博碩士論文 109223022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.137.174.12
姓名 康榕(Jung Kang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 鹼性磷酸酶引信響應釋放的智能胜肽微脂體
(Smart Peptidyl Liposome Trigger-Released by Alkaline Phosphatase)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-24以後開放)
摘要(中) 由於多數腫瘤細胞表面之胎盤型鹼性磷酸酶過量表達 (69±44 U/g),因此被視為一個良好的引信訊號來促使藥物釋放。然而,市售的阿黴素微脂體並無任何引信釋放機制。因此我們設計一個智能響應的胜肽微脂體,以鹼性磷酸酶作為引信訊號,增加藥物微脂體在較高引信訊號環境 (例如腫瘤細胞) 釋放藥物。
  我們以抗菌胜肽 Magainin 2 作為破膜多肽骨架,設計鹼性磷酸酶引信響應破膜胜肽,藉由將磷酸根修飾在酪胺酸上來遮蔽抗菌胜肽破膜活性,並可藉由去磷酸化恢復破膜活性,再將胜肽透過錨定脂質連接到微脂體上形成引信響應多肽微脂體。在實驗室先前數據中,一個磷酸根修飾之胜肽 (1pY19-Magainin 2 和 1pY8-Magainin 2) 無法有效遮蔽破膜活性,有顯著使藥物洩漏的現象,而兩個磷酸根多肽 (2pY8,19-Magainin 2) 則可較佳抑制抗菌胜肽破膜活性但仍有些許藥物背景洩漏現象。在此研究中,我們合成三個磷酸根修飾的胜肽 (3pY8,15,19-Magainin 2) 企圖進一步壓抑抗菌胜肽破膜活性阿黴素微脂體。
在胜肽微脂體控制藥物釋放結果中,我們證實鹼性磷酸酶能去除微脂體上胜肽的磷酸基團,使胜肽恢復破膜活性,進而破膜釋放藥物。在圓二色性光譜實驗中,沒有磷酸基團遮蔽破膜活性的胜肽 3Y8,15,19-Magainin 2 錨定到微脂體後,其二級結構為 β-sheet ,而 3pY8,15,19-Magainin 2 錨定到微脂體時,則以無序纏繞,這說明磷酸基團能有效遮蔽破膜胜肽與微脂體作用,而去磷酸化之後,多肽產生二級結構並進一步破壞微脂體的膜。另外,在冷凍電子顯微鏡實驗結果中,引信響應胜肽 3pY8,15,19-Magainin 2 在去磷酸化之前已經在微脂體膜表面上聚集,但此聚集無法造成藥物釋放;直到去磷酸化發生後,胜肽仍有聚集現象並使微脂體相互聚集,但微脂體內的阿黴素結晶已消失,表明藥物的釋放。
  最後,我們在離子種類及濃度接近人體血漿的模擬體液 (沒有磷酸鹽) 中,以 HS-5 細胞 (鹼性磷酸酶表達極少) 和 KB 細胞 (鹼性磷酸酶過度表達) 進行細胞實驗的比較。由於 2pY8,19-Magainin 2 和 3pY8,15,19-Magainin 2 胜肽微脂體都可以透過細胞原生性的鹼性磷酸酶達到控制釋放。期許未來能作為具潛力的智能微脂體應用於臨床研究。
關鍵字 : 鹼性磷酸酶、微脂體、破膜活性胜肽、引信響應釋放
摘要(英) Placental alkaline phosphatase was a suitable trigger signal for drug release since it was overexpressed on most tumor cells′ surfaces (69±44 U/g). However, commercially available DOX liposomes lack a triggered release mechanism. Hence, we designed alkaline phosphatase (ALP)-responsive peptidyl liposomes to increase drug release from liposomes in a higher triggering signal environment (such as tumor cells).
