博碩士論文 109324006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.117.186.92
姓名 賴昱沅(Yu-Yuan Lai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 應用於低溫電子構裝製程之錫鉍/錫銀銅複合銲料
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析
★ 電遷移對純錫導線晶粒旋轉之研究★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究
★ 鋁鍺薄膜封裝研究★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究
★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究
★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究★ 無鉛銲料與碲化鉍基材之界面反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-31以後開放)
摘要(中) 近年來隨著三維構裝興起,低溫製程能有效地減緩基板翹曲,提升系統長期可靠度。Sn-58Bi 銲料具有良好地濕潤性、抗潛變能力以及139℃的低熔點溫度,對於先進電子構裝來說非常具有吸引力。文獻指出Sn-58Bi 於長時間熱時效處理後,將會生成一連續脆性富Bi 層於基板處界金屬化合物上方,介金屬化合物與基板間有孔洞生成,大幅降低銲料機械性質。本研究透過加入SAC0307 於Sn-56.8Bi-1Ag-0.2Cu 下方形成一複合結構,觀察複合銲料於熱時效處理後微結構變化與機械性質改變。由剛迴焊完橫截面結果發現,SAC0307 層的添加有效降低整體銲料富Bi 區域。由SnBiAgCu/SAC 彼此間液相/固相動力學分析結果確認了Sn 溶解速率隨迴焊溫度提升而加快。經由熱效處理後,於下層SAC 區域發現大量細小Bi 顆粒析出於其中,並於後續機械性質探討中,對複合銲料推力值與破斷模式隨老化溫度提升和老化時長拉長而改變進行一系列探討。
摘要(英) Low-temperature bonding approach has become an inevitable trend in advanced electronics packaging technology. Low reflow temperature process can enhance the reliability of devices by minimizing warpage. SnBi eutectic solder is considered as one of the best candidates due to the advantages of good wettability, creep resistance and low melting point. A continuous Bi-rich layer formed between solder matrix and Cu6Sn5 layer after aging significantly decreases the strength of solder joint. In this study, a SAC layer was added between SnBiAgCu and Cu substrate to create a composite structure. The addition of SAC layer reduces the ratio of Bi-rich phases in the SnBiAgCu matrix. Small Bi precipitates are distributed uniformly in the SAC layer after long-term aging. Cross-section images are examined to analyze the kinetics of phase transformation. Shear test and fracture surface are adopted to analyze the joint strength and failure mode. The results show that the mechanical properties of the solder joint are improved by the composite structure of the solder.
關鍵字(中) ★ 無鉛銲料
★ 錫鉍
★ 錫銀銅
★ 低溫構裝
關鍵字(英)
論文目次 中文摘要 i
Abstract ii
致謝 iii
目錄 v
圖目錄 vii
表目錄 xiii
第一章 緒論 1
1-1 前言 1
1-2 半導體製程與構裝層級 2
1-3 電子構裝技術 4
1-3-1 表面黏著技術 (Surface Mount Technology) 5
1-3-2 通孔插裝技術 (Pin-through-Hole Technology) 6
1-3-3 覆晶構裝技術 (Flip Chip Technology) 7
1-3-4 三維積體電路構裝技術 (Three-dimensional Integrated Circuits) 8
1-4 翹曲現象 10
第二章 文獻回顧 12
2-1 電子構裝材料簡介 12
2-2 錫鉍 (Sn-Bi) 銲料 13
2-2-1 錫鉍添加第三相元素 19
2-3 錫銀銅 (Sn-Ag-Cu) 銲料 25
2-3-1 錫銀銅添加Bi元素 (Sn-Ag-Cu-xBi) 28
2-4 研究動機 33
第三章 實驗方法 34
3-1 銲料與樣品製備 34
3-2 試片長時間熱時效處理 36
3-2-1 真空封管技術 36
3-2-2 固相擴散反應 37
3-3 液相/固相交互反應 37
3-4 試片分析 39
3-4-1 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 39
3-4-2 能量散射光譜 (Energy Dispersive Spectrometer, EDS) 39
3-5 推力測試 40
第四章 結果與討論 42
4-1 SnBiAgCu/SAC0307複合銲料微結構樣貌 42
4-2 SnBiAgCu/SAC0307液相/固相反應動力學探討 46
4-3 SnBiAgCu/SAC0307 固相/固相交互擴散反應 51
4-3-1 SnBiAgCu/SAC0307 錫帽熱時效微結構樣貌 51
4-3-2 SnBiAgCu/SAC0307熱時效處理後推力值探討 53
4-3-3 SnBiAgCu/SAC0307 熱時效處理後破斷模式探討 73
第五章 結論 86
參考文獻 89
參考文獻 [1] G. E. Moore, "Cramming more components onto integrated circuits," Electronics, Vol 38 (1965)
[2] K. N. Tu, "Reliability challenges in 3D IC packaging technology," Microelectron Reliab Vol 51 (2011) 517-523
[3] C. J. Mahandran, A. Y. Abd Fatah, N. A. Bani, H. M. Kaidi, M. N. B. Muhtazaruddin, and M. E. Amran, "Thermal oxidation improvement in semiconductor wafer fabrication," Int. J. Power Electron. Drive Syst., Vol 10 (2019) 1141-1147
[4] 蕭宏, 半導體製程技術導論, 全華圖書, 台北市, 2007.
