博碩士論文 107683002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.220.81.106
姓名 沈涵文(Han-Wen Shen)  查詢紙本館藏   畢業系所 太空科學與工程研究所
論文名稱 多能量通道之極區沉降粒子研究
(A Study on Auroral Precipitating Particles in Terms of Energy Channels)
相關論文
★ 磁暴與磁副暴的關係:檢視跨磁尾電流對 SYM-H 的貢獻★ 磁尾的磁場延伸和偶極化現象與磁副暴發生位置的距離關係之探討
★ 二胞型極光與行星際磁場間的關係★ 磁層頂位置之不對稱性研究
★ 兩類快速電漿流事件與夜側極光活動關係之研究★ 太陽風對地球磁層頂內側磁場之影響
★ 磁層頂日下點對峙距離和行星際磁場錐角值關係的研究★ 運用西蜜斯衛星資料研究低頻帶升調合唱波的重複發生週期之分布
★ 太空環境中的兩個觀測難題: 前艏震波區域波擾動斜向傳播現象與 接觸不連續面的存在證據★ 徑向行星際磁場事件之特性及其對磁層之影響
★ 太空天氣對Formosat-2及Formosat-3異常事件影響之分析★ 徑向行星際磁場下日側極光與電離層對流型態
★ 水星磁層對行星際磁場與太陽風動壓的反應★ 應用長短期記憶遞迴神經網路預測Kp地磁指數
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 極光是原子或分子與沉降粒子碰撞產生的現象,而沉降粒子則由磁層的一些物理機制導致。以往對極光物理的研究大多採用極光影像或在一個寬能量範圍內的沉降粒子之通量資料,而他們呈現的結果通常為不同能量的沉降粒子的綜合效應。與以往研究不同的是,我們採用四個相對較窄的能量通道之粒子通量資料來探索極光粒子沉降。本論文的第一個研究主題是探討地磁活動對整個極區沉降粒子通量空間分布的影響。研究結果顯示無論在地磁活躍或寧靜時期,低能(< 1 keV)和高能(1-10 keV)沉降粒子分別主要分布於日側和夜側。透過我們得到的空間分布與過去結果之比較,發現高能沉降電子在寧靜期主要是由於投擲角散射,而在活躍期主要是由準靜態電位結構加速和阿爾文加速產生。低能沉降電子在寧靜或活躍期則都主要由上述兩種加速機制產生。此研究結果還展示了夜側高能沉降質子以及電子根據地磁狀態而改變的晨昏不對稱分布。由於夜側磁層的梯度及曲率漂移效應,高能沉降質子和電子在寧靜期分別主要分布在午夜前和午夜後,而在磁尾的磁副暴相關物理過程會導致它們在活躍期的分布對調。本論文的第二個探討主題是行星際磁場的By分量之極性對日側極區沉降電子的影響。研究結果表明,688−1000 eV能量範圍內的電子通量反應與跨半球場向電流有關,而154−224 eV能量範圍內的通量反應與磁鞘電子通過反平行磁重聯進入有關。在這個主題中,我們還發現了可能自然存在的日側極區沉降電子之兩種半球不對稱性。總結來說,將沉降粒子根據能量通道分別探討提供了我們對極光物理了解的新的視角,這些結果也有助於我們了解磁層動力過程。
摘要(英) Aurora is a phenomenon generated by collisions of atoms with precipitating particles. These precipitating particles are created by physical mechanisms behind the dynamic magnetosphere. Previous studies on auroral physics usually utilized auroral images or fluxes over a substantial energy range of precipitating particles. However, their results are often manifested from combined effects of precipitating particles with different energies. Unlike past studies, we explored the auroral particle precipitation using particle data of four relatively narrow energy channels. The first topic of this study is effects of geomagnetic activity on the spatial distribution of precipitating particles in the whole polar ionosphere. It is found that, regardless of active and quiet times, low‐energy (< 1 keV) and high‐energy (1–10 keV) precipitating particles are mostly on the dayside and nightside, respectively. A comparison with past results reveals that high‐energy precipitating electrons are mostly due to pitch angle scattering during quiet times and are mainly produced by quasi‐static potential structures acceleration and Alfvénic acceleration during active times; while low‐energy ones are predominantly caused by the two acceleration mechanisms regardless of quiet and active times. Our results also demonstrate a dawn‐dusk asymmetric distribution of nightside high‐energy protons/electrons in reference to the geomagnetic state. High‐energy precipitating protons and electrons are respectively on premidnight and postmidnight during quiet times because of the curvature and gradient drifts of magnetospheric particles, but their distributions during active times are swapped due to substorm-related processes in the magnetotail. Our second topic is effects of the IMF By polarity on dayside precipitating electrons. The results demonstrate that the response in the energy range of 688–1000 eV is associated with interhemispheric field-aligned currents, and that the response in the energy range of 154–224 eV is related to the direct entry of magnetosheath electrons via antiparallel reconnection. In this topic, we also discovered two types of hemispheric asymmetry in the dayside electron precipitation that may be naturally preexisting. In summary, all the results derived from this study provide a new look at particle precipitation, which can help reveal the secret of the dynamic magnetosphere.
關鍵字(中) ★ 極光
★ 粒子沉降
★ 地磁活動
★ 行星際磁場
★ 磁層-電離層耦合
★ 電漿物理
關鍵字(英) ★ Aurora
★ Particle precipitation
★ Geomagnetic activity
★ Interplanetary magnetic field
★ Magnetosphere-Ionosphere coupling
★ Plasma physics
論文目次 中文摘要....................i
Abstract....................ii
致謝....................iii
目錄....................iv
圖目錄....................vii
表目錄....................x
第一章 緒論....................1
1-1 極光簡介....................1
1-2 極光電子沉降....................3
1-2-1 擴散極光....................5
1-2-2 分立極光....................7
1-2-2-1 準靜態電位結構加速機制....................7
1-2-2-2 阿爾文加速機制....................12
1-3 質子極光沉降....................16
1-4 地磁活動對極區沉降粒子影響....................18
1-4-1 磁暴....................18
1-4-2 磁副暴....................19
1-4-3 極區沉降粒子通量之空間分布....................22
1-5 日側極光....................28
1-5-1 行星際磁場之南北分量對日側極光影響....................30
1-5-2 行星際磁場之晨昏分量對日側極光影響....................30
1-6 研究動機以及目的....................34
第二章 研究資料及方法....................36
2-1 沉降粒子資料....................36
2-2 OMNI數據集....................37
2-3 SML指數....................37
2-4 Kp指數....................40
2-5 經驗正交函數分析方法....................41
第三章 地磁活動對不同能量通道的沉降粒子空間分布之影響....................46
3-1 地磁活躍與寧靜時間點之判斷....................46
3-2 極區沉降粒子在地磁活躍以及寧靜期的空間分布....................49
3-3 經驗正交函數分析之應用....................58
3-4 討論....................63
3-4-1 低能與高能沉降粒子的空間分布差異....................63
3-4-2 低能與高能沉降粒子對數量通量及能量通量的相對貢獻....................65
3-4-3 沉降質子在地磁寧靜期的空間分布....................69
3-4-4 沉降電子在地磁寧靜期的空間分布....................71
3-4-5 沉降質子在地磁活躍期的空間分布....................71
3-4-6 沉降電子在地磁活躍期的空間分布....................75
3-4-7 低能與高能沉降電子的沉降機制....................79
3-4-8 地磁活動對沉降粒子的通量變化影響....................82
3-4-9 夜側的高能沉降粒子之晨昏不對稱分布....................84
第四章 行星際磁場By分量對日側極區沉降電子之影響....................85
4-1 持續正By與負By事件判定....................85
4-2 分析結果....................91
4-2-1 日側沉降電子分布對磁當地時間的相依性質....................91
4-2-2 兩種預先存在的通量半球不對稱性 92
4-2-3 日側沉降電子通量對IMF By極性的反應....................93
4-3 討論....................98
4-3-1 季節性誘發的跨半球場向電流....................98
4-3-2 樣本之太陽天頂角的半球不對稱....................100
4-3-3 樣本之偶極傾斜角的半球不對稱....................102
4-3-4 磁場曲率及梯度飄移效應....................107
4-3-5 189 eV通道電子對IMF By極性的通量反應....................107
4-3-6 844 eV通道電子對IMF By極性的通量反應....................108
4-3-7 2595 eV及7980 eV通道電子對IMF By極性的通量反應....................109
第五章 結論....................110
參考文獻....................113
參考文獻 Abel, G. A., M. P. Freeman, A. J. Smith, and G. D. Reeves (2006), Association of substorm chorus events with drift echoes, Journal of Geophysical Research, 111, A11220, doi:10.1029/2006JA011860.

