參考文獻 |
1. L. C. Zheng, H. S. Sundaram, Z. Y. Wei, C. C. Li, and Z. F. Yuan, Applications of zwitterionic polymers. Reactive & Functional Polymers, 2017. 118: pp. 51-61.
2. S. Bigot, G. Louarn, N. Kébir, and F. Burel, Straightforward approach to graft bioactive polysaccharides onto polyurethane surfaces using an ionic liquid. Applied surface science, 2014. 314: pp. 301-307.
3. F. J. Davis and G. R. Mitchell, Polyurethane based materials with applications in medical devices, in Bio-materials and prototyping applications in medicine. 2008, Springer. pp. 27-48.
4. M. Dong, Q. Li, H. Liu, C. Liu, E. K. Wujcik, Q. Shao, T. Ding, X. Mai, C. Shen, and Z. Guo, Thermoplastic polyurethane-carbon black nanocomposite coating: fabrication and solid particle erosion resistance. Polymer, 2018. 158: pp. 381-390.
5. C. H. Chen, C. F. Mao, M. S. Tsai, F. S. Yen, J. M. Lin, C. H. Tseng, and H. Y. Chen, Influence of surface modification on the dispersion of nanoscale α‐Al2O3 particles in a thermoplastic polyurethane matrix. Journal of applied polymer science, 2008. 110(1): pp. 237-243.
6. M. Abbasian, M. Seyyedi, and M. Jaymand, Modification of thermoplastic polyurethane through the grafting of well-defined polystyrene and preparation of its polymer/clay nanocomposite. Polymer Bulletin, 2020. 77(3): pp. 1107-1120.
7. M. Qiao, T. Ren, T.-S. Huang, J. Weese, Y. Liu, X. Ren, and R. Farag, N-Halamine modified thermoplastic polyurethane with rechargeable antimicrobial function for food contact surface. RSC advances, 2017. 7(3): pp. 1233-1240.
8. H. J. Kwon, Y. Lee, G. M. Seon, E. Kim, J. C. Park, H. Yoon, and K. D. Park, Zwitterionic sulfobetaine polymer-immobilized surface by simple tyrosinase-mediated grafting for enhanced antifouling property. Acta Biomaterialia, 2017. 61: pp. 169-179.
9. M. Liu, T. Liu, X. Chen, J. Yang, J. Deng, W. He, X. Zhang, Q. Lei, X. Hu, and G. Luo, Nano-silver-incorporated biomimetic polydopamine coating on a thermoplastic polyurethane porous nanocomposite as an efficient antibacterial wound dressing. Journal of nanobiotechnology, 2018. 16(1): pp. 1-19.
10. Z. Wu, H. Chen, X. Liu, and J. L. Brash, Hemocompatible polyurethane surfaces. Polymers for Advanced Technologies, 2012. 23(11): pp. 1500-1502.
11. P. Alves, S. Pinto, H. C. de Sousa, and M. H. Gil, Surface modification of a thermoplastic polyurethane by low‐pressure plasma treatment to improve hydrophilicity. Journal of Applied Polymer Science, 2011. 122(4): pp. 2302-2308.
12. X. Lai, P. Song, and L. Wang, Preparation and properties of epoxy-modified waterborne polyurethane/polyacrylate composite emulsion with the action of polmerizable emulsifier. Journal of Applied Science and Engineering, 2017. 20(1): pp. 87-94.
13. J. Gallo, M. Holinka, and C. S. Moucha, Antibacterial surface treatment for orthopaedic implants. International journal of molecular sciences, 2014. 15(8): pp. 13849-13880.
14. Z. K. Zander and M. L. Becker, Antimicrobial and antifouling strategies for polymeric medical devices. 2018, ACS Publications.
15. P. Singha, J. Pant, M. J. Goudie, C. D. Workman, and H. Handa, Enhanced antibacterial efficacy of nitric oxide releasing thermoplastic polyurethanes with antifouling hydrophilic topcoats. Biomaterials science, 2017. 5(7): pp. 1246-1255.
16. R. C. Feneley, I. B. Hopley, and P. N. Wells, Urinary catheters: history, current status, adverse events and research agenda. Journal of medical engineering & technology, 2015. 39(8): pp. 459-470.
