博碩士論文 109223046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:305 、訪客IP:3.138.102.178
姓名 曾偉倫(Wei-Lun Tseng)  查詢紙本館藏   畢業系所 化學學系
論文名稱 開發可標定溶酶體與細胞膜之新型雙光子螢光探針
(Development of a novel two-photon fluorescent probes for targeting lysosomes and cell membrane)
相關論文
★ 含五苯荑及異參茚并苯衍生物之合成與光物理行為之研究★ 具雙光子吸收行為之染料分子的合成與其光學性質探討
★ 新型雙光子吸收材料的分子設計與合成及其光學性質的探討★ 新型多叉及樹枝狀染料分子的合成及其非線性光學性質探討
★ 新穎多叉型之雙光子吸收材料的分子設計、合成與光學性質探討★ 新型四取代乙烯類及喹喔啉類染料分子的合成及其光學性質探討
★ 新型具喹喔啉、三嗪和吡嗪結構之染料分子 的合成及其光學性質探討★ Synthesis and Nonlinear Optical Property Characterizations of Novel Chromophores with Extended π-Conjugation Derived from Functionalized Fluorene Units
★ 含四取代乙烯及類喹喔啉結構單元之多分岐染料分子的合成與其非線性光學性質探討★ Synthesis and Nonlinear Optical Property Characterizations of Novel Fluorophores with Multi-Quinoxalinyl Units
★ 新型含茚并喹喔啉結構單元之樹狀共軛染料分子的合成與其非線性光學性質探討★ 含四取代乙烯乙炔及類喹喔啉結構單元之多分歧染料分子的合成與非線性光學性質探討
★ Two-Photon Absorption and Optical Power-limiting Properties of Three- and Six-Branched Chromophores Derived from 1,3,5-Triazine and Fluorene Units★ 新型含喹喔啉及各類拉電子基之染料分子的合成及其非線性光學性質探討
★ 含咔唑、芴及茚并喹喔啉等雜環單元之共軛染料分子的合成 與其非線性光學性質探討★ 合成各類以雜環為核心的分子並研究其非線性光學性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文以實驗室先前研究多光子染料的經驗,將研究方向延伸應用在開發雙光子螢光探針。從分子設計開始,再透過有機合成,經光譜鑑定結構過後,確認目標的螢光探針是否成功被合成出。接續量測線性光學,得到吸收光譜、螢光光譜和螢光量子產率等基本資訊。再測量非線性光學的Photo excitation和Power dependence實驗,以取得雙光子吸收的數據。最後進行細胞實驗,來觀察所開發出的螢光探針實際在細胞內的表現為何。
接下來以結構構成來將螢光探針分成兩個系列。分別是第一系列:「以Fluorene作為π-bridge」之兩個螢光探針,同時會對四種結構相仿的化合物進行光學探討;以及第二系列:「將Benzothiazole官能基化」之三個螢光探針,也會對結構相仿的四種化合物進行光學探討。共計五個螢光探針,包含了四個標定溶酶體之螢光探針,和一個標定細胞膜之螢光探針。
第一系列的兩個螢光探針有成功合成並經光譜鑑定確認,且已經做了初步的細胞實驗,確定可以染上細胞且被影像紀錄,後續的實驗結果將會逐一補齊。在經過光學實驗的量測後,於Donor部分將一級胺的NH2修飾成三級胺的Morpholine之後,亮度明顯下降。而Acceptor部分,Benzothiazole 的亮度表現比起[1,2,4]Triazolo[1,5-a]pyridine來的更為出色。
第二系列的三個螢光探針一樣有成功合成並經光譜鑑定確認,並且做了初步的細胞實驗,確定可以染上細胞且被影像紀錄,後續的實驗結果也將一併補上。在經過光學實驗的量測後,相比未官能基化的模型分子,官能基化後的分子整體亮度有所下降。其中下降的幅度又以連接Benzothiazole的原子為「氮」的探針比連接的原子為「氧」的探針更多,但亮度還是足以使用的。
摘要(英) This thesis extends the research direction to the development of twophoton fluorescent probes based on the laboratory′s previous experience in researching multi-photon dyes. First, we started with molecular design, and synthesized from organic synthesis. It was confirmed whether the fluorescent probe had been correctly synthesized by spectrum. Next step was measured the linear optics to obtain optical properties such as absorption spectrum, emission spectrum and quantum yield. After that, we measured the Photo excitation and Power dependence experiments of non-linear optics from two-photon absorption. Finally, cell experiments were performed to observe how would the fluorescent probes worked in live cells.
The fluorescent probes are divided into two series by structural composition. The first series is two of the fluorescent probes composed of the "Fluorene as π-bridge" unit. Furthermore, we would do the optical experiments of four similar compounds. And the second series is three of
fluorescent probes, which are "functionalization of Benzothiazole." Then, we would also do the optical experiments of four similar compounds. There are five fluorescent probes in total, including four lysosometargeted fluorescent probes and one for cell membrane-targeted.