Ackerson, K. L., and L. A. Franck (1972), Correlated satellite measurements of low-energy electron precipitation and ground-based observations of a visible auroral arc, Journal of Geophysical Research, 77, 1128, doi:10.1029/JA077i007p01128.

Allen, J. H. (1982), Some commonly used magnetic activity indices: Their derivation, meaning and use, in proceedings of a workshop on satellite drag, edited by environment research laboratories, NOAA, Boulder, Colorado, pp 114.

Akasofu, S. I. (1964), The development of the auroral substorm. Planetary and Space Science, 12, 4, 273–282, doi:10.1016/0032-0633(64)90151-5.

Akasofu, S. (1965), Auroral Morphology as Shown by All-Sky Photographs, Ann. Int. Geophys. Year, vol. 38, 299 pp., Pergamon, Oxford, N. Y.

Akasofu, S. and J. R. Kan (1980), Dayside and nightside auroral arc systems, Geophysical Research Letters, 7, 10, 753–756, doi:10.1029/GL007i010p00753.

Baker, D. N., T. I. Pulkkinen, E. W. Jr. Hones, R. D. Belian, R. L. McPherron, and V. Angelopoulos (1994), Signatures of the substorm recovery phase at high‐altitude spacecraft. Journal of Geophysical Research, 99, A6, 10967–10979, doi:10.1029/93JA02719.

Baker, J. B., A. J. Ridley, V. O. Papitashvili, and C. R. Clauer (2003), The dependence of winter aurora on interplanetary parameters, Journal of Geophysical Research, 108, A4, 8009, doi:10.1029/2002JA009352.

Banks, P. M., T. Araki, C. R. Clauer, J. P. St. Maurice, and C. Foster (1984), The interplanetary electric field, cleft currents and plasma convection in the polar caps, Planetary and Space Science, 32, 1551–1557, doi:10.1016/0032-0633(84)90024-2.

Baumjohann., W. and R. A. Treumann (1996), Basic space plasma physics, Imperial College Press, London, doi:10.1142/p015.

Benkevich, L., W. Lyatsky, and L. L. Cogger (2000), Field-aligned currents between conjugate hemispheres, Journal of Geophysical Research, 105, A12, 27727–27737, doi:10.1029/2000JA900095.

Berchem, J., R. Richard, P. Escoubet, S. Wing, and F. Pitout (2014), Dawn‐dusk asymmetry in solar wind ion entry and dayside precipitation: Results from large‐scale simulations, Journal of Geophysical Research: Space Physics, 119, 1549–1562, doi:10.1002/2013JA019427.

