博碩士論文 109223057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:141 、訪客IP:18.191.211.66
姓名 朱奇祐(Chi-Yu Chu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 作為高開路電壓的反式錫鈣鈦礦太陽能電池之WO3電洞傳遞層的研究
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-31以後開放)
摘要(中) 反式錫鈣鈦礦太陽能電池中錫鈣鈦礦層(Tin Perovskite簡稱TPsk)是沉積在電洞傳遞層(Hole transport layer簡稱HTL)上,HTL的品質將會影響TPsk的沉積與品質。本研究以熱蒸鍍的方式製備WO3作為反式錫鈣鈦礦太陽能電池的HTL,WO3的價帶能(-5.33 eV)與本實驗所使用TPsk (FA0.98EDA0.01SnI3,價帶能為-5.57 eV)之能量差比PEDOT:PSS的價帶能(-5.15 eV)與TPsk之能量差小,因此以WO3為HTL時,電洞在元件內傳輸時的能量損失較少,所組裝元件有較大的開路電壓(Open circuit voltage,Voc)及光電轉換效率(Power conversion efficiency,PCE),以WO3及PEDOT:PSS膜作為HTL所組裝元件的Voc分別為0.59 V和0.53 V,最高PCE則分別為9.44%及8.93%。WO3膜為HTL所組裝的元件在手套箱中經2520小時仍可維持原效率的84% ,而PEDOT:PSS膜為HTL所組裝的元件在相同保存條件下經2520小時僅維持原效率67%。而元件的熱穩定性測試中,WO3膜為HTL所組裝的元件在手套箱中加熱60C經2小時仍可維持原效率的72%,而PEDOT:PSS膜為HTL所組裝的元件在相同測試條件下僅維持原效率58%。WO3膜可經UV/O3後處理提高膜與TPsk前驅溶液的相容性,使沉積其上的TPsk品質變好,由SEM表面形貌圖可看見沉積在WO3的錫鈣鈦礦膜顆粒較大且平整。時間解析螢光光譜也顯示TPsk沉積在WO3膜上的載子生命週期比沉積在PEDOT:PSS上短,意味著WO3膜比PEDOT:PSS能更快速的將電洞由TPsk萃取出來並傳遞至陽極。
摘要(英) In inverted tin perovskite solar cells (referred as TPSCs), the tin perovskite layer (referred as TPsk) is deposited on top of the hole transport layer (referred as HTL). Therefore the quality of the HTL will be effected by the deposition methods and the quality of the resulting TPsk layer. In this study, WO3 prepared by thermal evaporation was used as an HTL for inverted tin perovskite solar cells. The valence band energy of WO3 (-5.33 eV) closer (compared to the generally used PEDOT:PSS with a valence band energy of -5.15 eV) to that of TPsk (FA0.98EDA0.01SnI3 with the valence band energy of -5.57 eV) used in this experiment. Therefor WO3 can be a better HTL than PEDOT:PSS. The Voc and PCE of TPSCs based on WO3 and PEDOT:PSS HTLs are 0.59 V and 0.53 V, 9.44% and 8.93% respectively. Without packing, the TPSC based on WO3 HTL can maintain 84% of the original efficiency after 2520 hours in the glove box, while that assembled with PEDOT:PSS HTL 33% of the original efficiency lost under the same test conditions. When the cells were heated at 60oC in a glove box, the TPSCs assembled with WO3 HTL can maintain 72% of the original efficiency after heating for 2 hours, while the TPSC based on PEDOT:PSS HTL can only maintain 58% of the original efficiency. SEM surface topography revealed that the tin perovskite grains deposited on WO3 are larger and flatter compared to those coated on top of PEDOT:PSS. Time-resolved photoluminescence spectroscopy also shows that the carrier lifetime of TPsk deposited on WO3 film is shorter than that deposited on PEDOT:PSS meaning that WO3 film can extract holes from TPsk and transfer to the anode more quickly than PEDOT:PSS.
