博碩士論文 109324051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.216.190.167
姓名 盧奕汝(Yi-Ru Lu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 UiO-66-NH2@ZnIn2S4光觸媒光催化產氫之研究
(Solar Hydrogen Production using UiO-66- NH2@ZnIn2S4 Photocatalyst)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池
★ 奈米結構之Au/MnO2複合陰極觸媒材料★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材
★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究
★ IMPS於Ag-In-S半導體薄膜之分析與應用★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性
★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究
★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質★ 電化學分解水之電極材料製備與效率探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-23以後開放)
摘要(中) 地球上的能源越來越缺乏,加上環保意識的不斷提高,再生能源將是取之不盡且乾淨的能源,其中太陽能是一備受關注的再生能源。在眾多轉換再生能源的方法中,我們選用光催化反應的方式將太陽能轉換為化學形式儲存起來,且該製程的污染物和能耗相對較低,因此開發提高光催化反應之光觸媒極其重要。
通過簡便的溶劑熱法合成UiO-66-NH2@N-ZnIn2S4-S (UN-Xy@N-ZIS-S)異質結構,在光催化產氫反應中產生優異的性能,本研究利用氮摻雜與過量硫代乙醯胺,以及引入金屬有機骨架UiO-66-NH2,可以將形貌從2D奈米片轉變為2D奈米片構成之繡花球狀,同時過量的硫代乙醯胺能夠驅動ZnIn2S4與UiO-66-NH2更緊密接觸,使其均勻度提升從而減短電子與質子之間的反應距離,其中UiO-66-NH2的引入除了MOF本身多孔性結構外,異質結構的構成可以讓載流子移動順利,而能隙值從2.19 eV (ZnIn2S4)變寬至2.6 eV (UN-12030@N-ZIS-S),進一步降低電子-電洞再結合的狀況,變寬的能隙值會因為N的存在捕捉電洞,促進產氫效率的提升。為了減少反應成本,過程中沒有添加Pt,而本研究在常溫下使用光強度100 mW / cm2,光觸媒為UN-12030@N-ZIS-S進行反應,得到最佳產氫效率為2592 μmol/g/h。
摘要(英) Due to the lack of energy on the earth and people’s awareness of environmental protection was enhanced. We have to find other alternative energy. While renewable energy will be inexhaustible and clean, among which solar energy is a renewable energy that has received much attention. We use the photocatalytic reaction to convert solar energy into chemical form for storage. The pollutants and energy consumption of this process are relatively low. Thus, it is extremely important to develop photocatalysts to improve photocatalytic reactions. In this study, N-doping and excess TAA, as well as the introduction of metal-organic framework UiO-66-NH2, can transform the morphology from 2D nanosheets to flowerlike nanospheres composed of 2D nanosheets. At the
same time, excess TAA can drive ZIS and UiO-66-NH2 in intimate contact, which improves the uniform of the composite and shortens the reaction distance between electrons and protons. In addition to the porous structure
of the MOF, the introduction of UiO-66-NH2 can boost the carriers to move, and the band gap change from 2.19 eV (ZnIn2S4) to 2.6 eV (UN-12030@NZIS-S). Further reducing the recombination of electrons and holes. The broad energy gap will trap holes due to the presence of N and promote hydrogen production efficiency. In order to reduce the reaction cost, no Pt was added to the reaction. The sample of UN-12030@N-ZIS-S has the best hydrogen production efficiency about 2592 μmol/g/h under 100 mW/cm2 of light
intensity at room temperature.