Birn, J., M. Hesse, K. Schindler, and S. Zaharia (2009), Role of entropy in magnetotail dynamics, Journal of Geophysical Research, 114, A00D03, doi:10.1029/2008JA014015.

Birn, J., R. Nakamura, E. V. Panov, and M. Hesse (2011), Bursty bulk flows and dipolarization in MHD simulations of magnetotail reconnection, Journal of Geophysical Research, 116, A01210, doi:10.1029/2010JA016083.

Birkeland, K. (1908). The Norwegian Aurora Polaris Expedition 1902−1903, On the Cause of Magnetic Storms and the Origin of Terrestrial Magnetism, New York and Christiania (now Oslo): H. Aschehoug & Co.

Carlson, C. W., R. F. Pfaff, and J. G. Watzin (1998), The Fast Auroral SnapshoT (FAST) mission, Geophysical Research Letters, 25, 12, 2013–2016, doi:10.1029/98GL01592.

Chapman, S. (1962), Earth storms: retrospect and prospect, Journal of the Physical Society of Japan, 17, 6.

Chaston, C. C., J. W. Bonnell, C. W. Carlson, J. P. McFadden, R. E. Ergun, and R. J. Strangeway (2003), Properties of small-scale Alfvén waves and accelerated electrons from FAST, Journal of Geophysical Research, 108, A4, 8003, doi:10.1029/2002JA009420.

Chaston, C. C., L. M. Peticolas, C. W. Carlson, J. P. McFadden, F. Mozer, M. Wilber, et al. (2005), Energy deposition by Alfvén waves into the dayside auroral oval: Cluster and FAST observations. Journal of Geophysical Research, 110, A02211, doi:10.1029/2004JA010483.

Chen, L., and A. Hasagawa (1974), A theory of long‐period magnetic pulsations. 1. Steady state excitation of field line resonance, Journal of Geophysical Research, 79, 1024, doi:10.1029/JA079i007p01024.

Chen, M. W., and M. Schulz (2001), Simulations of diffuse aurora with plasma sheet electrons in pitch angle diffusion less than everywhere strong, Journal of Geophysical Research, 106, A12, 28949–28966, doi:10.1029/2001JA000138.

Chiu, Y. T., M. Schulz, J. F. Fennell, and A. M. Kishi (1983), Mirror instability and the origin of morningside auroral structure, Journal of Geophysical Research, 88(A5), 4041–4054, doi:10.1029/JA088iA05p04041.

Cornwall, J. M., F. V. Coroniti, and R. M. Thorne (1970), Turbulent loss of ring current protons, Journal of Geophysical Research, 75, 4699, doi:10.1029/JA075i025p04699.

Cowley, S. W. H. (1981), Asymmetry effects associated with the x-component of the IMF in a magnetically open magnetosphere, Planetary and Space Science, 29, 8, 809–818, doi:10.1016/0032-0633(81)90071-4.

Coxon, J. C., S. E. Milan, J. A. Carter, L. B. N. Clausen, B. J. Anderson, and H. Korth (2016), Seasonal and diurnal variations in AMPERE observations of the Birkeland currents compared to modeled results, Journal of Geophysical Research: Space Physics, 121, 5, 4027–4040, doi:10.1002/2015JA022050.

Crooker, N. U. (1979), Dayside merging and cusp geometry, Journal of Geophysical Research, 84, 951–959, doi:10.1029/JA084iA03p00951.

Cummings, W. D., J. N. Barfield, and P. J. Coleman, Jr. (1968), Magnetospheric substorms observed at the synchronous orbit, Journal of Geophysical Research, 73, 6887, doi:10.1029/JA073i021p06687.

Dandekar, B. S., and C. P. Pike (1978), The midday, discrete auroral gap. Journal of Geophysical Research, 83, A9, 4227–4236, doi:10.1029/JA083iA09p04227.

Damiano, P. A., and J. R. Johnson (2012), Electron acceleration in a geomagnetic field line resonance, Geophysical Research Letters, 39, L02102, doi:10.1029/2011GL050264.

Dombeck, J., C. Cattell, J. R. Wygant, A. Keiling, and J. Scudder (2005), Alfvén waves and Poynting flux observed simultaneously by Polar and FAST in the plasma sheet boundary layer, Journal of Geophysical Research, 110, A12S90, doi:10.1029/2005JA011269.

Dombeck, J., C. Cattell, N. Prasad, E. Meeker, E. Hanson, and J. McFadden (2018), Identification of auroral electron precipitation mechanism combinations and their relationships to net downgoing energy and number flux. Journal of Geophysical Research: Space Physics, 123, 10064–10089, doi:10.1029/2018JA025749.

Elphinstone, R. D., K. Jankowska, J. S. Murphree, and L. L. Cogger (1990), The configuration of the auroral distribution for interplanetary magnetic field BZ northward: 1. IMF Bx and By dependencies as observed by the Viking satellite, Journal of Geophysical Research, 95, A5, 5791–5304, doi:10.1029/JA095iA05p05791.

Elphinstone, R. D., J. S. Murphree, and L. L. Cogger (1996), What is a global auroral substorm? Reviews of Geophysics, 34, 2, 169−232, doi:10.1029/96RG00483.

Evans, D. S. (1974), Precipitating electron fluxes formed by a magnetic field‐aligned potential difference, Journal of Geophysical Research, 79, 2853, doi:10.1029/JA079i019p02853.

Evans, D. S., and T. E. Moore (1979), Precipitating electrons associated with the diffuse aurora: Evidence for electrons of atmospheric origin in the plasma sheet, Journal of Geophysical Research, 84, A11, 6451–6457, doi:10.1029/JA084iA11p06451.

Feldstein, Y. I. (1973), Auroral oval. Journal of Geophysical Research, 78, 1210, doi:10.1029/JA078i007p01210.