The first series of two fluorescent probes have been successfully synthesized and confirmed by spectral identification. Cell experiment indicate that the cells can be stained with these probes, it could be recorded by photoing at the same time. The other unfinished cell experimental will be completed in the future. In addition, we can check the fact from the optical experiment. When the donor part converted from the NH2 of primary amine to morpholine of the tertiary amine, the brightness decreases obviously. On the other side of the acceptor part, the brightness performance of Benzothiazole is much better than
[1,2,4]Triazolo[1,5-a]pyridine.
The second series of three fluorescent probes have been also successfully synthesized and confirmed by spectral identification. Cell experiment indicate that the cells can be stained with these probes, it could be recorded by photoing as well. The other unfinished cell experimental will be completed in the future. Compared with the nonfunctionalized model molecule, the brightness of the functionalized molecule decreased through measurement by optical experiment. The probe with the atom attaches to the benzothiazole as "nitrogen" is darker than the probe with the atom as the "oxygen" attached. However, the brightness is still enough to be used.
關鍵字(中) ★ 雙光子螢光探針 關鍵字(英)
論文目次 摘要 viii
Abstract x
謝誌 xii
目錄 xiv
圖目錄 xvi
表目錄 i
第一章 簡介...........1
1-1-1 螢光探針發展歷史 4
1-1-2 螢光探針的基本工作原理 6
1-1-3 螢光探針分子設計 9
1-2 標定溶酶體螢光探針 15
1-3 標定細胞膜螢光探針 20
1-4 雙光子激發原理 24
1-5-1 雙光子螢光探針發展歷史 28
1-5-2 雙光子螢光探針分子設計 31
1-6 文獻參考及圖片來源 38
第二章 〈第一系列〉以Fluorene作為π-bridge之螢光探針..........41
2-1 分子設計概念 42
2-2 分子合成流程 45
2-3 光學性質鑑定與探討 50
2-4 細胞實驗 90
2-5 此系列探針分子未來可發展方向 92
2-6 參考文獻 94
第三章 〈第二系列〉將Benzothiazole官能基化之螢光探針.........97
3-1 分子設計概念 98
3-2 分子合成流程 100
3-3 光學性質鑑定與探討 111
3-4 細胞實驗 146
3-5 此系列探針分子未來可發展方向 149
3-6 參考文獻 152
第四章 合成詳細步驟........155
4-1 化合物合成詳細步驟 156
4-2 化合物合成所需藥品之供應商 213
第五章 結構鑑定光譜圖.......217
參考文獻 第一章 簡介
[1] J. V. Jun, D. M. Chenoweth and E. J. Petersson, Org. Biomol. Chem., 2020, 30, 5747-5763.
[2] L. Lu, Z. Y. Wu, X. Li and F. Han, Acta Pharmacol. Sin., 2019, 40, 717-723.
[3] W. Xu, Z. Zeng, J. H. Jiang, Y. T. Chang and L. Yuan, Angew. Chem. Int. Ed., 2016, 55, 2-44.
[4] W. Lang, C. Yuan, L. Zhu, S. Du, L. Qian, J. Ge and S. Q. Yao, J. Pharm. Anal., 2020, 10, 434-443.
[5] P. Gao, W. Pan, N. Li and B. Tang, Chem. Sci., 2019, 10, 6035-6071.
[6] A. S. Klymchenko, Acc. Chem. Res., 2017, 50, 366-375.
[7] N. E. Choi, J. Y. Lee, E. C. Park, J. H. Lee and J. Lee, Molecules, 2021, 26, 217.
[8] https://www.photometrics.com/learn/physics-and-biophysics/twophoton
[9] G. S. He, L. S. Tan, Q. Zheng and P. N. Prasad, Chem. Rev., 2008, 108, 1245-1330.
[10] L. Yuan, G. S. He, and P. N. Prasad, Chem. Mater., 1998, 10, 1863-1874.
[11] G. S. He, L. Yuan, F. Xu, and P. N. Prasad, Chem. Mater., 2001, 13, 1896-1904.
[12] M. Albota, D. Beljonne, J. L. Brdas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. M. Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, Science, 1998, 281, 1653.
[13] L. Liu, G. Wei, Z. Liu, Z. He, S. Xiao, and Q. Wang, Bioconjugate Chem., 2008, 19, 574-579.
[14] L. Liu, M. Shao, X. Dong, X. Yu, Z. Liu, Z. He, and Q. Wang, Anal. Chem., 2008, 80, 7735-7741.
第二章 〈第一系列〉以Fluorene作為π-bridge之螢光探針
[1] S. Ueda and H. Nagasawa, J. Am. Chem. Soc., 2009, 131, 15080-15081.
