博碩士論文 108229010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.144.111.42
姓名 吳偉靜(Weijing Wu)  查詢紙本館藏   畢業系所 天文研究所
論文名稱 藉由 SDSS-IV MaNGA 觀測數據研究矮星系中的暗物質含量
(Dark Matter Content of Dwarf Galaxies in SDSS-IV MaNGA)
相關論文
★ 亮紅外線星系ARP 55的CO(J=2-1)和CO(J=1-0)之譜線研究★ 合併中之明亮紅外線星系的次毫米波段觀測
★ 后髮座星系團內相對論性電子能譜的數值計算★ 萊曼α吸收雲的運動學SZ效應所引起之宇宙背景輻射非均向性
★ 類星體-星系對 0248+430 中的原子與分子氣體★ 亮紅外星系 NGC 6090 中分子氣體之研究
★ X射線背景輻射對星系團質量-溫度關係之限制★ AM CVn系統之可見光觀測
★ 利用電波與近紅外線觀測資料研究活躍星系核的性質★ 具有偏極化寬譜線與不具有偏極化寬譜線的西佛二型星系之塵埃型態
★ On the Origin of the Radio Emission of Ultraluminous Infrared Galaxies★ 使用近紅外波段搜尋高質量X射線雙星的光學對應體
★ 窄線西佛I型星系之電波及紅外線性質★ 合併星系的快速搜尋法
★ 活躍星系中分子雲之物理特性★ 伽瑪射線爆周圍環境探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們藉由 SDSS-IV MaNGA 觀測數據,研究矮星系中的暗物質含量。我們把目標星系分為早型星系和晚型星系、平衡系統和未平衡系統,其中大部份的晚型星系為平衡系統。我們利用 Ha 和恆星速度場,分別推導星系的旋轉曲線,從而估算星系質量。我們發現大部份的目標星系的質量遠大於其重子質量,以及一個暗物質含量很高的平衡星型星系和三個暗物質含量很少的未平衡晚型星系。此外,我們比照觀測所得的暗物質密度分佈和三個暗物質模型(NFW、模糊暗物質、偽等溫模型)的預測,發現一些星系的暗物質密度分佈和多個模型的預測吻合,整體而言無法區分這三種模型。最後,我們對比從 和恆星速度場分別得出的分析結果,發現兩者並不完全一致,從 速度場得出的結果較為離散。這些恆星形成氣體可能剛被星系吸積,尚未與星系自身的重力場達到平衡。
摘要(英) In this study, we examine the dark matter content of dwarf galaxies from SDSS-IV MaNGA database. We classified the galaxies into late-type galaxies (LTGs) and early-type galaxies (ETGs), equilibrium and non-equilibrium. There are more equilibrium galaxies in LTGs. We estimate rotation curves from Ha and stellar velocity fields respectively, and use them to derive dynamical mass. The majority of targets have dynamical mass much greater than baryonic mass, with dark matter constituting at least 70% of dynamical mass. One equilibrium ETG that is very dark-matter-dominated and three non-equilibrium LTGs have little or no dark matter. We also fit the observed dark matter density profiles to three dark matter models: Navarro-Frenk-White (NFW), fuzzy dark matter, and pseudo-isothermal profiles. Some galaxies can be fitted with multiple models. It is difficult to distinguish which model fits better. Besides, we compare the analysis results from the Ha and stellar velocity maps. The two results of the same galaxy are not always consistent with each other, and the results from the Ha data is more scattered. This suggests that the star-forming gas may have an external origin, and has not yet reached equilibrium with the galaxy.
關鍵字(中) ★ MaNGA
★ 暗物質
★ 矮星系
★ 旋轉曲線
關鍵字(英) ★ MaNGA
★ dark matter
★ dwarf galaxies
★ rotation curve
論文目次 Abstract vii
摘要 viii
1 Introduction 1
2 Data and Sample Selection 3
2.1 MaNGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 2MASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 ALFALFA-SDSS Galaxy Catalog . . . . . . . . . . . . . . . . . . . 4
2.4 Sample Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Method 7
3.1 Calculation of Dynamical Mass . . . . . . . . . . . . . . . . . . . . 7
3.2 Calculation of Stellar Mass Distribution . . . . . . . . . . . . . . . 10
3.3 Estimation of Gas Distribution . . . . . . . . . . . . . . . . . . . . 11
3.4 Calculation of Dark Matter and Density Profile . . . . . . . . . . . 12
3.5 Models of Dark Matter Density Profile . . . . . . . . . . . . . . . . 13
3.5.1 NFW profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.2 Fuzzy Dark Matter . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.3 Pseudo-isothermal . . . . . . . . . . . . . . . . . . . . . . . 14
4 Results 15
4.1 Properties of Targets . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Existence of Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Dark Matter Density Profile . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Mass components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4.1 Equilibrium vs. non-equilibrium galaxies . . . . . . . . . . 23
4.4.2 LTGs vs. ETGs . . . . . . . . . . . . . . . . . . . . . . . . . 26
5 Discussion 29
5.1 Classification of targets . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Dark matter model fitting . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Dark matter ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Comparison between the Hα and stellar data . . . . . . . . . . . . 35
5.5 MOND in dwarf galaxies . . . . . . . . . . . . . . . . . . . . . . . . 37
6 Summary 39
Bibliography 41
A Properties of the target galaxies 47
B Velocity, mass and dark matter density distributions of the target galax-
ies 51
C Fitting parameters of the target galaxies 63
參考文獻 [1] V. C. Rubin and J. F. W. Kent, “Rotation of the Andromeda Nebula from
a spectroscopic survey of emission regions,” The Astrophysical Journal,
vol. 159, p. 379, Feb. 1970.