  We design alkaline phosphatase trigger-responsive membrane lytic peptides based on antibacterial peptide Magainin 2. The membrane lytic activity of the antibacterial peptides was masked by modifying the phosphate group on tyrosine and peptide was conjugated on liposome surface. The phosphoryl group can be cleaved by ALP to restore the membrane lytic activity and rupture liposome membrane to cause content release. In previous results, peptides with one phosphoryl tyrosine group (1pY19-Magainin 2 and 1pY8-Magainin 2) could not effectively masked the membrane lytic activity, causing significant drug background leakage. In contrast, peptides modified with two phosphoryl groups (2pY8,19-Magainin 2) could have a better inhibition of the membrane lytic activity. Nevertheless, slight background releases of drugs still happened. Therefore, this study aimed to synthesize peptides with three phosphoryl tyrosine (3pY8,15,19-Magainin 2) to masked the membrane lytic activity further.
  In the triggered release results, we confirmed that ALP can remove the phosphoryl group of peptides on the liposomes to rupture membrane and release drugs. In circular dichroism spectroscopy results, the secondary structure of unmasked 3Y8,15,19-Magainin 2 peptides was β-sheet, while the secondary structure of masked 3pY8,15,19-Magainin 2 peptides (with phosphoryl group) was random coil when peptides were conjugated with the liposome. It indicates that the phosphoryl group can effectively controlled the secondary structure to control the interaction between membrane lytic peptides and liposomes. In cryo-electron microscopy results, trigger-responsive peptides (3pY8,15,19-Magainin 2) were laterally preaggregated on the surface of the liposome membrane before dephosphorylation, but this aggregation won′t cause drug release. After dephosphorylation, the peptides remain laterally aggregated but liposomes contents were released. Moreover, there were inter-liposome aggregation connected at the peptide aggregating location.
  In the cellular experiment, we tested liposomal content release caused by endogenous cellular ALP using HS-5 cells (less alkaline phosphatase expression) and KB cells (overexpressing alkaline phosphatase) in simulated body fluids. Both 2pY8,19-Magainin 2 and 3pY8,15,19-Magainin 2 peptidyl liposomes can be triggered by endogenous cellular ALP, showing the potentials for further possible medical applications in the future.


Keyword : Alkaline phosphatase, liposomes, membrane lytic peptides, trigger-responsive release
關鍵字(中) ★ 鹼性磷酸酶
★ 微脂體
★ 破膜活性胜肽
★ 引信響應釋放
關鍵字(英) ★ Alkaline phosphatase
★ liposomes
★ membrane lytic peptides
★ trigger-responsive release
論文目次 中文摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 viii
符 號 說 明 xii
一、 緒論 1
1-1 前言 1
1-2 微脂體 1
1-3 鹼性磷酸酶 3
1-4 破膜多肽 7
1-5 鹼性磷酸酶響應胜肽 8
1-6 實驗設計 13
二、 實驗部分 16
2-1 微脂體 16
2-1-1 微脂體合成 16
2-1-2 微脂體定性 17
2-1-3 微脂體定量 18
2-2 胜肽 19
2-2-1 胜肽合成 19
2-2-2 胜肽定性及定量分析 20
2-2-3 以胺基酸定量進行胜肽定量 21
2-2-4 多肽去磷酸化實驗 22
2-2-5 圓二色性光譜 23
2-3 胜肽微脂體合成 23
2-4 胜肽微脂體藥物釋放分析 24
2-4-1 胜肽交聯至微脂體導致釋放的濃度區間 24
2-4-2 胜肽微脂體引信釋放 24
2-5 細胞實驗 25
2-5-1 細胞培養條件 25
2-5-2模擬體液配製 26
2-5-3 共軛焦螢光顯微鏡分析 26
2-5-4 細胞存活率分析 27
三、 實驗結果與討論 28
3-1 胜肽的定性及定量 28
3-1-1胜肽質譜分析 28
3-1-2胺基酸定量分析 33
3-2 以 ALP 進行胜肽去磷酸化分析 34
3-3 磷酸化對破膜多肽的遮蔽效率評估 37
3-4 胜肽圓二色性光譜分析 40
3-5 ALP 控制胜肽微脂體藥物釋放結果分析 45
3-6 胜肽微脂體粒徑及界面電位分析 54
3-7 冷凍電子顯微鏡影像分析 55
3-8 細胞實驗 59
3-8-1 細胞鹼性磷酸酶誘發胜肽微脂體釋放分析 62
3-8-2 藥量與細胞存活率之分析 66
四、 結論 68
Reference 70
附錄 74
參考文獻 [1] Bangham, A. D.; Horne, R. W., "Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope." Journal of Molecular Biology, 1964, 8 (5), 660-IN610.
