): pp. 064101.
44. M. Tanaka and Y. Iwasaki, Photo-assisted generation of phospholipid polymer substrates for regiospecific protein conjugation and control of cell adhesion. Acta Biomaterialia, 2016. 40: pp. 54-61.
45. K. Hirota, K. Murakami, K. Nemoto, and Y. Miyake, Coating of a surface with 2-methacryloyloxyethyl phosphorylcholine (MPC) co-polymer significantly reduces retention of human pathogenic microorganisms. FEMS microbiology letters, 2005. 248(1): pp. 37-45.
46. L. Li, J.-H. Wang, and Z. Xin, Synthesis and biocompatibility of a novel silicone hydrogel containing phosphorylcholine. European polymer journal, 2011. 47(9): pp. 1795-1803.
47. S. Minko, Grafting on solid surfaces:“grafting to” and “grafting from” methods, in Polymer surfaces and interfaces. 2008, Springer. pp. 215-234.
48. L. Y. Yu, B. Zhu, X. Cai, Y. W. Wang, R. H. Han, and Y. W. Li. Review of polymer surface modification method. in Materials Science Forum. 2016. Trans Tech Publ.
49. O. Prucker, T. Brandstetter, and J. Rühe, Surface-attached hydrogel coatings via C, H-insertion crosslinking for biomedical and bioanalytical applications. Biointerphases, 2018. 13(1): pp. 010801.
50. Z. Lin, Y. Zhang, C. K. Ober, and J. M. Goddard, Facile preparation of epoxide-functionalized surfaces via photocurable copolymer coatings and subsequent immobilization of iminodiacetic acids. ACS applied materials & interfaces, 2018. 10(47): pp. 40871-40879.
51. Q. Liu and J. L. Locklin, Photocross-linking kinetics study of benzophenone containing zwitterionic copolymers. ACS omega, 2020. 5(16): pp. 9204-9211.
52. Q. Liu, P. Singha, H. Handa, and J. Locklin, Covalent grafting of antifouling phosphorylcholine-based copolymers with antimicrobial nitric oxide releasing polymers to enhance infection-resistant properties of medical device coatings. Langmuir, 2017. 33(45): pp. 13105-13113.
53. A. S. Münch, S. Adam, T. Fritzsche, and P. Uhlmann, Tuning of smart multifunctional polymer coatings made by zwitterionic phosphorylcholines. Advanced Materials Interfaces, 2020. 7(1): pp. 1901422.
54. J. Koc, E. Schönemann, A. Amuthalingam, J. Clarke, J. A. Finlay, A. S. Clare, A. Laschewsky, and A. Rosenhahn, Low-fouling thin hydrogel coatings made of photo-cross-linked polyzwitterions. Langmuir, 2018. 35(5): pp. 1552-1562.
55. M. H. Schneider, Y. Tran, and P. Tabeling, Benzophenone absorption and diffusion in poly (dimethylsiloxane) and its role in graft photo-polymerization for surface modification. Langmuir, 2011. 27(3): pp. 1232-1240.
56. M. Rhodes, J. Bucher, J. Peckham, G. Kissling, M. Hejtmancik, and R. Chhabra, Carcinogenesis studies of benzophenone in rats and mice. Food and Chemical Toxicology, 2007. 45(5): pp. 843-851.
57. X. Lin, K. Fukazawa, and K. Ishihara, Photoreactive polymers bearing a zwitterionic phosphorylcholine group for surface modification of biomaterials. ACS applied materials & interfaces, 2015. 7(31): pp. 17489-17498.
58. V. Mishra and R. Kumar, Living radical polymerization: A review. J. Sci. Res, 2012. 56: pp. 141-176.
59. J. Chiefari, Y. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. Le, R. T. Mayadunne, G. F. Meijs, C. L. Moad, and G. Moad, Living free-radical polymerization by reversible addition− fragmentation chain transfer: the RAFT process. Macromolecules, 1998. 31(16): pp. 5559-5562.
60. R. T. Mayadunne, E. Rizzardo, J. Chiefari, J. Krstina, G. Moad, A. Postma, and S. H. Thang, Living polymers by the use of trithiocarbonates as reversible addition− fragmentation chain transfer (RAFT) agents: ABA triblock copolymers by radical polymerization in two steps. Macromolecules, 2000. 33(2): pp. 243-245.
61. G. Moad, E. Rizzardo, and S. H. Thang, Living radical polymerization by the RAFT process–a third update. Australian Journal of Chemistry, 2012. 65(8): pp. 985-1076.
62. G. Moad, E. Rizzardo, and S. H. Thang, Toward living radical polymerization. Accounts of chemical research, 2008. 41(9): pp. 1133-1142.