[2] A. Bosma, “The distribution and kinematics of neutral hydrogen in spiral
galaxies of various morphological types,” University of Groningen, 1978.
[3] F. Zwicky, “Die Rotverschiebung von extragalaktischen Nebeln,” Helvetica
Physica Acta, vol. 6, pp. 110–127, Jan. 1933.
[4] C. L. Sarazin, “X-ray emission from clusters of galaxies,” Reviews of Modern
Physics, vol. 58, pp. 1–115, 1 Jan. 1986.
[5] M. Arnaud, “X-ray observations of clusters of galaxies,” Aug. 2005.
[6] M. Oguri, S. Miyazaki, C. Hikage, et al., “Two- and three-dimensional
wide-field weak lensing mass maps from the Hyper Suprime-Cam Sub-
aru Strategic Program S16A data,” Publications of the Astronomical Society of
Japan, vol. 70, Special Issue 1 Jan. 2018.
[7] Planck Collaboration, “Planck 2015 results: XI. CMB power spectra,
likelihoods, and robustness of parameters,” Astronomy and Astrophysics,
vol. 594, Oct. 2016.
[8] G. Jungman, M. Kamionkowski, and K. Griest, “Supersymmetric dark
matter,” Physics Reports, vol. 267, pp. 195–373, 5-6 Mar. 1996.
[9] G. Servant and T. M. Tait, “Is the lightest Kaluza-Klein particle a viable
dark matter candidate?” Nuclear Physics B, vol. 650, pp. 391–419, 1-2 Feb.
2003.
[10] J. F. Navarro, C. S. Frenk, and S. D. M. White, “A universal density profile
from hierarchical clustering,” The Astrophysical Journal, vol. 490, pp. 493–
508, 2 Dec. 1997.
[11] A. Del Popolo, V. Cardone, and G. Belvedere, “Surface density of dark
matter haloes on galactic and cluster scales,” Monthly Notices of the Royal
Astronomical Society, Dec. 2012.
[12] B. Moore, S. Ghigna, F. Governato, et al., “Dark matter substructure within
galactic halos,” The Astrophysical Journal, vol. 524, pp. 19–22, 1999.
[13] B. F. Griffen, A. P. Ji, G. A. Dooley, et al., “The Caterpillar Project: A large
suite of Milky Way sized halos,” The Astrophysical Journal, vol. 818, p. 10, 1
Feb. 2016.
[14] A. Drlica-Wagner, K. Bechtol, S. Mau, et al., “Milky Way satellite census.
I. The observational selection function for Milky Way satellites in DES Y3
and Pan-STARRS DR1,” The Astrophysical Journal, vol. 893, p. 47, 1 2020.
[15] J. S. Bullock and M. Boylan-Kolchin, “Small-scale challenges to the ΛCDM
paradigm,” Annual Review of Astronomy and Astrophysics, vol. 55, pp. 343–
387, 1 2017.
[16] R. A. Flores and J. R. Primack, “Observational and theoretical constraints
on singular dark matter halos,” The Astrophysical Journal, vol. 427, p. L1,
May 1994.
[17] J. F. Navarro, A. Ludlow, V. Springel, et al., “The diversity and similarity
of simulated cold dark matter haloes,” Monthly Notices of the Royal Astro-
nomical Society, vol. 402, pp. 21–34, 1 2010.
[18] W. J. G. de Blok, F. Walter, E. Brinks, et al., “High-Resolution Rotation
Curves and Galaxy Mass Models from THINGS,” The Astronomical Jour-
nal, vol. 136, no. 6, pp. 2648–2719, Dec. 2008.
[19] P. Boldrini, “The cusp–core problem in gas-poor dwarf spheroidal galax-
ies,” Galaxies, vol. 10, 1 Feb. 2022.
