參考文獻 |
1. Bader, G.D., D. Betel, and C.W. Hogue, BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res, 2003. 31(1): p. 248-50.
2. Wilkins, M.R. and K.L. Williams, Cross-species protein identification using amino acid composition, peptide mass fingerprinting, isoelectric point and molecular mass: a theoretical evaluation. J Theor Biol, 1997. 186(1): p. 7-15.
3. Fenyo, D., Identifying the proteome: software tools. Curr Opin Biotechnol, 2000. 11(4): p. 391-5.
4. Daniel C. Liebler , p., Introduction to Proteomics. Tools for the New Biology. 2002, Totowa, New Jersey: Humana Press Inc.
5. Apweiler, R., et al., UniProt: the Universal Protein knowledgebase. Nucleic Acids Res, 2004. 32 Database issue: p. D115-9.
6. Ding, Q., et al., Unmatched masses in peptide mass fingerprints caused by cross-contamination: an updated statistical result. Proteomics, 2003. 3(7): p. 1313-7.
7. Clauser, K.R., P. Baker, and A.L. Burlingame, Role of accurate mass measurement (+/- 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal Chem, 1999. 71(14): p. 2871-82.
8. Ronald C. Beavis, D.F., Database searching with mass-spectrometric information. Proteomics, 2000.
9. Mann, M., P. Hojrup, and P. Roepstorff, Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol Mass Spectrom, 1993. 22(6): p. 338-45.
10. Fenyo, D., J. Qin, and B.T. Chait, Protein identification using mass spectrometric information. Electrophoresis, 1998. 19(6): p. 998-1005.
11. Pappin, D.J.C., Hojrup, P., Bleasby, A.J., Rapid identification of proteins by peptide-mass
fingerprinting. Current. Biology, 1993. 3: p. 327-332.
12. Perkins, D.N., et al., Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 1999. 20(18): p. 3551-67.
13. Ho, Y., et al., Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature, 2002. 415(6868): p. 180-3.
14. Gavin, A.C., et al., Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 2002. 415(6868): p. 141-7.
15. Xenarios, I., et al., DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res, 2002. 30(1): p. 303-5.
16. Christian von Mering, M.H., Daniel Jaeggi, Steffen Schmidt, Peer Bork, and Berend Snel, STRING: a database of pridicted functional associations between proteins. Nucleic Acids Res, 2003. 31(1): p. 258-261.
17. Zanzoni, A., et al., MINT: a Molecular INTeraction database. FEBS Lett, 2002. 513(1): p. 135-40.
18. Tatusov, R.L., et al., The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res, 2001. 29(1): p. 22-8.
19. Tatusov, R.L., et al., The COG database: an updated version includes eukaryotes. BMC Bioinformatics, 2003. 4(1): p. 41.
20. Han, K. and B.H. Ju, A fast layout algorithm for protein interaction networks. Bioinformatics, 2003. 19(15): p. 1882-8.
21. Gras, R., et al., Improving protein identification from peptide mass fingerprinting through a parameterized multi-level scoring algorithm and an optimized peak detection. Electrophoresis, 1999. 20(18): p. 3535-50.
22. Mewes, H.W., et al., MIPS: analysis and annotation of proteins from whole genomes. Nucleic Acids Res, 2004. 32(1): p. D41-4.
23. Christophe Masselon, L.P.-T., Sang-Won Lee, Lingjun Li, Gordon A. Anderson, Richard Harkewicz, Richard D. Smith, Identification of tryptic peptides from large databases using multiplexed tandem mass spectrometry: simulations and experimental results. Proteomics, 2003. 3: p. 1279-1286.
24. Kanehisa, M., et al., The KEGG databases at GenomeNet. Nucleic Acids Res, 2002. 30(1): p. 42-6.
25. Becker, M.Y. and I. Rojas, A graph layout algorithm for drawing metabolic pathways. Bioinformatics, 2001. 17(5): p. 461-7. |