[5] J. C. Suhling and P. Lall, "Electronic Packaging Applications," in Springer Handbook of Experimental Solid Mechanics, Springer US, Boston MA, 2008, pp. 1015-1044.
[6] S. Kayama, M. Tanimoto, S. Uchida, H. Tsukada, and T. Suto, ASIC packaging technology handbook, Science Forum, 1992.
[7] T. Kasuga, CSP/BGA technology, Nikkan Kogyo Shinbunsha, Tokyo, 1998.
[8] E. Hagimoto, CSP technology, Kogyochosakai, Tokyo, 1997.
[9] K. N. Tu, Solder joint technology, Springer, New York, 2007.
[10] L. Zhang and K. N. Tu, "Structure and properties of lead-free solders bearing micro and nano particles," Mater. Sci. Eng. R Rep., Vol 82 (2014) 1-32
[11] M. Lee, M. Yoo, J. Cho, S. Lee, J. Kim, C. Lee, D. Kang, C. Zwenger, and R. Lanzone, "Study of interconnection process for fine pitch flip chip," 59th Electronic Components and Technology Conference, pp. 720-723, San Diego, USA, 2009 May
[12] S. Cho, "Technical challenges in TSV integration to Si," Sematech Symposium Korea, pp. 1-33, Seoul, 2011 February
[13] D. Lu and C. Wong, Materials for advanced packaging, Springer, Shanghai, 2009.
[14] K. N. Tu and T. Tian, "Metallurgical challenges in microelectronic 3D IC packaging technology for future consumer electronic products," Sci. China Technol. Sci., Vol 56 (2013) 1740-1748
[15] K. N. Tu, H. Y. Hsiao, and C. Chen, "Transition from flip chip solder joint to 3D IC microbump: Its effect on microstructure anisotropy," Microelectron Reliab, Vol 53 (2013) 2-6
[16] A. Yoshida, J. Taniguchi, K. Murata, M. Kada, Y. Yamamoto, Y. Takagi, T. Notomi, and A. Fujita, "A study on package stacking process for package-on-package (PoP)," 56th Electronic Components and Technology Conference 2006, p. 6, San Diego, USA, 2006 May
[17] M. E. Loomans, S. Vaynman, G. Ghosh, and M. E. Fine, "Investigation of multi-component lead-free solders," J. Electron. Mater., Vol 23 (1994) 741-746
[18] T. Laurila, V. Vuorinen, and J. K. Kivilahti, "Interfacial reactions between lead-free solders and common base materials," Mater. Sci. Eng. R Rep., Vol 49 (2005) 1-60
[19] T. Laurila, V. Vuorinen, and M. Paulasto-Kröckel, "Impurity and alloying effects on interfacial reaction layers in Pb-free soldering," Mater. Sci. Eng. R Rep., Vol 68 (2010) 1-38
[20] M. Abtew and G. Selvaduray, "Lead-free solders in microelectronics," Mater. Sci. Eng. R Rep., Vol 27 (2000) 95-141
[21] B. J. Lee, C. S. Oh, and J. H. Shim, "Thermodynamic assessments of the Sn-In and Sn-Bi binary systems," J. Electron. Mater., Vol 25 (1996) 983-991
[22] A. K. Gain and L. Zhang, "Growth mechanism of intermetallic compound and mechanical properties of nickel (Ni) nanoparticle doped low melting temperature tin–bismuth (Sn–Bi) solder," J. Mater. Sci. Mater. Electron., Vol 27 (2016) 781-794
[23] A. K. Gain and L. Zhang, "Effect of Ag nanoparticles on microstructure, damping property and hardness of low melting point eutectic tin–bismuth solder," J. Mater. Sci. Mater. Electron., Vol 28 (2017) 15718-15730