[2] Horne, R. W.; et al., "Negatively Stained Lipoprotein Membranes." Nature, 1963, 200 (4913), 1340-1340.
[3] Sessa, G.; Weissmann, G., "Incorporation of lysozyme into liposomes. A model for structure-linked latency." J Biol Chem, 1970, 245 (13), 3295-3301.
[4] Barenholz, Y., "Doxil® — The first FDA-approved nano-drug: Lessons learned." Journal of Controlled Release, 2012, 160 (2), 117-134.
[5] Jones, M. N., "The surface properties of phospholipid liposome systems and their characterisation." Adv Colloid Interface Sci, 1995, 54, 93-128.
[6] Smith, M. C.; et al., "Zeta potential: a case study of cationic, anionic, and neutral liposomes." Anal Bioanal Chem, 2017, 409 (24), 5779-5787.
[7] Akbarzadeh, A.; et al., "Liposome: classification, preparation, and applications." Nanoscale Res Lett, 2013, 8 (1), 102.
[8] Chen, W.; et al., "Determination of the Main Phase Transition Temperature of Phospholipids by Nanoplasmonic Sensing." Scientific Reports, 2018, 8 (1), 14815.
[9] Nakhaei, P.; et al., "Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol." Frontiers in Bioengineering and Biotechnology, 2021, 9, Review.
[10] Dos Santos, N.; et al., "Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: Relating plasma circulation lifetimes to protein binding." Biochimica et Biophysica Acta (BBA) - Biomembranes, 2007, 1768 (6), 1367-1377.
[11] Mayer, L. D.; et al., "Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient." Biochim Biophys Acta, 1986, 857 (1), 123-126.
[12] Haran, G.; et al., "Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases." Biochim Biophys Acta, 1993, 1151 (2), 201-215.
[13] Hua, J. C.; et al., "Partial sequencing of human adult, human fetal, and bovine intestinal alkaline phosphatases: comparison with the human placental and liver isozymes." Proc Natl Acad Sci U S A, 1986, 83 (8), 2368-2372.
[14] Le-Vinh, B.; et al., "Alkaline Phosphatase: A Reliable Endogenous Partner for Drug Delivery and Diagnostics." Advanced Therapeutics, 2022, 5 (2), 2100219.
[15] Iles, R. K.; et al., "Production of placental alkaline phosphatase (PLAP) and PLAP-like material by epithelial germ cell and non-germ cell tumours in vitro." Br J Cancer, 1994, 69 (2), 274-278.
[16] Dabare, A. A.; et al., "Profile of placental alkaline phosphatase expression in human malignancies: effect of tumour cell activation on alkaline phosphatase expression." Urol Int, 1999, 63 (3), 168-174.
[17] Williams, R. J. P., "The biochemistry of zinc." Polyhedron, 1987, 6 (1), 61-69.
[18] McCall, K. A.; et al., "Function and Mechanism of Zinc Metalloenzymes." The Journal of Nutrition, 2000, 130 (5), 1437S-1446S.
[19] Castro, C. B.; et al., "Metalloenzyme mechanisms correlated to their turnover number and metal lability." Current Research in Chemical Biology, 2021, 1, 100004.
[20] Coleman, J. E., "Structure and mechanism of alkaline phosphatase." Annu Rev Biophys Biomol Struct, 1992, 21, 441-483.
[21] Yeh, M. F.; Trela, J. M., "Purification and characterization of a repressible alkaline phosphatase from Thermus aquaticus." Journal of Biological Chemistry, 1976, 251 (10), 3134-3139.