Frank, L. A., and K. L. Ackerson (1971), Observations of a charged particle precipitation into the auroral zone, Journal of Geophysical Research, 76, 3612, doi:10.1029/JA076i016p03612.

Frey, H. U., G. Haerendel, S. B. Mende, W. T. Forrester, T. J. Immel, and N. Østgaard (2004), Subauroral morning proton spots (SAMPS) as a result of plasmapause‐ring‐current interaction, Journal of Geophysical Research, 109, A10305, doi:10.1029/2004JA010516.

Friedel, R. H. W., H. Korth, M. G. Henderson, and M. F. Thomsen (2001), Plasma sheet access to the inner magnetosphere, Journal of Geophysical Research, 106, 5845–5858, doi:10.1029/2000JA003011.

Fujii, R., and T. Iijima (1987), Control of the ionospheric conductivities on large-scale Birkeland current intensities under geomagnetic quiet conditions, Journal of Geophysical Research, 92, A5, 4505–4513, doi:10.1029/JA092iA05p04505.

Fujii, R., T. Iijima, T. A. Potemra, and M. Sugiura, M. (1981), Seasonal dependence of large-scale Birkeland currents. Geophysical Research Letters, 8, 10, 1103–1106, doi:10.1029/GL008i010p01103.

Gjerloev, J. W. (2012), The SuperMAG data processing technique, Journal of Geophysical Research, 117, A09213, doi:10.1029/2012JA017683.

Gkioulidou, M., C.‐P. Wang, S. Wing, L. R. Lyons, R. A. Wolf, and T.‐S. Hsu (2012), Effect of an MLT dependent electron loss rate on the magnetosphere‐ionosphere coupling, Journal of Geophysical Research, 117, A11218, doi:10.1029/2012JA018032.

Goertz, C. K., and R. W. Boswell (1979), Magnetosphere‐Ionosphere coupling, Journal of Geophysical Research, 84, 7239, doi:10.1029/JA084iA12p07239.

Guo, X. C., C. Wang, Y. Q. Hu, and J. R. Kan (2008), Bow shock contributions to region 1 field-aligned current: A new result from global MHD simulations. Geophysical Research Letters, 35, L03108, doi:10.1029/2007GL032713.

Gurnett, D.A. (1974), The Earth as a radio source-Terrestrial kilometric radiation, Journal of Geophysical Research, 79, 4227–4238, doi:10.1029/JA079i028p04227.

Hannachi, A., I. Joliffe, and D. Stephenson (2007), Empirical orthogonal functions and related techniques in atmospheric science: A review. International Journal of Climatology, 27, 9, 1119–1152, doi:10.1002/joc.1499.

Hardy, D. A., M. S. Gussenhoven, and E. Holeman (1985), A statistical model of auroral electron precipitation, Journal of Geophysical Research, 90, A5, 4229–4248, doi:10.1029/JA090iA05p04229.
Holzworth, R. H., and C.‐I. Meng (1975), Mathematical representation of the auroral oval, Geophysical Research Letters, 2, 9, 377–380, doi:10.1029/GL002i009p00377.

Horne, R. B., R. M. Thorne, N. P. Meredith, and R. R. Anderson (2003), diffuse auroral electron scattering by electron cyclotron harmonic and whistler mode waves during an isolated substorm, Journal of Geophysical Research, 108, 1290, doi:10.1029/2002JA009736.

Hu, Z.-J., H. Yang, D. Huang, T. Araki, N. Sato, M. Taguchi, et al. (2009), Synoptic distribution of dayside aurora: Multiple-wavelength all-sky observation at Yellow river station in Ny-Ålesund, Svalbard, Journal of Atmospheric and Solar-Terrestrial Physics, 71, 794–804, doi:10.1016/j.jastp.2009.02.010.

Hu, Z.‐J., H.‐G. Yang, D.‐S. Han, D.‐H. Huang, B.‐C. Zhang, H.‐Q. Hu, and R.‐Y. Liu (2012), Dayside auroral emissions controlled by IMF: A survey for dayside auroral excitation at 557.7 and 630.0 nm in Ny‐Ålesund, Svalbard, Journal of Geophysical Research: Space Physics, 117, A02201, doi:10.1029/2011JA017188.

Hu, Z.‐J., Y. Ebihara, H.‐G. Yang, H.‐Q. Hu, B.‐C. Zhang, B. Ni, R. Shi, and T. S. Trondsen (2014), Hemispheric asymmetry of the structure of dayside auroral oval, Geophysical Research Letters, 41, 24, 8696–8703, doi:10.1002/2014GL062345.

Hu, Z.-J., H.-G. Yang, Y. Ebihara, H.-Q. Hu, and B.-C. Zhang (2017), Surveys of 557.7/630.0 nm dayside auroral emissions in Ny-Ålesund, Svalbard, and south Pole station. In S. Haaland, A. Runov, & C. Forsytn (Eds.), Dawn-dusk asymmetries in planetary plasma environments (pp. 143–154). John Wiley & Sons, Inc., doi:10.1002/9781119216346.ch11.

Iijima, T., and T. A. Potemra (1976), The amplitude distribution of field‐aligned currents at northern high latitudes observed by Triad, Journal of Geophysical Research, 81, 13, 2165–2174, doi:10.1029/JA081i013p02165.

Imhof, W. L., M. Walt, R. R. Anderson, D. L. Chenette, J. D. Hawley, J. Mobilia, and S. M. Petrinec (2000), Association of electron precipitation with auroral kilometric radiation, Journal of Geophysical Research, 105, 277–289, doi:10.1029/1999JA900394.

Jorjio, N. V. (1959), Electrophotometrical measurements in the auroral zone, in V. I. Krassovsky (ed.), Spectral, Electrophotometrical and Radar Research of Aurora and Airglow, no. 1, Moscow: Academy of Sciences, 30−40.