[24] X. Hu, H. Qiu, and X. Jiang, "Effect of Ni addition into the Cu substrate on the interfacial IMC growth during the liquid-state reaction with Sn–58Bi solder," J. Mater. Sci. Mater. Electron., Vol 30 (2019) 1907-1918
[25] W. Dong, Y. Shi, Z. Xia, Y. Lei, and F. Guo, "Effects of trace amounts of rare earth additions on microstructure and properties of Sn-Bi-based solder alloy," J. Electron. Mater., Vol 37 (2008) 982-991
[26] O. Mokhtari and H. Nishikawa, "Correlation between microstructure and mechanical properties of Sn–Bi–X solders," Mater. Sci. Eng. A, Vol 651 (2016) 831-839
[27] S. H. Kim, S. M. Yeon, J. H. Kim, S. J. Park, J. E. Lee, S. H. Park, J. P. Choi, C. Aranas Jr, and Y. Son, "Fine microstructured In–Sn–Bi solder for adhesion on a flexible PET substrate: its effect on superplasticity and toughness," ACS Appl. Mater. Interfaces, Vol 11 (2019) 17090-17099
[28] F. Wang, Y. Huang, Z. Zhang, and C. Yan, "Interfacial reaction and mechanical properties of Sn-Bi solder joints," Materials, Vol 10 (2017) 920
[29] L. Shen, P. Septiwerdani, and Z. Chen, "Elastic modulus, hardness and creep performance of SnBiAgCu alloys using nanoindentation," Mater. Sci. Eng. A, Vol 558 (2012) 253-258
[30] Z. Lai and D. Ye, "Microstructure and fracture behavior of non eutectic Sn–Bi solder alloys," J. Mater. Sci. Mater. Electron., Vol 27 (2016) 3182-3192
[31] X. Yu, X. Hu, Y. Li, T. Liu, R. Zhang, and Z. Min, "Tensile properties of Cu/Sn–58Bi/Cu soldered joints subjected to isothermal aging," J. Mater. Sci. Mater. Electron., Vol 25 (2014) 2416-2425
[32] H. Zou, Q. Zhang, and Z. Zhang, "Eliminating interfacial segregation and embrittlement of bismuth in SnBiAgCu/Cu joint by alloying Cu substrate," Scr. Mater., Vol 61 (2009) 308-311
[33] H. Zou, Q. Zhang, and Z. Zhang, "Interfacial microstructure and mechanical properties of SnBiAgCu/Cu joints by alloying Cu substrate," Mater. Sci. Eng. A, Vol 532 (2012) 167-177
[34] Q. Zhang, H. Zou, and Z. Zhang, "Influences of substrate alloying and reflow temperature on bi segregation behaviors at Sn-Bi/Cu interface," J. Electron. Mater., Vol 40 (2011) 2320-2328
[35] F. Hu, Q. Zhang, J. Jiang, and Z. Song, "Influences of Ag addition to Sn-58Bi solder on SnBiAgCu/Cu interfacial reaction," Mater. Lett., Vol 214 (2018) 142-145
[36] Z. Wang, Q. Zhang, Y. Chen, and Z. Song, "Influences of Ag and In alloying on Sn-Bi eutectic solder and SnBiAgCu/Cu solder joints," J. Mater. Sci. Mater, Vol 30 (2019) 18524-18538
[37] A. K. Gain and L. Zhang, "Effect of Ag nanoparticles on microstructure, damping property and hardness of low melting point eutectic tin–bismuth solder," J. Mater. Sci. Mater, Vol 28 (2017) 15718-15730
[38] Y. Li and Y. Chan, "Effect of silver (Ag) nanoparticle size on the microstructure and mechanical properties of Sn58Bi–Ag composite solders," J. Alloys Compd, Vol 645 (2015) 566-576