63. G. Moad, E. Rizzardo, and S. H. Thang, RAFT polymerization and some of its applications. Chemistry–An Asian Journal, 2013. 8(8): pp. 1634-1644.
64. D. J. Keddie, G. Moad, E. Rizzardo, and S. H. Thang, RAFT agent design and synthesis. Macromolecules, 2012. 45(13): pp. 5321-5342.
65. S. Perrier, 50th Anniversary Perspective: RAFT Polymerization A User Guide. Macromolecules, 2017. 50(19): pp. 7433-7447.
66. G. Moad, E. Rizzardo, and S. H. Thang, Living radical polymerization by the RAFT process. Australian journal of chemistry, 2005. 58(6): pp. 379-410.
67. A. B. Lowe and C. L. McCormick, Reversible addition–fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co) polymers under homogeneous conditions in organic and aqueous media. Progress in Polymer Science, 2007. 32(3): pp. 283-351.
68. A. Veloso, W. García, A. Agirre, N. Ballard, F. Ruipérez, C. José, and J. M. Asua, Determining the effect of side reactions on product distributions in RAFT polymerization by MALDI-TOF MS. Polymer Chemistry, 2015. 6(30): pp. 5437-5450.
69. L. Wood. Global Hydrophilic Coatings Market 2017-2021 With Aculon, Biocoat, Harland Medical Systems, Hydromer & DSM Dominating - Research and Markets. 2017; Available from: https://www.businesswire.com/news/home/20170914005882/en/Global-Hydrophilic-Coatings-Market-2017-2021-With-Aculon-Biocoat-Harland-Medical-Systems-Hydromer-DSM-Dominating---Research-and-Markets.
70. DSM. DSM ComfortCoat® hydrophilic coating enhances the capabilities of EPflex medical guidewires. 2012; Available from: https://www.dsm.com/biomedical/en_US/media-events/press-releases/2012/2012-01-31-dsm-comfortcoat-hydrophilic-coating-enhances-capabilities-epflex-medical-guidewires.html.
71. Harland Medical Systems. Lubricent UV Hydrophilic Coating.; Available from: https://harlandmedical.com/products-and-services/coating-solutions/.
72. AST Products. LUBRILASTTM LUBRICIOUS HYDROPHILIC MEDICAL COATING. Available from: https://www.astp.com/lubrilast.
73. S.-i. Yusa, K. Fukuda, T. Yamamoto, K. Ishihara, and Y. Morishima, Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences as a novel biocompatible polymer micelle reagent. Biomacromolecules, 2005. 6(2): pp. 663-670.
74. C. Kojima, R. Katayama, T. L. Nguyen, Y. Oki, A. Tsujimoto, S.-i. Yusa, K. Shiraishi, and A. Matsumoto, Different antifouling effects of random and block copolymers comprising 2-methacryloyloxyethyl phosphorylcholine and dodecyl methacrylate. European Polymer Journal, 2020. 136: pp. 109932.
75. M. Ohshio, K. Ishihara, and S.-i. Yusa, Self-association behavior of cell membrane-inspired amphiphilic random copolymers in water. Polymers, 2019. 11(2): pp. 327.
76. K. Ishihara, M. Mu, T. Konno, Y. Inoue, and K. Fukazawa, The unique hydration state of poly (2-methacryloyloxyethyl phosphorylcholine). Journal of Biomaterials science, Polymer edition, 2017. 28(10-12): pp. 884-899.
77. Y. Inoue, J. Watanabe, and K. Ishihara, Dynamic motion of phosphorylcholine groups at the surface of poly (2-methacryloyloxyethyl phosphorylcholine–random–2, 2, 2-trifluoroethyl methacrylate). Journal of colloid and interface science, 2004. 274(2): pp. 465-471.
78. Y. Liu, Y. Inoue, A. Mahara, S. Kakinoki, T. Yamaoka, and K. Ishihara, Durable modification of segmented polyurethane for elastic blood-contacting devices by graft-type 2-methacryloyloxyethyl phosphorylcholine copolymer. Journal of Biomaterials Science, Polymer Edition, 2014. 25(14-15): pp. 1514-1529.
79. F. A. Stevie and C. L. Donley, Introduction to x-ray photoelectron spectroscopy. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2020. 38(6): pp. 063204.
80. M. J. Giraldez, C. G. Resua, M. Lira, M. E. C. R. Oliveira, B. Magariños, A. E. Toranzo, and E. Yebra-Pimentel, Contact lens hydrophobicity and roughness effects on bacterial adhesion. Optometry and Vision Science, 2010. 87(6): pp. E426-E431.
指導教授 黃俊仁(Chun-Jen Huang) 審核日期 2022-9-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明