關鍵字(中) ★ 光觸媒產氫
★ 異質結構
關鍵字(英) ★ photocatalyst hydrogen production
★ heterostructure
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 viii
表目錄 xiii
第一章 緒論 1
1-1 前言 1
1-2 光觸媒產氫 3
1-3 研究動機 5
第二章 文獻回顧 6
2-1 產氫方法 6
2-2 光觸媒粉末分解水產氫 7
2-3 光觸媒材料 12
2-4 影響光觸媒產氫重要因素 16
2-4-1 能隙值 16
2-4-2 犧牲試劑 22
2-4-3粉末顆粒表面與大小 23
2-4-4光強度 24
2-4-5溫度 25
2-5 ZnIn2S4 光觸媒 26
2-6 金屬有機骨架 30
2-7 異質結構之光觸媒結構研究 31
第三章 實驗方法及步驟 33
3-1 實驗藥品 33
3-2 分析與實驗儀器 37
3-3 實驗步驟 39
3-3-1 溶劑熱法(純DMF)製備金屬有機骨架 (UiO-66-NH2) 39
3-3-2 溶劑熱法在不同溫度下製備金屬有機骨架 (UiO-66-NH2-X) 39
3-3-3 水熱法製備不同硫代乙醯胺含量(TAA)的純ZnIn2S4 40
3-3-4 溶劑熱法製備N dopped ZnIn2S4 41
3-3-5 溶劑熱法合成UN-Xy@N-ZIS-S 41
3-3-6 粉體光觸媒產氫量測 42
第四章 實驗結果與討論 45
4-1 前導 45
4-2 不同溫度與溶劑製備UiO-66-NH2 45
4-2-1 UN粒徑及形貌分析 (HR-STEM) 47
4-2-2 傅立葉轉換紅外線光譜分析 51
4-2-3 X光繞射分析 52
4-2-3 紫外光-可見光光譜分析 54
4-2-4 螢光光譜分析 55
4-2-5 產氫效率 56
4-3 過量TAA與N doping製備ZnIn2S4 58
4-3-1 不同ZIS之形貌分析 (HR-STEM) 58
4-3-2 X光繞射分析 61
4-3-3 X-ray 光電子能譜儀 63
4-3-4 紫外光-可見光光譜分析 66
4-3-4 螢光光譜分析 67
4-3-5 產氫效率 68
4-4 異質結構UiO-66-NH2與N-ZIS-S結合效應 69
4-4-1 UiO-66-NH2-Xy@N-ZIS-S形貌分析 (HR-STEM) 69
4-4-2 X光繞射分析 76
4-4-3 紫外光-可見光光譜分析 77
4-4-4 螢光光譜分析 79
4-4-5 傅立葉轉換紅外線光譜分析 80
4-4-6 產氫效率 82
第五章 結論與未來展望 85
附錄 87
參考資料 90
參考文獻 1. Tachibana, Y., L. Vayssieres, and J.R.J.N.P. Durrant, Artificial photosynthesis for solar water-splitting. 2012. 6(8): p. 511-518.
2. Bureau of Energy and Ministry of Economic Affairs. 109年能源供給概況與發電概況. [Internet] 2020; Available from: https://www.moeaboe.gov.tw/ECW/populace/content/Content.aspx?menu_id=14437.
3. Seh, Z.W., et al., Combining theory and experiment in electrocatalysis: Insights into materials design. 2017. 355(6321): p. eaad4998.
4. Mazloomi, K., C.J.R. Gomes, and S.E. Reviews, Hydrogen as an energy carrier: Prospects and challenges. 2012. 16(5): p. 3024-3033.
5. International Renewable Energy Agency. Green Hydrogen Policy Talk. 2022 08 March; Available from: https://www.irena.org/events/2022/Mar/Green-hydrogen-policy-talk.
6. Fujishima, A. and K.J.n. Honda, Electrochemical photolysis of water at a semiconductor electrode. 1972. 238(5358): p. 37-38.
7. Chen, X., et al., Semiconductor-based photocatalytic hydrogen generation. 2010. 110(11): p. 6503-6570.
8. Kudo, A. and Y.J.C.S.R. Miseki, Heterogeneous photocatalyst materials for water splitting. 2009. 38(1): p. 253-278.
9. Li, C.-H., et al., Plasmonically enhanced photocatalytic hydrogen production from water: the critical role of tunable surface Plasmon resonance from gold–silver nanoshells. 2016. 8(14): p. 9152-9161.
10. Liu, Y., et al., Metal sulfide/MOF-based composites as visible-light-driven photocatalysts for enhanced hydrogen production from water splitting. 2020. 409: p. 213220.
11. 石蕙菱. 全球氫氣生產方式的發展與趨勢. 2021; Available from: https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=364.