[39] F. Cheng, F. Gao, J. Zhang, W. Jin, and X. Xiao, "Tensile properties and wettability of SAC0307 and SAC105 low Ag lead-free solder alloys," J. Mater. Sci. Mater, Vol 46 (2011) 3424-3429
[40] I. Anderson, B. Cook, J. Harringa, and R. Terpstra, "Microstructural modifications and properties of Sn-Ag-Cu solder joints induced by alloying," J. Electron. Mater., Vol 31 (2002) 1166-1174
[41] I. Anderson, J. Walleser, and J. Harringa, "Observations of nucleation catalysis effects during solidification of SnAgCuX solder joints," JOM, Vol 59 (2007) 38-43
[42] K.-W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, and C. Handwerker, "Experimental and thermodynamic assessment of Sn-Ag-Cu solder alloys," J. Electron. Mater., Vol 29 (2000) 1122-1136
[43] D. Swenson, "The effects of suppressed beta tin nucleation on the microstructural evolution of lead-free solder joints," J. Mater. Sci. Mater, Vol 18 (2007) 39-54
[44] L. Lehman, S. Athavale, T. Fullem, A. Giamis, R. Kinyanjui, M. Lowenstein, K. Mather, R. Patel, D. Rae, and J. Wang, "Growth of Sn and intermetallic compounds in Sn-Ag-Cu solder," J. Electron. Mater., Vol 33 (2004) 1429-1439
[45] L. Lehman, Y. Xing, T. Bieler, and E. Cotts, "Cyclic twin nucleation in tin-based solder alloys," Acta Mater., Vol 58 (2010) 3546-3556
[46] Y. Liu, F. Sun, and X. Li, "Effect of Ni, Bi concentration on the microstructure and shear behavior of low-Ag SAC–Bi–Ni/Cu solder joints," J. Mater. Sci. Mater. Electron., Vol 25 (2014) 2627-2633
[47] J. Shen, Y. Pu, D. Wu, Q. Tang, and M. Zhao, "Effects of minor Bi, Ni on the wetting properties, microstructures, and shear properties of Sn–0.7 Cu lead-free solder joints," J. Mater. Sci. Mater. Electron., Vol 26 (2015) 1572-1580
[48] J. Zhao, L. Qi, X.-m. Wang, and L. Wang, "Influence of Bi on microstructures evolution and mechanical properties in Sn–Ag–Cu lead-free solder," J. Alloys Compd, Vol 375 (2004) 196-201
[49] D. A. A. Shnawah, M. F. B. M. Sabri, I. A. Badruddin, and S. Said, "A review on effect of minor alloying elements on thermal cycling and drop impact reliability of low‐Ag Sn‐Ag‐Cu solder joints," Microelectron. Int., (2012) 47-57
[50] D. Witkin, "Creep behavior of Bi-containing lead-free solder alloys," J. Electron. Mater., Vol 41 (2012) 190-203
[51] S. A. Belyakov, J. Xian, G. Zeng, K. Sweatman, T. Nishimura, T. Akaiwa, and C. M. Gourlay, "Precipitation and coarsening of bismuth plates in Sn–Ag–Cu–Bi and Sn–Cu–Ni–Bi solder joints," J. Mater. Sci. Mater. Electron., Vol 30 (2019) 378-390
[52] S. Belyakov, J. Xian, K. Sweatman, T. Nishimura, T. Akaiwa, and C. Gourlay, "Influence of bismuth on the solidification of Sn-0.7 Cu-0.05 Ni-xBi/Cu joints," J. Alloys Compd, Vol 701 (2017) 321-334
指導教授 吳子嘉(Albert T Wu) 審核日期 2022-9-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明