King, J. H., and N. E. Papitashvili (2005), Solar wind spatial scales in and comparisons of hourly wind and ACE plasma and magnetic field data. Journal of Geophysical Research, 110, 2104, doi:10.1029/2004JA010649.

Kamide, Y., Baumjohann, W., Daglis, I. A., Gonzalez, W.D., Grande, M., Joselyn, J. A., McPherron, R. L., Phillips, J. L., Reeves, G. D., Rostoker, G., Sharma, A. S., Singer, H. J., Tsurutani, B. T., and Vasyliunas, V. M. (1998), Current Understanding of Magnetic Storms: Strom/Substorm Relationships, Journal of Geophysical Research, 103, 17705, doi:10.1029/98JA01426.

Karlson, K. A., M. Øieroset, J. Moen, and P. E. Sandholt (1996), A statistical study of flux transfer event signatures in the dayside aurora: The IMF By-related prenoon-postnoon symmetry, Journal of Geophysical Research, 101, A1, 59–68, doi:10.1029/95JA02590.

Kasper, J. C., A. J. Lazarus, J. T. Steinberg, K. W. Ogilvie, and A. Szabo (2006), Physics-based tests to identify the accuracy of solar wind ion measurements: A case study with the wind Faraday Cups, Journal of Geophysical Research, 111, A03105, doi:10.1029/2005JA011442.

Kasran, F. A. M., M. H. Jusoh, S. A. E. A. Rahim and N. Abdullah (2018), Geomagnetically Induced Currents (GICs) in Equatorial Region, 2018 IEEE 8th International Conference on System Engineering and Technology (ICSET), 112–117.

Keiling, A., J. R. Wygant, C. A. Cattell, F. S. Mozer, and C. T. Russell (2003), The global morphology of wave Poynting flux: Powering the aurora. Science, 299, 383–386, doi:10.1126/science.1080073.

Kennel, C. F., and H. E. Petschek (1966), Limit on stably trapped particle fluxes, Journal of Geophysical Research, 71, 1, 1–28, doi:10.1029/JZ071i001p00001.
Knight, S. (1973), Parallel electric fields, Planetary and Space Science, 21, 741, doi:0032-0633(73)90093-7.

Korth, H., M. F. Thomsen, J. E. Borovsky, and D. J. McComas (1999), Plasma sheet access to geosynchronous orbit. Journal of Geophysical Research, 104, A11, 25047–25061, doi:10.1029/1999JA900292.

Kozlovsky, A., T. Turunen, A. Koustov, and G. Parks (2003), IMF By effects in the magnetospheric convection on closed magnetic field lines, Geophysical Research Letters, 30, 24, 2261, doi:10.1029/2003GL018457.

Kurth, W. S., M. M. Baumback, and D. A. Gurnett (1975), Direction‐finding measurements of auroral kilometric radiation, Journal of Geophysical Research, 80, 19, 2764–2770, doi:10.1029/JA080i019p02764.

Laundal, K. M., and N. Østgaard (2009), Asymmetric auroral intensities in the Earth′s Northern and Southern hemispheres. Nature, 460, 491–493, doi:10.1038/nature08154.
Leontyev, S. V., and W. B. Lyatsky (1974), Electric field and currents connected with Y-component of interplanetary magnetic field, Planetary and Space Science, 22, 811–819, doi:10.1016/0032-0633(74)90151-2.

Lessard, M. R., E. J. Lund, S. L. Jones, R. L. Arnoldy, J. L. Posch, M. J. Engebretson, and K. Hayashi (2006), Nature of Pi1B pulsations as inferred from ground and satellite observations, Geophysical Research Letters, 33, L14108, doi:10.1029/2006GL026411.

Liou, K., and E. Mitchell (2019), Effects of the interplanetary magnetic field y component on the dayside aurora, Geoscience Letters, 6, 11, doi:10.1186/s40562-019-0141-3.

Liou, K., and E. Mitchell (2020), Hemispheric asymmetry of the dayside aurora due to imbalanced solar insolation. Scientific Reports, 10, 13451, doi:10.1038/s41598-020-70018-w.

Liou, K., P. T. Newell, C.-I. Meng, M. Brittnacher, and G. Parks (1997), Synoptic auroral distribution: A survey using polar ultraviolet imagery, Journal of Geophysical Research, 102, A12, 27197–27205, doi:10.1029/97JA02638.

Liou, K., P. T. Newell, C. I. Meng, M. Brittnacher, and G. Parks (1998), Characteristics of the solar wind controlled auroral emissions, Journal of Geophysical Research, 103, 17543–17557, doi:10.1029/98JA01388.

Liou, K., P. T. Newell, and C.-I. Meng (2001), Seasonal effects on auroral particle acceleration and precipitation, Journal of Geophysical Research, 106, A4, 5531–5542, doi:10.1029/1999JA000391.

Lockwood, M., P. E. Sandholt, S. W. H. Cowley, and T. Oguti (1989), Interplanetary magnetic field control of dayside auroral activ- ity and the transfer of momentum across the dayside aurora magnetopause, Planetary and Space Science, 37, 1347–1365, doi:10.1016/0032-0633(89)90106-2.

Lui, A. T. Y., D. Venkatesan, C. D. Anger, S.‐I. Akasofu, W. J. Heikkila, J. D. Winningham, and J. R. Burrows (1977), Simultaneous observations of particle precipitations and auroral emissions by the Isis 2 satellite in the 19–24 MLT sector, Journal of Geophysical Research, 82, 16, 2210–2226, doi:10.1029/ja082i016p02210.