12. Schrauzer, G. and T.J.J.o.t.A.C.S. Guth, Photolysis of water and photoreduction of nitrogen on titanium dioxide. 2002. 99(22): p. 7189-7193.
13. Kudo, A., H. Kato, and I.J.C.l. Tsuji, Strategies for the development of visible-light-driven photocatalysts for water splitting. 2004. 33(12): p. 1534-1539.
14. Shaner, M.R., et al., A comparative technoeconomic analysis of renewable hydrogen production using solar energy. 2016. 9(7): p. 2354-2371.
15. Wang, Q. and K.J.C.R. Domen, Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. 2019. 120(2): p. 919-985.
16. Memming, R., Semiconductor electrochemistry. 2015: John Wiley & Sons.
17. Ran, J., et al., Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. 2014. 43(22): p. 7787-7812.
18. Chen, Z., et al., Efficiency Definitions in the Field of PEC, in Photoelectrochemical Water Splitting. 2013, Springer. p. 7-16.
19. Li, R. and C. Li, Photocatalytic water splitting on semiconductor-based photocatalysts, in Advances in catalysis. 2017, Elsevier. p. 1-57.
20. Eliseeva, S.V. and J.-C.G.J.N.J.o.C. Bünzli, Rare earths: jewels for functional materials of the future. 2011. 35(6): p. 1165-1176.
21. Chen, S., T. Takata, and K.J.N.R.M. Domen, Particulate photocatalysts for overall water splitting. 2017. 2(10): p. 1-17.
22. Vayssieres, L., On solar hydrogen and nanotechnology. 2010: John Wiley & Sons.
23. Di, T., et al., Review on metal sulphide‐based Z‐scheme photocatalysts. 2019. 11(5): p. 1394-1411.
24. Pleskov, J.V., Y.Y. Gurevich, and P. Bartlett, Semiconductor photoelectrochemistry. 1986: Springer.
25. Matsumura, M., Y. Saho, and H.J.T.J.o.P.C. Tsubomura, Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder. 1983. 87(20): p. 3807-3808.
26. Reber, J.F. and M.J.T.J.o.P.C. Rusek, Photochemical hydrogen production with platinized suspensions of cadmium sulfide and cadmium zinc sulfide modified by silver sulfide. 1986. 90(5): p. 824-834.
27. Kakuta, N., et al., Photoassisted hydrogen production using visible light and coprecipitated zinc sulfide. cntdot. cadmium sulfide without a noble metal. 1985. 89(5): p. 732-734.
28. Xing, C., et al., Band structure-controlled solid solution of Cd1-x ZnxS photocatalyst for hydrogen production by water splitting. 2006. 31(14): p. 2018-2024.
29. Reber, J.F. and K.J.T.J.o.P.C. Meier, Photochemical production of hydrogen with zinc sulfide suspensions. 1984. 88(24): p. 5903-5913.
30. Ming, W., et al., Preparation of quantized zinc sulfide particles and their photocatalytic hydrogen evolution in aqueous methanol solution. 1995. 92: p. 257.
31. Kobayakawa, K., et al., Photocatalytic activity of CuInS2 and CuIn5S8. 1992. 37(3): p. 465-467.
32. Kudo, A.J.I.J.o.H.E., Development of photocatalyst materials for water splitting. 2006. 31(2): p. 197-202.
33. Chen, D., J.J.J.o.P. Ye, and C.o. Solids, Photocatalytic H2 evolution under visible light irradiation on AgIn5S8 photocatalyst. 2007. 68(12): p. 2317-2320.
34. Kudo, A., et al., H2 evolution from aqueous potassium sulfite solutions under visible light irradiation over a novel sulfide photocatalyst NaInS2 with a layered structure. 2002. 31(9): p. 882-883.
35. Lei, Z.J.C.C., You W. Liu M. Zhou G. Takata T. Hara M. Domen K. Li C. 2003: p. 2142-2143.
36. Zheng, N., et al., Open‐framework chalcogenides as visible‐light photocatalysts for hydrogen generation from water. 2005. 44(33): p. 5299-5303.
37. Kudo, A., I. Tsuji, and H.J.C.c. Kato, AgInZn 7 S 9 solid solution photocatalyst for H 2 evolution from aqueous solutions under visible light irradiation. 2002(17): p. 1958-1959.
