參考文獻 |
[1] Bangham, A. D.; Horne, R. W., "Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope." Journal of Molecular Biology, 1964, 8 (5), 660-IN610.
[2] Horne, R. W.; et al., "Negatively Stained Lipoprotein Membranes." Nature, 1963, 200 (4913), 1340-1340.
[3] Sessa, G.; Weissmann, G., "Incorporation of lysozyme into liposomes. A model for structure-linked latency." J Biol Chem, 1970, 245 (13), 3295-3301.
[4] Barenholz, Y., "Doxil® — The first FDA-approved nano-drug: Lessons learned." Journal of Controlled Release, 2012, 160 (2), 117-134.
[5] Jones, M. N., "The surface properties of phospholipid liposome systems and their characterisation." Adv Colloid Interface Sci, 1995, 54, 93-128.
[6] Smith, M. C.; et al., "Zeta potential: a case study of cationic, anionic, and neutral liposomes." Anal Bioanal Chem, 2017, 409 (24), 5779-5787.
[7] Akbarzadeh, A.; et al., "Liposome: classification, preparation, and applications." Nanoscale Res Lett, 2013, 8 (1), 102.
[8] Chen, W.; et al., "Determination of the Main Phase Transition Temperature of Phospholipids by Nanoplasmonic Sensing." Scientific Reports, 2018, 8 (1), 14815.
[9] Nakhaei, P.; et al., "Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol." Frontiers in Bioengineering and Biotechnology, 2021, 9, Review.
[10] Dos Santos, N.; et al., "Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: Relating plasma circulation lifetimes to protein binding." Biochimica et Biophysica Acta (BBA) - Biomembranes, 2007, 1768 (6), 1367-1377.
[11] Mayer, L. D.; et al., "Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient." Biochim Biophys Acta, 1986, 857 (1), 123-126.
[12] Haran, G.; et al., "Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases." Biochim Biophys Acta, 1993, 1151 (2), 201-215.
[13] Hua, J. C.; et al., "Partial sequencing of human adult, human fetal, and bovine intestinal alkaline phosphatases: comparison with the human placental and liver isozymes." Proc Natl Acad Sci U S A, 1986, 83 (8), 2368-2372.
[14] Le-Vinh, B.; et al., "Alkaline Phosphatase: A Reliable Endogenous Partner for Drug Delivery and Diagnostics." Advanced Therapeutics, 2022, 5 (2), 2100219.
[15] Iles, R. K.; et al., "Production of placental alkaline phosphatase (PLAP) and PLAP-like material by epithelial germ cell and non-germ cell tumours in vitro." Br J Cancer, 1994, 69 (2), 274-278.
[16] Dabare, A. A.; et al., "Profile of placental alkaline phosphatase expression in human malignancies: effect of tumour cell activation on alkaline phosphatase expression." Urol Int, 1999, 63 (3), 168-174.
[17] Williams, R. J. P., "The biochemistry of zinc." Polyhedron, 1987, 6 (1), 61-69.
[18] McCall, K. A.; et al., "Function and Mechanism of Zinc Metalloenzymes." The Journal of Nutrition, 2000, 130 (5), 1437S-1446S.
[19] Castro, C. B.; et al., "Metalloenzyme mechanisms correlated to their turnover number and metal lability." Current Research in Chemical Biology, 2021, 1, 100004.
[20] Coleman, J. E., "Structure and mechanism of alkaline phosphatase." Annu Rev Biophys Biomol Struct, 1992, 21, 441-483.
[21] Yeh, M. F.; Trela, J. M., "Purification and characterization of a repressible alkaline phosphatase from Thermus aquaticus." Journal of Biological Chemistry, 1976, 251 (10), 3134-3139.
[22] Cowan, J. A., "Structural and catalytic chemistry of magnesium-dependent enzymes." Biometals, 2002, 15 (3), 225-235.
[23] Bulet, P.; et al., "Anti-microbial peptides: from invertebrates to vertebrates." Immunol Rev, 2004, 198, 169-184.
[24] Oren, Z.; Shai, Y., "Mode of action of linear amphipathic alpha-helical antimicrobial peptides." Biopolymers, 1998, 47 (6), 451-463.
[25] Gennaro, R.; Zanetti, M., "Structural features and biological activities of the cathelicidin-derived antimicrobial peptides." Biopolymers, 2000, 55 (1), 31-49.
[26] Nguyen, L. T.; et al., "The expanding scope of antimicrobial peptide structures and their modes of action." Trends Biotechnol, 2011, 29 (9), 464-472.
[27] Zasloff, M., "Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor." Proc Natl Acad Sci U S A, 1987, 84 (15), 5449-5453.
[28] Matsuzaki, K., "Magainins as paradigm for the mode of action of pore forming polypeptides." Biochim Biophys Acta, 1998, 1376 (3), 391-400.
[29] Matsuzaki, K.; et al., "Translocation of a Channel-Forming Antimicrobial Peptide, Magainin 2, across Lipid Bilayers by Forming a Pore." Biochemistry, 1995, 34 (19), 6521-6526.
[30] Hara, T.; et al., "Effects of peptide dimerization on pore formation: Antiparallel disulfide-dimerized magainin 2 analogue." Biopolymers, 2001, 58 (4), 437-446.
[31] Hara, T.; et al., "Heterodimer formation between the antimicrobial peptides magainin 2 and PGLa in lipid bilayers: a cross-linking study." Biochemistry, 2001, 40 (41), 12395-12399.
[32] Uematsu, N.; Matsuzaki, K., "Polar angle as a determinant of amphipathic alpha-helix-lipid interactions: a model peptide study." Biophys J, 2000, 79 (4), 2075-2083.
[33] Zhou, J.; et al., "Enzyme-Instructed Self-Assembly for Spatiotemporal Profiling of the Activities of Alkaline Phosphatases on Live Cells." Chem, 2016, 1 (2), 246-263.
[34] He, H.; et al., "Enzymatically Formed Peptide Assemblies Sequestrate Proteins and Relocate Inhibitors to Selectively Kill Cancer Cells." Angewandte Chemie International Edition, 2020, 59 (38), 16445-16450, https://doi.org/10.1002/anie.202006290.
[35] Yang, S.; et al., "Enzyme-triggered self-assembly of gold nanoparticles for enhanced retention effects and photothermal therapy of prostate cancer." Chemical Communications, 2018, 54 (70), 9841-9844, 10.1039/C8CC05136D.
[36] Mizukami, S.; et al., "Enzyme-triggered compound release using functionalized antimicrobial peptide derivatives." Chemical Science, 2017, 8 (4), 3047-3053, 10.1039/C6SC04435B.
[37] Ray, P.; et al., "The Impact of Nanoparticles on the Immune System: A Gray Zone of Nanomedicine." Journal of Immunological Sciences, 2021, (5(1)), 19-33.
[38] Zhang, L.; et al., "The use of PEGylated liposomes to prolong the circulation lifetime of salvianolic acid B." Fitoterapia, 2012, 83 (4), 678-689.
[39] Jelokhani-Niaraki, M.; et al., "Interaction of gramicidin S and its aromatic amino-acid analog with phospholipid membranes." Biophysical Journal, 2008, 95 (7), 3306-3321.
[40] Palchetti, S.; et al., "The protein corona of circulating PEGylated liposomes." Biochimica et Biophysica Acta (BBA) - Biomembranes, 2016, 1858 (2), 189-196. |