Lysak, R. L. (1998), The relationship between electrostatic shocks and kinetic Alfvén waves, Journal of Geophysical Research, 25, 2089, doi:10.1029/98GL00065.

Lysak, R. L., and W. Lotko (1996), On the kinetic dispersion relation for shear Alfvén waves, Journal of Geophysical Research, 101, 5085, doi:10.1029/95JA03712.

Mayaud, P. N. (1980), Derivation, meaning and use of geomagnetic indices, geophysical monograph series, vol 22. American Geophysical Union, Washington, doi:10.1029/GM022.

McFadden, J. P., C. W. Carlson, and R. E. Ergun (1999), Microstructure of the auroral acceleration region as observed by FAST, Journal of Geophysical Research, 104, A7, 14453–14480, doi:10.1029/1998JA900167.

McPherron, R. L. (1970), Growth phase of magnetospheric substorms, Journal of Geophysical Research, 75, 5592−5599, doi:10.1029/JA075i028p05592.

McPherron R. L. (1995), Magnetospheric Dynamics, Introduction to Space Physics, doi:10.1017/9781139878296.014.

McPherron, R. L., T.-S. Hsu, J. Kissinger, X. Chu, and V. Angelopoulos (2011), Characteristics of plasma flows at the inner edge of the plasma sheet, Journal of Geophysical Research, 116, A00133, doi:10.1029/2010JA015923.

Meng, C.‐I. (1979), Diurnal variation of the auroral oval size, Journal of Geophysical Research, 84, A9, 5319–5324, doi:10.1029/JA084iA09p05319.

Meng, C. I. and R. Lundin (1986), Auroral morphology of the midday oval, Journal of Geophysical Research, 91, 1572–1584, doi:10.1029/JA091iA02p01572.

Meredith, N. P., R. B. Horne, R. M. Thorne, and R. R. Anderson (2009), Survey of upper band chorus and ECH waves: Implications for the diffuse aurora, Journal of Geophysical Research, 114, A07218, doi:10.1029/2009JA014230.
Miyoshi, Y., A. Morioka, R. Kataoka, Y. Kasahara, and T. Mukai (2007), Evolution of the outer radiation belt during the November 1993 storms driven by corotating interaction regions, Journal of Geophysical Research, 112, A05210, doi:10.1029/2006JA012148.

Mozer, F. S., and A. Hull (2001), Origin and geometry of upward parallel electric fields in the auroral acceleration region, Journal of Geophysical Research, 106, 5763, doi:10.1029/2000JA900117.

Murphree, J. S., L. L. Cogger, and C. D. Anger (1981), Characteristics of the instantaneous auroral oval in the 1200–1800 MLT sector. Journal of Geophysical Research, 86, 7657–7668, doi:10.1029/JA086iA09p07657.

Newell, P. T., and J. W. Gjerloev (2011a), Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power, Journal of Geophysical Research, 116, A12211, doi:10.1029/2011JA016779.

Newell, P. T., and J. W. Gjerloev (2011b), Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices, Journal of Geophysical Research, 116, A12232, doi:10.1029/2011JA016936.

Newell, P. T. and C.-I. Meng (1992), Mapping the dayside ionosphere to the magnetosphere according to particle precipitation characteristics, Geophysical Research Letters, 19, 6, 609–612, doi:10.1029/92GL00404.

Newell, P. T., C.-I. Meng, and R. E. Huffman (1992), Determining the source region of auroral emissions in the prenoon oval using coordinated Polar BEAR UV-imaging and DMSP particle measurements, Journal of Geophysical Research, 97, 12245–12252, doi:10.1029/92JA00871.

Newell, P. T., K. M. Lyons, and C.-I. Meng (1996), A large survey of electron acceleration events. Journal of Geophysical Research, 101, A2, 2599–2614, doi:10.1029/95JA03147.

Newell, P. T., T. Sotirelis, K. Liou, C.‐I. Meng, and F. J. Rich (2007a), A nearly universal solar wind‐magnetosphere coupling function inferred from 10 magnetospheric state variables, Journal of Geophysical Research, 112, doi:10.1029/2006JA012015.

Newell, P. T., S. Wing, and F. J. Rich (2007b), Cusp for high and low merging rates. Journal of Geophysical Research, 112, A09205, doi:10.1029/2007JA012353.

Newell, P. T., T. Sotirelis, and S. Wing (2009), diffuse, monoenergetic, and broadband aurora: The global precipitation budget, Journal of Geophysical Research, 114, A09207, doi:10.1029/2009JA014326.

Newell, P. T., A. R. Lee, K. Liou, S.‐I. Ohtani, T. Sotirelis, and S. Wing (2010), Substorm cycle dependence of various types of aurora, Journal of Geophysical Research, 115, A09226, doi:10.1029/2010JA015331.

Nishimura, Y., J. Bortnik, W. Li, R. M. Thorne, B. Ni, L. R. Lyons, V. Angelopoulos, Y. Ebihara, J. W. Bonnell, O. Le Contel, and U. Auster (2013), Structures of dayside whistler‐mode waves deduced from conjugate diffuse aurora, Journal of Geophysical Research: Space Physics, 118, 664–673, doi:10.1029/2012JA018242.

North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng (1982), Sampling errors in the estimation of empirical orthogonal functions, Monthly Weather Review, 110, 7, 699–706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

Ohtani, S., T. A. Potemra, P. T. Newell, L. J. Zanetti, T. Iijima, M. Watanabe, et al. (1995), Simultaneous prenoon and postnoon observations of three field-aligned current systems from Viking and DMSP-F7, Journal of Geophysical Research, 100, A1, 119–136, doi:10.1029/94JA02073.