38. Tsuji, I., et al., Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn) x Zn2 (1-x) S2 solid solution photocatalysts with visible-light response and their surface nanostructures. 2004. 126(41): p. 13406-13413.
39. Kudo, A.J.I.j.o.h.e., Recent progress in the development of visible light-driven powdered photocatalysts for water splitting. 2007. 32(14): p. 2673-2678.
40. Tong, H., et al., Nano‐photocatalytic materials: possibilities and challenges. 2012. 24(2): p. 229-251.
41. Arai, N., et al., Overall water splitting by RuO2-dispersed divalent-ion-doped GaN photocatalysts with d10 electronic configuration. 2006. 35(7): p. 796-797.
42. Arai, N., et al., Effects of divalent metal ion (Mg2+, Zn2+ and Be2+) doping on photocatalytic activity of ruthenium oxide-loaded gallium nitride for water splitting. 2007. 129(3-4): p. 407-413.
43. Ishihara, T., et al., Effects of acceptor doping to KTaO3 on photocatalytic decomposition of pure H2O. 1999. 103(1): p. 1-3.
44. Sun, J., et al., Novel (Na, K) TaO 3 single crystal nanocubes: molten salt synthesis, invariable energy level doping and excellent photocatalytic performance. 2011. 4(10): p. 4052-4060.
45. Mitsui, C., et al., Photocatalytic decomposition of pure water over NiO supported on KTa (M) O3 (M= Ti4+, Hf4+, Zr4+) perovskite oxide. 1999. 28(12): p. 1327-1328.
46. Pasumarthi, V., et al., Charge carrier transport dynamics in W/Mo-doped BiVO 4: first principles-based mesoscale characterization. 2019. 7(7): p. 3054-3065.
47. Yuan, Y., et al., Large impact of strontium substitution on photocatalytic water splitting activity of Ba Sn O 3. 2007. 91(9): p. 094107.
48. An, L., et al., Photoexcited electrons driven by doping concentration gradient: flux-prepared NaTaO3 photocatalysts doped with strontium cations. 2018. 8(10): p. 9334-9341.
49. Hu, C.-C., Y.-L. Lee, and H.J.J.o.M.C. Teng, Efficient water splitting over Na 1− x K x TaO 3 photocatalysts with cubic perovskite structure. 2011. 21(11): p. 3824-3830.
50. Qin, Y., G. Wang, and Y.J.C.C. Wang, Study on the photocatalytic property of La-doped CoO/SrTiO3 for water decomposition to hydrogen. 2007. 8(6): p. 926-930.
51. Kato, H., K. Asakura, and A.J.J.o.t.A.C.S. Kudo, Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. 2003. 125(10): p. 3082-3089.
52. Iwase, A., et al., The effect of alkaline earth metal ion dopants on photocatalytic water splitting by NaTaO3 powder. 2009. 2(9): p. 873-877.
53. Reddy, V.R., D.W. Hwang, and J.S.J.C.l. Lee, Effect of Zr substitution for Ti in KLaTiO4 for photocatalytic water splitting. 2003. 90(1): p. 39-43.
54. Takahara, Y., et al., Synthesis and application for overall water splitting of transition metal-mixed mesoporous Ta oxide. 2002. 151(1-4): p. 305-311.
55. Goto, Y., et al., A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation. 2018. 2(3): p. 509-520.
56. Ham, Y., et al., Flux-mediated doping of SrTiO 3 photocatalysts for efficient overall water splitting. 2016. 4(8): p. 3027-3033.
57. Takata, T. and K.J.T.J.o.P.C.C. Domen, Defect engineering of photocatalysts by doping of aliovalent metal cations for efficient water splitting. 2009. 113(45): p. 19386-19388.
58. Sakata, Y., et al., Photocatalytic property of metal ion added SrTiO3 to Overall H2O splitting. 2016. 521: p. 227-232.
59. Carp, O., C.L. Huisman, and A.J.P.i.s.s.c. Reller, Photoinduced reactivity of titanium dioxide. 2004. 32(1-2): p. 33-177.