17. Z. Khatoon, C. D. McTiernan, E. J. Suuronen, T.-F. Mah, and E. I. Alarcon, Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon, 2018. 4(12): pp. e01067.
18. P. Stoodley, K. Sauer, D. G. Davies, and J. W. Costerton, Biofilms as complex differentiated communities. Annual review of microbiology, 2002. 56(1): pp. 187-209.
19. L. Schmüser, N. Encinas, M. Paven, D. J. Graham, D. G. Castner, D. Vollmer, H. J. Butt, and T. Weidner, Candle soot-based super-amphiphobic coatings resist protein adsorption. Biointerphases, 2016. 11(3): pp. 031007.
20. P. A. Cadieux, G. R. Wignall, R. Carriveau, and J. D. Denstedt. Implications of biofilm formation on urological devices. in AIP Conference Proceedings. 2008. American Institute of Physics.
21. M. Crouzet, C. Le Senechal, V. S. Brözel, P. Costaglioli, C. Barthe, M. Bonneu, B. Garbay, and S. Vilain, Exploring early steps in biofilm formation: set-up of an experimental system for molecular studies. BMC microbiology, 2014. 14(1): pp. 1-12.
22. B. K. D. Ngo and M. A. Grunlan, Protein resistant polymeric biomaterials. 2017, ACS Publications.
23. S. Williams, N. Venkateswaran, T. O’Donnell, P. Crisalli, S. Helmy, M. Napoli, and S. Pennathur, Assessing Stability, Durability, and Protein Adsorption Behavior of Hydrophilic Silane Coatings in Glass Microchannels. J Anal Bioanal Tech, 2016. 7(318): pp. 2.
24. S. Jasmee, G. Omar, M. Nordin, N. Masripan, and A. Kamarolzaman. Hydrophobicity performance of thermoplastic polyurethane coated with TiO2 under thermal aging effect. in 1st Colloquium Paper: ADVANCED MATERIALS AND MECHANICAL ENGINEERING RESEARCH (CAMMER′18). 2018. Penerbit Universiti, Universiti Teknikal Malaysia Melaka.
25. P. Alves, J. Coelho, J. Haack, A. Rota, A. Bruinink, and M. Gil, Surface modification and characterization of thermoplastic polyurethane. European Polymer Journal, 2009. 45(5): pp. 1412-1419.
26. P. Alves, R. Cardoso, T. R. Correia, B. P. Antunes, I. Correia, and P. Ferreira, Surface modification of polyurethane films by plasma and ultraviolet light to improve haemocompatibility for artificial heart valves. Colloids and Surfaces B: Biointerfaces, 2014. 113: pp. 25-32.
27. S. Rahim, M. S. Ghamsari, and S. Radiman, Surface modification of titanium oxide nanocrystals with PEG. Scientia Iranica, 2012. 19(3): pp. 948-953.
28. B. Butruk, P. Ziętek, and T. Ciach, Simple method of fabrication of hydrophobic coatings for polyurethanes. Open Chemistry, 2011. 9(6): pp. 1039-1045.
29. D. Xu, Y. Su, L. Zhao, F. Meng, C. Liu, Y. Guan, J. Zhang, and J. Luo, Antibacterial and antifouling properties of a polyurethane surface modified with perfluoroalkyl and silver nanoparticles. Journal of Biomedical Materials Research Part A, 2017. 105(2): pp. 531-538.
30. D. Xie, L. Howard, and R. Almousa, Surface modification of polyurethane with a hydrophilic, antibacterial polymer for improved antifouling and antibacterial function. Journal of biomaterials applications, 2018. 33(3): pp. 340-351.
31. L. Hou, Y. Peck, X. Wang, and D. Wang, Surface patterning and modification of polyurethane biomaterials using silsesquioxane-gelatin additives for improved endothelial affinity. Science China Chemistry, 2014. 57(4): pp. 596-604.
32. F. Kara, E. A. Aksoy, Z. Yuksekdag, N. Hasirci, and S. Aksoy, Synthesis and surface modification of polyurethanes with chitosan for antibacterial properties. Carbohydrate Polymers, 2014. 112: pp. 39-47.