Pitout, F., C. P. Escoubet, B. Klecker, and H. Rème (2006), Cluster survey of the mid‐altitude cusp: 1. Size, location, and dynamics, Annales Geophysicae, 24, 11, 3011–3026, doi:10.5194/angeo-24-3011-2006.

Posch, J. L., M. J. Engebretson, S. B. Mende, H. U. Frey, R. L. Arnoldy, M. R. Lessard, et al. (2007), Statistical observations of spatial characteristics of Pi1B pulsations. Journal of Atmospheric and Solar‐Terrestrial Physics, 69, 15, 1775–1796, doi:10.1016/j.jastp.2007.07.015.

Pottelette, R., M. Berthomier, and J. Pickett (2014), Radiation in the neighbourhood of a double layer, Annales Geophysicae, 32, 677–687, doi:10.5194/angeo-32-677-2014.

Pritchett, P. L., and F. V. Coroniti (2010), A kinetic ballooning/interchange instability in the magnetotail, Journal of Geophysical Research, 115, A06301, doi:10.1029/2009JA014752.

Reeves, G. D., A. Chan, and C. Rodger (2009), New directions for radiation belt research. Space Weather, 7, S07004, doi:10.1029/2008SW000436.

Reiff, P. H., and J. L. Burch (1985), IMF By-dependent plasma flow and Birkeland currents in the dayside magnetosphere: 2. A global model for northward and southward IMF, Journal of Geophysical Research, 90, A2, 1595–1609, doi:10.1029/JA090iA02p01595.

Reiff, P. H., T. W. Hill, and J. L. Burch (1977), Solar wind plasma injection at the dayside magnetospheric cusp. Journal of Geophysical Research, 82, 4, 479–491, doi:10.1029/JA082i004p00479.

Reistad, J. P., N. Østgaard, K. M. Laundal, S. Haaland, P. Tenfjord, K. Snekvik, et al. (2014), Intensity asymmetries in the dusk sector of the poleward auroral oval due to IMF Bx. Journal of Geophysical Research: Space Physics, 119, 9497–9507, doi:10.1002/2014JA020216.

Reistad, J. P., N. Østgaard, K. M. Laundal, and K. Oksavik (2013), On the non-conjugacy of nightside aurora and their generator mechanisms, Journal of Geophysical Research: Space Physics, 118, 3394–3406, doi:10.1002/jgra.50300.

Rostoker, G. (1996), Phenomenology and physics of magnetospheric substorms, Journal of Geophysical Research, 101, 12,955, doi:10.1029/96JA00127.

Russell, C. T. (2000), The polar cusp, Advances in Space Research, 25, 7–8, 1413–1424, doi:10.1016/S0273-1177(99)00653-5.

Sandanger, M., F. Søraas, K. Aarsnes, K. Oksavik, and D. S. Evans (2007), Loss of relativistic electrons: Evidence for pitch angle scattering by electromagnetic ion cyclotron waves excited by unstable ring current protons, Journal of Geophysical Research, 112, A12213, doi:10.1029/2006JA012138.

Sandholt, P. E., C. J. Farrugia, J. Moen, Ø. Noraberg, B. Lybekk, T. Sten, and T. Hansen (1998), A classification of dayside auroral forms and activities as a function of interplanetary magnetic field orientation, Journal of Geophysical Research, 103, A10, 23325–23345, doi:10.1029/98JA02156.

Sergeev, V. A., and N. A. Tsyganenko (1982), Energetic particle losses and trapping boundaries as deduced from calculations with a realistic magnetic field model, Planetary and Space Science, 30, 999–1006, doi:10.1016/0032-0633(82)90149-0.

Shen, H.-W., J.-H. Shue, J. Dombeck, and H.-M. Li (2020), Geomagnetic effects in spatial distributions of particle precipitation in terms of particle energy channels. Journal of Geophysical Research: Space Physics, 125, doi:10.1029/2020JA028137.

Shen, H.-W., J.-H. Shue, J. Dombeck, and T.-P. Lee (2021), An evaluation of space weather conditions for FORMOSAT-3 satellite anomalies, Earth, Planets and Space, 73, 111, doi:10.1186/s40623-021-01429-w.

Shen, H.-W., J.-H. Shue, J. Dombeck, and D.-S. Han (2022), Influences of IMF By polarity on dayside electron precipitation in terms of energy channels, Journal of Geophysical Research: Space Physics, 127, doi:10.1029/2021JA030082.

Shevyrev, N. N., and G. N. Zastenker (2005), Some features of the plasma flow in the magnetosheath behind quasi‐parallel and quasi‐perpendicular bow shocks. Planetary and Space Science, 53, 1–3, 95–102, doi:10.1016/j.pss.2004.09.033.

Shue, J.-H., P. T. Newell, K. Liou, and C.-I. Meng (2001), Influence of interplanetary magnetic field on global auroral patterns, Journal of Geophysical Research, 106, A4, 5913–5926, doi:10.1029/2000JA003010.

Shue, J.-H., P. T. Newell, K. Liou, C.-I. Meng, Y. Kamide, and R. P. Lepping (2002a), Two-component auroras, Geophysical Research Letters, 29, 10, 1711, doi:10.1029/2002GL014657.

Shue, J.-H., P. T. Newell, K. Liou, C.-I. Meng, and S. W. H. Cowley (2002b), Interplanetary magnetic field Bx asymmetry effect on auroral brightness, Journal of Geophysical Research, 107, A8, 1197–1201, doi:10.1029/2001JA000229.

Siscoe, G. L., W. Lotko, and B. U. O. Sonnerup (1991), A high-latitude, low-latitude boundary layer model of the convection current system. Journal of Geophysical Research, 96, A3, 3487–3495, doi:10.1029/90JA02362.