60. Nishikawa, T., et al., Prospect of activating a photocatalyst by sunlight-A quantum chemical study of isomorphically substituted titania. 1999. 28(11): p. 1133-1134.
61. Asahi, R., et al., Visible-light photocatalysis in nitrogen-doped titanium oxides. 2001. 293(5528): p. 269-271.
62. Chun, W.-J., et al., Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. 2003. 107(8): p. 1798-1803.
63. Yamasita, D., et al., Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting. 2004. 172(1-4): p. 591-595.
64. Moriya, Y., T. Takata, and K.J.C.C.R. Domen, Recent progress in the development of (oxy) nitride photocatalysts for water splitting under visible-light irradiation. 2013. 257(13-14): p. 1957-1969.
65. Matoba, T., K. Maeda, and K.J.C.A.E.J. Domen, Activation of BaTaO2N photocatalyst for enhanced non‐sacrificial hydrogen evolution from water under visible light by forming a solid solution with BaZrO3. 2011. 17(52): p. 14731-14735.
66. Choi, W., A. Termin, and M.R.J.T.J.o.P.C. Hoffmann, The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. 2002. 98(51): p. 13669-13679.
67. de Respinis, M., et al., Oxynitrogenography: controlled synthesis of single-phase tantalum oxynitride photoabsorbers. 2015. 27(20): p. 7091-7099.
68. Hou, W. and S.B.J.A.F.M. Cronin, A review of surface plasmon resonance‐enhanced photocatalysis. 2013. 23(13): p. 1612-1619.
69. Liu, L., et al., Metal nanoparticles induced photocatalysis. 2017. 4(5): p. 761-780.
70. Dodekatos, G., S. Schuenemann, and H. Tueysuez, Surface plasmon-assisted solar energy conversion, in Solar Energy for Fuels. 2015, Springer. p. 215-252.
71. Tian, Y. and T.J.J.o.t.A.C.S. Tatsuma, Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. 2005. 127(20): p. 7632-7637.
72. Wang, Y., et al., Mimicking natural photosynthesis: solar to renewable H2 fuel synthesis by Z-scheme water splitting systems. 2018. 118(10): p. 5201-5241.
73. Jia, Q., A. Iwase, and A.J.C.S. Kudo, BiVO 4–Ru/SrTiO 3: Rh composite Z-scheme photocatalyst for solar water splitting. 2014. 5(4): p. 1513-1519.
74. Sasaki, Y., et al., Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. 2009. 113(40): p. 17536-17542.
75. Al-Azri, Z.H., et al., The roles of metal co-catalysts and reaction media in photocatalytic hydrogen production: Performance evaluation of M/TiO2 photocatalysts (M= Pd, Pt, Au) in different alcohol–water mixtures. 2015. 329: p. 355-367.
76. Tee, S.Y., et al., Recent progress in energy‐driven water splitting. 2017. 4(5): p. 1600337.
77. Zuo, F., L. Wang, and P.J.I.j.o.h.e. Feng, Self-doped Ti3+@ TiO2 visible light photocatalyst: Influence of synthetic parameters on the H2 production activity. 2014. 39(2): p. 711-717.
78. Police, A.K.R., et al., CaFe2O4 sensitized hierarchical TiO2 photo composite for hydrogen production under solar light irradiation. 2014. 247: p. 152-160.
79. Miranda, C., et al., Improved photocatalytic activity of g-C3N4/TiO2 composites prepared by a simple impregnation method. 2013. 253: p. 16-21.
80. Al-Hamdi, A.M., et al., Tin dioxide as a photocatalyst for water treatment: a review. 2017. 107: p. 190-205.
81. Puga, A.V.J.C.C.R., Photocatalytic production of hydrogen from biomass-derived feedstocks. 2016. 315: p. 1-66.
82. Cutler, T.D. and J.J.J.A.H.R.R. Zimmerman, Ultraviolet irradiation and the mechanisms underlying its inactivation of infectious agents. 2011. 12(1): p. 15-23.
83. Rincón, A.-G. and C.J.C.t. Pulgarin, Use of coaxial photocatalytic reactor (CAPHORE) in the TiO2 photo-assisted treatment of mixed E. coli and Bacillus sp. and bacterial community present in wastewater. 2005. 101(3-4): p. 331-344.