33. S. Aroua, E. G. V. Tiu, M. Ayer, T. Ishikawa, and Y. Yamakoshi, RAFT synthesis of poly (vinylpyrrolidone) amine and preparation of a water-soluble C 60-PVP conjugate. Polymer Chemistry, 2015. 6(14): pp. 2616-2619.
34. P. Franco and I. De Marco, The Use of Poly (N-vinyl pyrrolidone) in the Delivery of Drugs: A Review. Polymers, 2020. 12(5): pp. 1114.
35. S. Robinson and P. A. Williams, Inhibition of protein adsorption onto silica by polyvinylpyrrolidone. Langmuir, 2002. 18(23): pp. 8743-8748.
36. M. Sun, H. Qiu, C. Su, X. Shi, Z. Wang, Y. Ye, and Y. Zhu, Solvent-Free graft-from polymerization of Polyvinylpyrrolidone imparting ultralow bacterial fouling and improved biocompatibility. ACS Applied Bio Materials, 2019. 2(9): pp. 3983-3991.
37. D. A. Ashmore, A. Chaudhari, B. Barlow, B. Barlow, T. Harper, K. Vig, M. Miller, S. Singh, E. Nelson, and S. Pillai, Evaluation of E. coli inhibition by plain and polymer-coated silver nanoparticles. Revista do Instituto de Medicina Tropical de São Paulo, 2018. 60.
38. C. Wu, Y. Zhou, H. Wang, J. Hu, and X. Wang, Formation of antifouling functional coating from deposition of a zwitterionic-co-nonionic polymer via “grafting to” approach. Journal of Saudi Chemical Society, 2019. 23(8): pp. 1080-1089.
39. E. Van Andel, I. De Bus, E. J. Tijhaar, M. M. Smulders, H. F. Savelkoul, and H. Zuilhof, Highly specific binding on antifouling zwitterionic polymer-coated microbeads as measured by flow cytometry. ACS applied materials & interfaces, 2017. 9(44): pp. 38211-38221.
40. H.-W. Chien, C.-C. Tsai, W.-B. Tsai, M.-J. Wang, W.-H. Kuo, T.-C. Wei, and S.-T. Huang, Surface conjugation of zwitterionic polymers to inhibit cell adhesion and protein adsorption. Colloids and Surfaces B: Biointerfaces, 2013. 107: pp. 152-159.
41. T. P. Vales, J.-P. Jee, W. Y. Lee, S. Cho, G. M. Lee, H.-J. Kim, and J. S. Kim, Development of poly (2-methacryloyloxyethyl phosphorylcholine)-functionalized hydrogels for reducing protein and bacterial adsorption. Materials, 2020. 13(4): pp. 943.
42. K. Ishihara, Successful development of biocompatible polymers designed by natures original inspiration. Procedia Chemistry, 2012. 4: pp. 34-38.
43. Y. Iwasaki and K. Ishihara, Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces. Science and Technology of Advanced Materials, 2012. 13(6): pp. 064101.
44. M. Tanaka and Y. Iwasaki, Photo-assisted generation of phospholipid polymer substrates for regiospecific protein conjugation and control of cell adhesion. Acta Biomaterialia, 2016. 40: pp. 54-61.
45. K. Hirota, K. Murakami, K. Nemoto, and Y. Miyake, Coating of a surface with 2-methacryloyloxyethyl phosphorylcholine (MPC) co-polymer significantly reduces retention of human pathogenic microorganisms. FEMS microbiology letters, 2005. 248(1): pp. 37-45.
46. L. Li, J.-H. Wang, and Z. Xin, Synthesis and biocompatibility of a novel silicone hydrogel containing phosphorylcholine. European polymer journal, 2011. 47(9): pp. 1795-1803.
47. S. Minko, Grafting on solid surfaces:“grafting to” and “grafting from” methods, in Polymer surfaces and interfaces. 2008, Springer. pp. 215-234.