[20] H. Y. Schive, T. Chiueh, and T. Broadhurst, “Cosmic structure as the quan-
tum interference of a coherent dark wave,” Nature Physics, vol. 10, pp. 496–
499, 7 2014.
[21] L. Hui, “Wave dark matter,” Annual Review of Astronomy and Astrophysics,
vol. 59, no. 1, pp. 247–289, 2021.
[22] K. Bundy, M. A. Bershady, D. R. Law, et al., “Overview of the SDSS-IV
MaNGA survey: Mapping Nearby Galaxies at Apache Point Observa-
tory,” The Astrophysical Journal, vol. 798, 1 Jan. 2015.
[23] T. H. Jarrett, T. Chester, R. Cutri, et al., “2MASS Extended Source Catalog:
overview and algorithms,” The Astronomical Journal, vol. 119, pp. 2498–
2531, 5 May 2000.
[24] M. F. Skrutskie, R. M. Cutri, R. Stiening, et al., “The Two Micron All Sky
Survey (2MASS),” The Astronomical Journal, vol. 131, pp. 1163–1183, 2 Feb.
2006.
[25] M. P. Haynes, R. Giovanelli, B. R. Kent, et al., “The Arecibo Legacy Fast
ALFA Survey: The ALFALFA Extragalactic HI Source Catalog,” The Astro-
physical Journal, vol. 861, p. 49, 1 2018.
[26] A. Durbala, R. A. Finn, M. C. Odekon, et al., “The ALFALFA-SDSS Galaxy
Catalog,” The Astronomical Journal, vol. 160, p. 271, 6 2020.
[27] N. C. Relatores, A. B. Newman, J. D. Simon, et al., “The dark matter dis-
tributions in low-mass disk galaxies. II. The inner density profiles,” The
Astrophysical Journal, Nov. 2019.
[28] L. S. Pilyugin, E. K. Grebel, I. A. Zinchenko, et al., “Relations between
abundance characteristics and rotation velocity for star-forming MaNGA
galaxies,” Astronomy and Astrophysics, vol. 623, A122, Mar. 2019.
[29] B. Cherinka, B. H. Andrews, J. Sánchez-Gallego, et al., “Marvin: A tool kit
for streamlined access and visualization of the SDSS-IV MaNGA data set,”
The Astronomical Journal, vol. 158, p. 74, 2 Jul. 2019.
[30] K. G. Begeman, “HI rotation curves of spiral galaxies. I. NGC 3198.,” As-
tronomy and Astrophysics, vol. 223, pp. 47–60, 1989.
[31] D. Krajnovi ́c, M. Cappellari, P. T. D. Zeeuw, et al., “Kinemetry: A gener-
alization of photometry to the higher moments of the line-of-sight veloc-
ity distribution,” Monthly Notices of the Royal Astronomical Society, vol. 366,
pp. 787–802, 3 2006.
[32] D. T. Weldrake, W. J. de Blok, and F. Walter, “A high-resolution rotation
curve of NGC 6822: A test-case for cold dark matter,” Monthly Notices of
the Royal Astronomical Society, vol. 340, pp. 12–28, 1 Mar. 2003.
[33] C. Y. Peng, L. C. Ho, C. D. Impey, et al., “Detailed decomposition of
galaxy images. II. Beyond axisymmetric models,” The Astronomical Jour-
nal, vol. 139, pp. 2097–2129, 6 Jun. 2010.
[34] J. L. Sersic, Atlas de Galaxias Australes. 1968.
[35] M. Baes and G. Gentile, “Analytical expressions for the deprojected Sérsic
model,” Astronomy and Astrophysics, vol. 525, 8 Dec. 2010.
[36] E. F. Bell, D. H. McIntosh, N. Katz, et al., “The optical and near-infrared
properties of galaxies. I. Luminosity and stellar mass functions,” The As-
trophysical Journal Supplement Series, vol. 149, pp. 289–312, 2 Dec. 2003.
[37] S. S. McGaugh and J. M. Schombert, “Color-mass-to-light-ratio relations
for disk galaxies,” The Astronomical Journal, vol. 148, 5 Nov. 2014.
[38] Planck Collaboration, “Planck 2015 results. XIII. Cosmological parame-
ters,” Astronomy and Astrophysics, vol. 594, A13, Feb. 2015.
[39] R. C. Kennicutt and N. J. Evans, “Star formation in the Milky Way and
nearby galaxies,” Annual Review of Astronomy and Astrophysics, vol. 50,
pp. 531–608, Sep. 2012.
[40] S. S. McGaugh and J. M. Schombert, “Weighing galaxy disks with the bary-
onic Tully-Fisher relation,” The Astrophysical Journal, vol. 802, 1 Mar. 2015.