84. Ohtani, B.J.C.l., Preparing articles on photocatalysis—beyond the illusions, misconceptions, and speculation. 2008. 37(3): p. 216-229.
85. Soares, E.T., M.A. Lansarin, and C.C.J.B.J.o.C.E. Moro, A study of process variables for the photocatalytic degradation of rhodamine B. 2007. 24(1): p. 29-36.
86. Ahmad, H., et al., Hydrogen from photo-catalytic water splitting process: A review. 2015. 43: p. 599-610.
87. Shahrezaei, F., et al., Photocatalytic degradation of aniline using TiO2 nanoparticles in a vertical circulating photocatalytic reactor. 2012. 2012.
88. Reutergådh, L.B. and M.J.C. Iangphasuk, Photocatalytic decolourization of reactive azo dye: A comparison between TiO2 and us photocatalysis. 1997. 35(3): p. 585-596.
89. Huaxu, L., et al., Analyzing the effects of reaction temperature on photo-thermo chemical synergetic catalytic water splitting under full-spectrum solar irradiation: an experimental and thermodynamic investigation. 2017. 42(17): p. 12133-12142.
90. Chen, Y., et al., Enhanced photogenerated carrier separation in CdS quantum dot sensitized ZnFe 2 O 4/ZnIn 2 S 4 nanosheet stereoscopic films for exceptional visible light photocatalytic H 2 evolution performance. 2017. 9(18): p. 5912-5921.
91. Ai, L., et al., Bamboo-structured nitrogen-doped carbon nanotube coencapsulating cobalt and molybdenum carbide nanoparticles: an efficient bifunctional electrocatalyst for overall water splitting. 2018. 6(8): p. 9912-9920.
92. Tu, X., et al., Hierarchically ZnIn 2 S 4 nanosheet-constructed microwire arrays: template-free synthesis and excellent photocatalytic performances. 2018. 10(10): p. 4735-4744.
93. Ren, Y., D. Zeng, and W.-J.J.C.J.o.C. Ong, Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: a review. 2019. 40(3): p. 289-319.
94. Ayodhya, D. and G.J.M.t.e. Veerabhadram, A review on recent advances in photodegradation of dyes using doped and heterojunction based semiconductor metal sulfide nanostructures for environmental protection. 2018. 9: p. 83-113.
95. Chandrasekaran, S., et al., Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. 2019. 48(15): p. 4178-4280.
96. Shen, S., et al., Enhanced photocatalytic hydrogen evolution over Cu-doped ZnIn2S4 under visible light irradiation. 2008. 112(41): p. 16148-16155.
97. Chen, J., et al., Synthesis of hexagonal and cubic ZnIn 2 S 4 nanosheets for the photocatalytic reduction of CO 2 with methanol. 2015. 5(5): p. 3833-3839.
98. Shen, S., et al., Insights into photoluminescence property and photocatalytic activity of cubic and rhombohedral ZnIn2S4. 2011. 184(8): p. 2250-2256.
99. Chen, Y., et al., Exploring the different photocatalytic performance for dye degradations over hexagonal ZnIn2S4 microspheres and cubic ZnIn2S4 nanoparticles. 2012. 4(4): p. 2273-2279.
100. Wang, J., et al., Cubic quantum dot/hexagonal microsphere ZnIn 2 S 4 heterophase junctions for exceptional visible-light-driven photocatalytic H 2 evolution. 2017. 5(18): p. 8451-8460.
101. Chen, Y., et al., Controlled syntheses of cubic and hexagonal ZnIn 2 S 4 nanostructures with different visible-light photocatalytic performance. 2011. 40(11): p. 2607-2613.
102. Gou, X., et al., Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn (S, Se) 2 nano-/microstructures via facile solution route. 2006. 128(22): p. 7222-7229.
103. Yang, R., et al., ZnIn2S4‐Based Photocatalysts for Energy and Environmental Applications. 2021. 5(10): p. 2100887.
104. Wang, F., et al., Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: highly effective catalysts for the removal of toluene. 2012. 46(7): p. 4034-4041.