48. L. Y. Yu, B. Zhu, X. Cai, Y. W. Wang, R. H. Han, and Y. W. Li. Review of polymer surface modification method. in Materials Science Forum. 2016. Trans Tech Publ.
49. O. Prucker, T. Brandstetter, and J. Rühe, Surface-attached hydrogel coatings via C, H-insertion crosslinking for biomedical and bioanalytical applications. Biointerphases, 2018. 13(1): pp. 010801.
50. Z. Lin, Y. Zhang, C. K. Ober, and J. M. Goddard, Facile preparation of epoxide-functionalized surfaces via photocurable copolymer coatings and subsequent immobilization of iminodiacetic acids. ACS applied materials & interfaces, 2018. 10(47): pp. 40871-40879.
51. Q. Liu and J. L. Locklin, Photocross-linking kinetics study of benzophenone containing zwitterionic copolymers. ACS omega, 2020. 5(16): pp. 9204-9211.
52. Q. Liu, P. Singha, H. Handa, and J. Locklin, Covalent grafting of antifouling phosphorylcholine-based copolymers with antimicrobial nitric oxide releasing polymers to enhance infection-resistant properties of medical device coatings. Langmuir, 2017. 33(45): pp. 13105-13113.
53. A. S. Münch, S. Adam, T. Fritzsche, and P. Uhlmann, Tuning of smart multifunctional polymer coatings made by zwitterionic phosphorylcholines. Advanced Materials Interfaces, 2020. 7(1): pp. 1901422.
54. J. Koc, E. Schönemann, A. Amuthalingam, J. Clarke, J. A. Finlay, A. S. Clare, A. Laschewsky, and A. Rosenhahn, Low-fouling thin hydrogel coatings made of photo-cross-linked polyzwitterions. Langmuir, 2018. 35(5): pp. 1552-1562.
55. M. H. Schneider, Y. Tran, and P. Tabeling, Benzophenone absorption and diffusion in poly (dimethylsiloxane) and its role in graft photo-polymerization for surface modification. Langmuir, 2011. 27(3): pp. 1232-1240.
56. M. Rhodes, J. Bucher, J. Peckham, G. Kissling, M. Hejtmancik, and R. Chhabra, Carcinogenesis studies of benzophenone in rats and mice. Food and Chemical Toxicology, 2007. 45(5): pp. 843-851.
57. X. Lin, K. Fukazawa, and K. Ishihara, Photoreactive polymers bearing a zwitterionic phosphorylcholine group for surface modification of biomaterials. ACS applied materials & interfaces, 2015. 7(31): pp. 17489-17498.
58. V. Mishra and R. Kumar, Living radical polymerization: A review. J. Sci. Res, 2012. 56: pp. 141-176.
59. J. Chiefari, Y. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. Le, R. T. Mayadunne, G. F. Meijs, C. L. Moad, and G. Moad, Living free-radical polymerization by reversible addition− fragmentation chain transfer: the RAFT process. Macromolecules, 1998. 31(16): pp. 5559-5562.
60. R. T. Mayadunne, E. Rizzardo, J. Chiefari, J. Krstina, G. Moad, A. Postma, and S. H. Thang, Living polymers by the use of trithiocarbonates as reversible addition− fragmentation chain transfer (RAFT) agents: ABA triblock copolymers by radical polymerization in two steps. Macromolecules, 2000. 33(2): pp. 243-245.
61. G. Moad, E. Rizzardo, and S. H. Thang, Living radical polymerization by the RAFT process–a third update. Australian Journal of Chemistry, 2012. 65(8): pp. 985-1076.
62. G. Moad, E. Rizzardo, and S. H. Thang, Toward living radical polymerization. Accounts of chemical research, 2008. 41(9): pp. 1133-1142.
63. G. Moad, E. Rizzardo, and S. H. Thang, RAFT polymerization and some of its applications. Chemistry–An Asian Journal, 2013. 8(8): pp. 1634-1644.
64. D. J. Keddie, G. Moad, E. Rizzardo, and S. H. Thang, RAFT agent design and synthesis. Macromolecules, 2012. 45(13): pp. 5321-5342.
65. S. Perrier, 50th Anniversary Perspective: RAFT Polymerization A User Guide. Macromolecules, 2017. 50(19): pp. 7433-7447.