[2] M. Raheem, J. R. Nagireddy, R. Durham and W. Tam, Synth.
Commun., 2010, 40, 2138-2146.
[3] S. P. G. Costa, J. A. Ferreira, G. Kirschc and A. M. F. OliveiraCampos, J. Chem. Res. (s), 1997, 314-315.
[4] M. Gangopadhyay, S. K. Mukhopadhyay, S. Gayathri, S. Biswas, S. Barman, S. Dey, and N D P. Singh, J. Mater. Chem. B, 2016, 4, 1862-1868.
[5] G. Saroja, Z. Pingzhu, N. P. Ernsting, and J. Liebscher, J. Org. Chem., 2004, 69, 987-990.
[6] K. C. Naeem, K. Neenu and C. Vijayakumar, ACS Omega, 2017, 2, 9118-9126.
[7] Y. Jiang, Y. X. Lu, Y. X. Cui, Q. F. Zhou, Y. Ma and J. Pei, Org. Lett., 2007, 9, 22, 4539-4542.
[8] T. Ishiyama, M. Murata, and N. Miyaura, J. Org. Chem., [9] R. Abbel, C. Grenier, M. J. Pouderoijen, J. W. Stouwdam, P. E. L. G. Leclère, R. P. Sijbesma, E. W. Meijer, and A. P. H. J. Schenning, J. Am. Chem. Soc., 2009, 131, 833-843.
[10] M. J. Yi, H. X. Zhang, T. F. Xiao, J. H. Zhang, Z. T. Feng, L. P. Wei, G. Q. Xu, and P. F. Xu, ACS Catal., 2021, 11, 3466-3472.
[11] B. Chiranjeevi, B. Vinayak, T. Parsharamulu, V. S. PhaniBabu, B. Jagadeesh, B. Sridhar, and M. Chandrasekharam, Eur. J. Org. Chem., 2014, 35, 7839-7849.
第三章 〈第二系列〉將Benzothiazole官能基化之螢光探針
[1] T. Noguchi, B. Roy, D. Yoshihara, J. Sakamoto, T. Yamamoto, and S. Shinkai, Angew. Chem. Int. Ed., 2016, 55, 5708-5712.
[2] T. Ishiyama, M. Murata, and N. Miyaura, J. Org. Chem., 1995, 60, 7508-7510.
[3] D. A. Patrick, J. R. Gillespie, J. McQueen, M. A. Hulverson, R. M. Ranade, S. A. Creason, Z. M. Herbst, M. H. Gelb, F. S. Buckner, and R. R. Tidwell, J. Med. Chem., 2017, 60, 957-971.
[4] R. Abbel, C. Grenier, M. J. Pouderoijen, J. W. Stouwdam, P. E. L. G. Leclère, R. P. Sijbesma, E. W. Meijer, and A. P. H. J. Schenning, J. Am. Chem. Soc., 2009, 131, 833-843.
[5] M. Raheem, J. R. Nagireddy, R. Durham and W. Tam, Synth.
Commun., 2010, 40, 2138-2146.
[6] G. Bort , S. Catoen, H. Borderies, A. Kebsi, S. Ballet, G. Louin, M. Port, and C. Ferroud, Eur. J. Med. Chem., 2014, 87, 843-861.
[7] J. Yina, Y. Hua, D. Zhanga, X. Lib, and W. Jin, Tetrahedron, 2017, 73, 5794-5799.
[8] K. Matsumura, M. Ono, H. Kimura, M. Ueda, Y. Nakamoto, K. Togashi, Y. Okamoto, M. Ihara, R. Takahashi, and H. Saji, ACS Med. Chem. Lett., 2012, 3, 58-62.
[9] K. Serdons, K. V. Laere, P. Janssen, H. F. Kung, G. Bormans, and A. Verbruggen, J. Med. Chem., 2009, 52, 7090-7102.
[10] M. J. Yi, H. X. Zhang, T. F. Xiao, J. H. Zhang, Z. T. Feng, L. P. Wei, G. Q. Xu, and P. F. Xu, ACS Catal., 2021, 11, 3466-3472.
[11] B. Chiranjeevi, B. Vinayak, T. Parsharamulu, V. S. PhaniBabu, B. Jagadeesh, B. Sridhar, and M. Chandrasekharam, Eur. J. Org. Chem., 2014, 35, 7839-7849.
[12] J. Choy, S. J. Figueroa, and T. L. Jaime, Tetrahedron Lett., 2010, 51, 2244-2246.
[13] L. Zhang, X. S. Deng, C. Zhang, G. P. Meng, J. F. Wu, X. S. Li, Q. C. Zhao, and C. Hu, Med. Chem. Res., 2017, 26, 2180-2189.
指導教授 林子超 審核日期 2022-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明