105. Li, Y., et al., A review on morphology engineering for highly efficient and stable hybrid perovskite solar cells. 2018. 6(27): p. 12842-12875.
106. Yang, R., et al., InVO4-based photocatalysts for energy and environmental applications. 2022. 428: p. 131145.
107. Chen, Z., et al., Low-temperature and template-free synthesis of ZnIn2S4 microspheres. 2008. 47(21): p. 9766-9772.
108. Fang, F., et al., Synthesis and photocatalysis of ZnIn2S4 nano/micropeony. 2010. 114(6): p. 2393-2397.
109. Kale, S.B., et al., Hierarchical 3D ZnIn 2 S 4/graphene nano-heterostructures: their in situ fabrication with dual functionality in solar hydrogen production and as anodes for lithium ion batteries. 2015. 17(47): p. 31850-31861.
110. Shen, J., et al., 3D hierarchical ZnIn2S4: the preparation and photocatalytic properties on water splitting. 2012. 37(22): p. 16986-16993.
111. Huang, J., et al., Template-free synthesis of ternary sulfides submicrospheres as visible light photocatalysts by ultrasonic spray pyrolysis. 2012. 2(9): p. 1825-1827.
112. Cheng, M., et al., Metal-organic frameworks for highly efficient heterogeneous Fenton-like catalysis. 2018. 368: p. 80-92.
113. Farrusseng, D., S. Aguado, and C.J.A.C.I.E. Pinel, Metal–organic frameworks: opportunities for catalysis. 2009. 48(41): p. 7502-7513.
114. Wang, H., et al., Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal. 2015. 174: p. 445-454.
115. Wang, H., et al., In situ synthesis of In2S3@ MIL-125 (Ti) core–shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis. 2016. 186: p. 19-29.
116. Meng, X.-B., et al., Metal-organic framework as nanoreactors to co-incorporate carbon nanodots and CdS quantum dots into the pores for improved H2 evolution without noble-metal cocatalyst. 2019. 244: p. 340-346.
117. Gomes Silva, C., et al., Water stable Zr–benzenedicarboxylate metal–organic frameworks as photocatalysts for hydrogen generation. 2010. 16(36): p. 11133-11138.
118. Dhakshinamoorthy, A., A.M. Asiri, and H.J.A.C.I.E. Garcia, Metal–organic framework (MOF) compounds: photocatalysts for redox reactions and solar fuel production. 2016. 55(18): p. 5414-5445.
119. Li, Y., et al., Metal–organic frameworks for photocatalysis. 2016. 18(11): p. 7563-7572.
120. Valvekens, P., et al., Metal–organic frameworks as catalysts: the role of metal active sites. 2013. 3(6): p. 1435-1445.
121. Dhakshinamoorthy, A., Z. Li, and H.J.C.S.R. Garcia, Catalysis and photocatalysis by metal organic frameworks. 2018. 47(22): p. 8134-8172.
122. Deria, P., et al., Beyond post-synthesis modification: evolution of metal–organic frameworks via building block replacement. 2014. 43(16): p. 5896-5912.
123. Liang, R., et al., A simple strategy for fabrication of Pd@ MIL-100 (Fe) nanocomposite as a visible-light-driven photocatalyst for the treatment of pharmaceuticals and personal care products (PPCPs). 2015. 176: p. 240-248.
124. Chen, Y., et al., Nanoparticles enwrapped with nanotubes: a unique architecture of CdS/titanate nanotubes for efficient photocatalytic hydrogen production from water. 2011. 21(13): p. 5134-5141.
125. Yuan, Y.-J., et al., Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production. 2018. 6(25): p. 11606-11630.
126. Cao, S.-W., et al., In-situ growth of CdS quantum dots on g-C3N4 nanosheets for highly efficient photocatalytic hydrogen generation under visible light irradiation. 2013. 38(3): p. 1258-1266.
127. Garcia-Esparza, A.T. and K.J.J.o.M.C.A. Takanabe, A simplified theoretical guideline for overall water splitting using photocatalyst particles. 2016. 4(8): p. 2894-2908.