[22] Cowan, J. A., "Structural and catalytic chemistry of magnesium-dependent enzymes." Biometals, 2002, 15 (3), 225-235.
[23] Bulet, P.; et al., "Anti-microbial peptides: from invertebrates to vertebrates." Immunol Rev, 2004, 198, 169-184.
[24] Oren, Z.; Shai, Y., "Mode of action of linear amphipathic alpha-helical antimicrobial peptides." Biopolymers, 1998, 47 (6), 451-463.
[25] Gennaro, R.; Zanetti, M., "Structural features and biological activities of the cathelicidin-derived antimicrobial peptides." Biopolymers, 2000, 55 (1), 31-49.
[26] Nguyen, L. T.; et al., "The expanding scope of antimicrobial peptide structures and their modes of action." Trends Biotechnol, 2011, 29 (9), 464-472.
[27] Zasloff, M., "Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor." Proc Natl Acad Sci U S A, 1987, 84 (15), 5449-5453.
[28] Matsuzaki, K., "Magainins as paradigm for the mode of action of pore forming polypeptides." Biochim Biophys Acta, 1998, 1376 (3), 391-400.
[29] Matsuzaki, K.; et al., "Translocation of a Channel-Forming Antimicrobial Peptide, Magainin 2, across Lipid Bilayers by Forming a Pore." Biochemistry, 1995, 34 (19), 6521-6526.
[30] Hara, T.; et al., "Effects of peptide dimerization on pore formation: Antiparallel disulfide-dimerized magainin 2 analogue." Biopolymers, 2001, 58 (4), 437-446.
[31] Hara, T.; et al., "Heterodimer formation between the antimicrobial peptides magainin 2 and PGLa in lipid bilayers: a cross-linking study." Biochemistry, 2001, 40 (41), 12395-12399.
[32] Uematsu, N.; Matsuzaki, K., "Polar angle as a determinant of amphipathic alpha-helix-lipid interactions: a model peptide study." Biophys J, 2000, 79 (4), 2075-2083.
[33] Zhou, J.; et al., "Enzyme-Instructed Self-Assembly for Spatiotemporal Profiling of the Activities of Alkaline Phosphatases on Live Cells." Chem, 2016, 1 (2), 246-263.
[34] He, H.; et al., "Enzymatically Formed Peptide Assemblies Sequestrate Proteins and Relocate Inhibitors to Selectively Kill Cancer Cells." Angewandte Chemie International Edition, 2020, 59 (38), 16445-16450, https://doi.org/10.1002/anie.202006290.
[35] Yang, S.; et al., "Enzyme-triggered self-assembly of gold nanoparticles for enhanced retention effects and photothermal therapy of prostate cancer." Chemical Communications, 2018, 54 (70), 9841-9844, 10.1039/C8CC05136D.
[36] Mizukami, S.; et al., "Enzyme-triggered compound release using functionalized antimicrobial peptide derivatives." Chemical Science, 2017, 8 (4), 3047-3053, 10.1039/C6SC04435B.
[37] Ray, P.; et al., "The Impact of Nanoparticles on the Immune System: A Gray Zone of Nanomedicine." Journal of Immunological Sciences, 2021, (5(1)), 19-33.
[38] Zhang, L.; et al., "The use of PEGylated liposomes to prolong the circulation lifetime of salvianolic acid B." Fitoterapia, 2012, 83 (4), 678-689.
[39] Jelokhani-Niaraki, M.; et al., "Interaction of gramicidin S and its aromatic amino-acid analog with phospholipid membranes." Biophysical Journal, 2008, 95 (7), 3306-3321.
[40] Palchetti, S.; et al., "The protein corona of circulating PEGylated liposomes." Biochimica et Biophysica Acta (BBA) - Biomembranes, 2016, 1858 (2), 189-196.
指導教授 謝發坤 李賢明(Fa-Kuen Shieh Hsien-Ming Lee) 審核日期 2022-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明