[41] S. S. McGaugh, “The baryonic Tully-Fisher relation of gas-rich galaxies as
a test of ΛCDM and MOND,” The Astronomical Journal, vol. 143, 2 Feb.
2012.
[42] A. Rémy-Ruyer, S. C. Madden, F. Galliano, et al., “Gas-to-dust mass ra-
tios in local galaxies over a 2 dex metallicity range,” Astronomy and Astro-
physics, vol. 563, Mar. 2014.
[43] H. Y. Schive, M. H. Liao, T. P. Woo, S. K. Wong, T. Chiueh, T. Broadhurst,
and W. Y. Hwang, “Understanding the Core-Halo relation of quantum
wave dark matter from 3D simulations,” Physical Review Letters, vol. 113,
26 Dec. 2014.
[44] A. Burkert, “Fuzzy dark matter and dark matter halo cores,” The Astro-
physical Journal, vol. 904, p. 161, 2 Nov. 2020.
[45] K. G. Begeman, A. H. Broeils, and R. H. Sanders, “Extended rotation
curves of spiral galaxies: Dark haloes and modified dynamics,” Monthly
Notices of the Royal Astronomical Society, vol. 249, pp. 523–537, 3 Apr. 1991.
[46] S. Shen, H. J. Mo, S. D. M. White, et al., “The size distribution of galaxies
in the Sloan Digital Sky Survey,” Monthly Notices of the Royal Astronomical
Society, vol. 343, pp. 978–994, 3 Aug. 2003.
[47] M. Barden, Mic, KK, BB, and CC, “GEMS: The surface brightness and sur-
face mass density evolution of disk galaxies,” The Astrophysical Journal,
vol. 635, pp. 959–981, 2 Dec. 2005.
[48] J. J. Bryant, S. M. Croom, J. V. D. Sande, et al., “The SAMI galaxy survey:
Stellar and gas misalignments and the origin of gas in nearby galaxies,”
Monthly Notices of the Royal Astronomical Society, vol. 483, pp. 458–479, 1
Feb. 2019.
[49] J. Binney and S. Tremaine, Galactic Dynamics: Second Edition. 2008.
[50] L. Strigari, S. Koushiappas, J. Bullock, et al., “The most dark-
matter–dominated galaxies: Predicted gamma-ray signals from the
faintest Milky Way dwarfs,” The Astrophysical Journal, vol. 678, pp. 614–
620, 2 May 2008.
[51] M. Geha, B. Willman, J. D. Simon, et al., “The least-luminous galaxy: Spec-
troscopy of the Milky Way satellite Segue 1,” The Astrophysical Journal,
vol. 692, pp. 1464–1475, 2 Feb. 2009.
[52] N. F. Martin, R. A. Ibata, S. C. Chapman, et al., “A Keck/DEIMOS spec-
troscopic survey of faint Galactic satellites: Searching for the least massive
dwarf galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 380,
pp. 281–300, 1 2007.
[53] J. D. Simon, “The faintest dwarf galaxies,” Annual Review of Astronomy and
Astrophysics, vol. 57, pp. 375–415, 1 2019.
[54] J. D. Simon, A. D. Bolatto, A. Leroy, et al., “High-resolution measurements
of the halos of four dark matter–dominated galaxies: Deviations from a
universal density profile,” The Astrophysical Journal, vol. 621, pp. 757–776,
2 Mar. 2005.
[55] E. V. Karukes and P. Salucci, “The universal rotation curve of dwarf
disc galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 465,
pp. 4703–4722, 4 Mar. 2017.
[56] G. Rhee, O. Valenzuela, A. Klypin, et al., “The rotation curves of dwarf
galaxies: A problem for cold dark matter?” The Astrophysical Journal,
vol. 617, pp. 1059–1076, 2 Dec. 2004.
[57] R. Sancisi, F. Fraternali, T. Oosterloo, et al., “Cold gas accretion in galaxies,”
Astronomy and Astrophysics Review, vol. 15, pp. 189–223, 3 Jun. 2008.
[58] T. A. Davis, K. Alatalo, M. Sarzi, et al., “The ATLAS3Dproject - X. On the
origin of the molecular and ionized gas in early-type galaxies,” Monthly
Notices of the Royal Astronomical Society, vol. 417, pp. 882–899, 2 Oct. 2011.
[59] M. Milgrom, “A modification of the Newtonian dynamics - Implications
for galaxies,” The Astrophysical Journal, vol. 270, p. 371, Jul. 1983.
[60] M. Milgrom, “MOND–a pedagogical review,” Dec. 2001
指導教授 黃崇源(Chorng-Yuan Hwang) 審核日期 2022-9-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明