128. Osterloh, F.E., Nanoscale effects in water splitting photocatalysis, in Solar Energy for Fuels. 2015, Springer. p. 105-142.
129. Grätzel, M., Photoelectrochemical cells, in Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. 2011, World Scientific. p. 26-32.
130. Serpone, N., E. Borgarello, and M.J.J.o.t.C.S. Grätzel, Chemical Communications, Visible light induced generation of hydrogen from H 2 S in mixed semiconductor dispersions; improved efficiency through inter-particle electron transfer. 1984(6): p. 342-344.
131. Serpone, N., et al., Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. 1995. 85(3): p. 247-255.
132. Bedja, I. and P.V.J.T.J.o.P.C. Kamat, Capped semiconductor colloids. Synthesis and photoelectrochemical behavior of TiO2-capped SnO2 nanocrystallites. 2002. 99(22): p. 9182-9188.
133. Bai, S., et al., Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. 2015. 44(10): p. 2893-2939.
134. Xu, Q., et al., S-scheme heterojunction photocatalyst. 2020. 6(7): p. 1543-1559.
135. Lin, B., et al., Facile fabrication of novel SiO2/g-C3N4 core–shell nanosphere photocatalysts with enhanced visible light activity. 2015. 357: p. 346-355.
136. Zhu, L., et al., Direct observations of the MOF (UiO-66) structure by transmission electron microscopy. 2013. 15(45): p. 9356-9359.
137. Polte, J.J.C., Fundamental growth principles of colloidal metal nanoparticles–a new perspective. 2015. 17(36): p. 6809-6830.
138. Hai, H.T., et al., Ind. Eng. Chem. Ind. Eng. Chem. 44, 1270-1277, 1952. 2007. 48(5): p. 1137-1142.
139. Chen, B.X., 探討鋯金屬有機框架中結構的缺陷程度對於混合基質薄膜之表現的影響. 2021.
140. Aghajanzadeh, M., et al., Preparation of metal–organic frameworks UiO-66 for adsorptive removal of methotrexate from aqueous solution. 2018. 28(1): p. 177-186.
141. Rosenthal, D. and T.I.J.J.o.t.A.C.S. Taylor, A Study of the Mechanism and Intermediates in the Precipitation of Cations with Thioacetamide1. 1960. 82(16): p. 4169-4174.
142. Chong, W.-K., et al., Insights from density functional theory calculations on heteroatom P-doped ZnIn2S4 bilayer nanosheets with atomic-level charge steering for photocatalytic water splitting. 2022. 12(1): p. 1-11.
143. Du, C., et al., Enhanced carrier separation and increased electron density in 2D heavily N-doped ZnIn 2 S 4 for photocatalytic hydrogen production. 2020. 8(1): p. 207-217.
144. Mao, S., et al., Au nanodots@ thiol-UiO66@ ZnIn2S4 nanosheets with significantly enhanced visible-light photocatalytic H2 evolution: The effect of different Au positions on the transfer of electron-hole pairs. 2021. 282: p. 119550.
145. Lei, Z., et al., Photocatalytic water reduction under visible light on a novel ZnIn 2 S 4 catalyst synthesized by hydrothermal method. 2003(17): p. 2142-2143.
146. Tsuji, I., A.J.J.o.P. Kudo, and P.A. Chemistry, H2 evolution from aqueous sulfite solutions under visible-light irradiation over Pb and halogen-codoped ZnS photocatalysts. 2003. 156(1-3): p. 249-252.
147. Lei, Z., et al., Sulfur-substituted and zinc-doped In (OH) 3: A new class of catalyst for photocatalytic H2 production from water under visible light illumination. 2006. 237(2): p. 322-329.
148. 黃彥禎, 利用微波水熱法提升SiO2@ZnIn2S4奈米光觸媒表面均質與結晶性及其光催化產氫研究. 2018, National Central University: Taiwan.
149. 王鵬華, 提升SiO2@ZnIn2S4奈米核殼結構光觸媒光催化產氫研究 2020, National Central University: Taiwan.
150. Xie, Z., et al., Reactions of CO2 and ethane enable CO bond insertion for production of C3 oxygenates. 2020. 11(1): p. 1-8.
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2022-9-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明