66. G. Moad, E. Rizzardo, and S. H. Thang, Living radical polymerization by the RAFT process. Australian journal of chemistry, 2005. 58(6): pp. 379-410.
67. A. B. Lowe and C. L. McCormick, Reversible addition–fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co) polymers under homogeneous conditions in organic and aqueous media. Progress in Polymer Science, 2007. 32(3): pp. 283-351.
68. A. Veloso, W. García, A. Agirre, N. Ballard, F. Ruipérez, C. José, and J. M. Asua, Determining the effect of side reactions on product distributions in RAFT polymerization by MALDI-TOF MS. Polymer Chemistry, 2015. 6(30): pp. 5437-5450.
69. L. Wood. Global Hydrophilic Coatings Market 2017-2021 With Aculon, Biocoat, Harland Medical Systems, Hydromer & DSM Dominating - Research and Markets. 2017; Available from: https://www.businesswire.com/news/home/20170914005882/en/Global-Hydrophilic-Coatings-Market-2017-2021-With-Aculon-Biocoat-Harland-Medical-Systems-Hydromer-DSM-Dominating---Research-and-Markets.
70. DSM. DSM ComfortCoat® hydrophilic coating enhances the capabilities of EPflex medical guidewires. 2012; Available from: https://www.dsm.com/biomedical/en_US/media-events/press-releases/2012/2012-01-31-dsm-comfortcoat-hydrophilic-coating-enhances-capabilities-epflex-medical-guidewires.html.
71. Harland Medical Systems. Lubricent UV Hydrophilic Coating.; Available from: https://harlandmedical.com/products-and-services/coating-solutions/.
72. AST Products. LUBRILASTTM LUBRICIOUS HYDROPHILIC MEDICAL COATING. Available from: https://www.astp.com/lubrilast.
73. S.-i. Yusa, K. Fukuda, T. Yamamoto, K. Ishihara, and Y. Morishima, Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences as a novel biocompatible polymer micelle reagent. Biomacromolecules, 2005. 6(2): pp. 663-670.
74. C. Kojima, R. Katayama, T. L. Nguyen, Y. Oki, A. Tsujimoto, S.-i. Yusa, K. Shiraishi, and A. Matsumoto, Different antifouling effects of random and block copolymers comprising 2-methacryloyloxyethyl phosphorylcholine and dodecyl methacrylate. European Polymer Journal, 2020. 136: pp. 109932.
75. M. Ohshio, K. Ishihara, and S.-i. Yusa, Self-association behavior of cell membrane-inspired amphiphilic random copolymers in water. Polymers, 2019. 11(2): pp. 327.
76. K. Ishihara, M. Mu, T. Konno, Y. Inoue, and K. Fukazawa, The unique hydration state of poly (2-methacryloyloxyethyl phosphorylcholine). Journal of Biomaterials science, Polymer edition, 2017. 28(10-12): pp. 884-899.
77. Y. Inoue, J. Watanabe, and K. Ishihara, Dynamic motion of phosphorylcholine groups at the surface of poly (2-methacryloyloxyethyl phosphorylcholine–random–2, 2, 2-trifluoroethyl methacrylate). Journal of colloid and interface science, 2004. 274(2): pp. 465-471.
78. Y. Liu, Y. Inoue, A. Mahara, S. Kakinoki, T. Yamaoka, and K. Ishihara, Durable modification of segmented polyurethane for elastic blood-contacting devices by graft-type 2-methacryloyloxyethyl phosphorylcholine copolymer. Journal of Biomaterials Science, Polymer Edition, 2014. 25(14-15): pp. 1514-1529.
79. F. A. Stevie and C. L. Donley, Introduction to x-ray photoelectron spectroscopy. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2020. 38(6): pp. 063204.
80. M. J. Giraldez, C. G. Resua, M. Lira, M. E. C. R. Oliveira, B. Magariños, A. E. Toranzo, and E. Yebra-Pimentel, Contact lens hydrophobicity and roughness effects on bacterial adhesion. Optometry and Vision Science, 2010. 87(6): pp. E426-E431. |