Stasiewicz, K., P. M. Bellan, C. C. Chaston, C. Kletzing, R. Lysak, J. Maggs, O. Pokhotelov, C. Seyler, P. Shukla, L. Stenflo, A. Streltsov, and J.‐E. Wahlund (2000), Small scale Alfvénic structure in the aurora, Space Science Reviews, 92, 423, doi:10.1023/A:1005207202143.

Summers, D., R. M. Thorne, and F. Xiao (1998), Relativistic theory of wave‐particle resonant diffusion with application to electron acceleration in the magnetosphere. Journal of Geophysical Research, 103, A9, 20487–20500, doi:10.1029/98JA01740.

Tenfjord, P. and N. Østgaard (2013), Energy transfer and flow in the solar wind-magnetosphere-ionosphere system: A new coupling function, Journal of Geophysical Research: Space Physics, 118, 5659–5672, doi:10.1002/jgra.50545.

Thorne, R. M., B. Ni, X. Tao, R. B. Horne, and N. P. Meredith (2010), Scattering by chorus waves as the dominant cause of diffuse auroral precipitation, Nature, 467 7318, 943, doi:10.1038/nature09467.
Trondsen, T. S., W. Lyatsky, L. L. Cogger, and J. S. Murphree (1999), Interplanetary magnetic field By control of dayside auroras, Journal of Atmospheric and Solar-Terrestrial Physics, 61, 829–840, doi:10.1016/S1364-6826(99)00029-2.

Vasyliunas, V. (1968), Observations of low-energy electrons in the evening sector of the magnetosphere with OGO-1 and OGO-3, Journal of Geophysical Research, 73, 2839– 2884, doi:10.1029/ja073i009p02839.

Vegard, L. (1939), Hydrogen Showers in the Auroral Region, Nature, 144, 1089, doi:10.1038/1441089b0.

Vo, H. B. and J. S. Murphree (1995), A study of dayside auroral bright spots seen by the Viking Auroral Imager. Journal of Geophysical Research, 100, A3, 3649–3655, doi:10.1029/94JA03138.

Wang, L., X. Luan, J. Lei, and X. Dou (2018), An Empirical Dayglow Model for the Lyman-Birge-Hopfield-Long band derived from the polar ultraviolet imager data, Space Weather, 16, 8, 1101–1113, doi:10.1029/2018SW001954.

Wang, L., X. Luan, J. Lei, K. A. Lynch, and B. Zhang (2021), The universal time variations of the intensity of afternoon aurora in equinoctial seasons, Journal of Geophysical Research: Space Physics, 126, e2020JA028504, doi:10.1029/2020JA028504.

Wang, C.-P., L. R. Lyons, M. W. Chen, R. A. Wolf, and F. R. Toffoletto (2003), Modeling the inner plasma sheet protons and magnetic field under enhanced convection, Journal of Geophysical Research, 108, A2, 1074, doi:10.1029/2002JA009620.

Watanabe, M., T. Iijima, and F. J. Rich (1996), Synthesis models of dayside field-aligned currents for strong interplanetary magnetic field By, Journal of Geophysical Research, 101, 13319, doi:10.1029/2008JA013815.

Wing, S. and J. R. Johnson (2009), Substorm entropies, Journal of Geophysical Research, 114, A00D07, doi:10.1029/2008JA013989.

Wing, S. and J. R. Johnson (2010), Introduction to special section on entropy properties and constraints related to space plasma transport, Journal of Geophysical Research, 115, A00D00, doi:10.1029/2009JA014911.

Wing, S. and P. T. Newell (1998), Central plasma sheet ion properties as inferred from ionospheric observations, Journal of Geophysical Research, 103, A4, 6785–6800, doi:10.1029/97JA02994.

Wing, S., J. R. Johnson, P. T. Newell, and C.‐I. Meng (2005), Dawn‐dusk asymmetries, ion spectra, and sources in the northward interplanetary magnetic field plasma sheet, Journal of Geophysical Research, 110, A08205, doi:10.1029/2005JA011086.

Wing, S., S. Ohtani, P. T. Newell, T. Higuchi, G. Ueno, and J. M. Weygand (2010), Dayside field-aligned current source regions, Journal of Geophysical Research, 115, A12215, doi:10.1029/2010JA015837.

Wing, S., M. Gkioulidou, J. R. Johnson, P. T. Newell, and C.‐P. Wang (2013), Auroral particle precipitation characterized by the substorm cycle. Journal of Geophysical Research: Space Physics, 118, 1022–1039, doi:10.1002/jgra.50160.

Wolf, R. A., Wan, X. Xing, J. Zhang, and S. Sazykin (2009), Entropy and plasma sheet transport, Journal of Geophysical Research, 114, A00D05, doi:10.1029/2009JA014044.

Wu, C. S., and L. C. Lee (1979), A theory of the terrestrial kilometric radiation, Astrophysical Journal, 230, 621–626, doi:10.1086/157120.

Yang, Y. F., J. Y. Lu, J.-S. Wang, Z. Peng, and L. Zhou (2013), Influence of interplanetary magnetic field and solar wind on auroral brightness in different regions, Journal of Geophysical Research, 118, 209–217, doi:10.1029/2012JA017727.

Yao, Y., C. C. Chaston, K.‐H. Glassmeier, and V. Angelopoulos (2011), Electromagnetic waves on ion gyro‐radii scales across the magnetopause, Geophysical Research Letters, 38, L09102, doi:10.1029/2011GL047328.

Zhou, X. W., C. T. Russell, G. Le, S. A. Fuselier, and J. D. Scudder (2000), Solar wind control of the polar cusp at high altitude. Journal of Geophysical Research, 105, A1, 245–251, doi:10.1029/1999JA900412.
指導教授 許志浤(Jih-Hong Shue) 審核日期 2022-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明