關鍵字(中) ★ 錫鈣鈦礦
★ 太陽能電池
關鍵字(英) ★ tin perovskite
★ solar cells
論文目次 目錄
摘要
謝誌 XI
目錄 XII
圖目錄 XVIII
表目錄 XXIV
第1章 緒論 1
1-1、 前言 1
1-2、 鈣鈦礦太陽能電池 2
1-2-1. 反式元件架構的工作原理 3
1-2-2. 電洞傳遞層(HTL)應用於反式錫鈣鈦礦太陽能電池需具備的條件 4
1-2-3. 無機電洞傳遞材料的優點 5
1-2-4. 無機電洞傳遞層應用於鈣鈦礦太陽能電池相關文獻 6
1-3、 錫鈣鈦礦太陽能的研究歷程 6
1-3-1. 第一個以MASnI3作為吸收層的錫鈣鈦礦太陽能電池研究 7
1-3-2. 第一個以CsSnI3作為吸收層的錫鈣鈦礦太陽能電池研究 9
1-3-3. 第一個以FASnI3作為吸收層並以SnF2作為添加劑的錫鈣鈦礦太陽能電池研究 10
1-3-4. 目前文獻中錫鈣鈦礦太陽能電池的最高光電轉換效率 13
1-3-5. 目前文獻中無機電洞傳遞層所組裝錫鈣鈦礦太陽能電池的最高光電轉換效率 15
1-4、 製備錫鈣鈦礦膜的方法 17
1-4-1. 以一步合成法製備錫鈣鈦礦膜 17
1-4-2. 以兩步合成法製備錫鈣鈦礦膜 18
1-4-3. 以一步反溶劑法製備錫鈣鈦礦膜 19
1-5、 不同的電洞傳遞層組裝成反式鈣鈦礦太陽能電池 20
1-5-1. 尖晶石結構作為反式鉛鈣鈦礦太陽能電池之電洞傳遞層 21
1-5-2. MoO3作為反式鉛鈣鈦礦太陽能電池之電洞傳遞層 21
1-5-3. NiOx作為反式錫鈣鈦礦太陽能電池之電洞傳遞層 23
1-6、 不同方式製備WO3膜 23
1-6-1. 以Nanocrystals製備WO3膜作為電洞傳遞層並應用於反式鉛鈣鈦礦太陽能電池 23
1-6-2. 以Sol-gel法製備WO3膜作為電洞傳遞層並應用於一般式鉛銫鈣鈦礦太陽能電池 24
1-6-3. WO3的結構與其性質 25
1-7、 實驗動機 27
第2章 實驗方法 28
2-1、 實驗藥品與儀器 28
2-1-1. 藥品 28
2-1-2. 儀器設備 30
2-2、 反式錫鈣鈦礦太陽能電池組裝步驟 31
2-2-1. 前置作業 31
2-2-2. 元件組裝步驟 32
2-3、 儀器原理及樣品製備 37
2-3-1. 太陽光模擬器的原理及光電轉換效率、暗電流與遲滯現象的量測(Solar Simulator, Enlitech SS-F5) 37
2-3-2. 太陽能電池外部量子效率量測系統(Incident Photon to Current Conversion Efficiency (IPCE), QE-S3011) 39
2-3-3. X-ray繞射光譜儀(X-Ray Diffractometer, BRUKER D8 Discover) 40
2-3-4. 紫外光/可見光/近紅外光吸收光譜儀(Ultraviolet–visible-NIR spectroscopy, HITACHI U-4100) 41
2-3-5. 光致螢光光譜儀(Photoluminescence Spectrometer, Uni think UniRAM) 42
2-3-6. 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, NOVA Nano SEM-230) 43
2-3-7. UPS紫外光電子能譜儀(Ultraviolet photoelectron spectroscopy, Thermo VG-Scientific/Sigma Probe) 44
2-3-8. XPS光電子能譜儀(X-ray photoelectron spectroscopy, Thermo VG-Scientific/Sigma Probe) 45
2-3-9. 接觸角量測儀(Contact angle, Grandhand Ctag01) 46
3-3-10. 空間電荷限制電流的原理及量測(Space Charge-Limited Current, SCLC) 47
第3章 結果與討論 50
3-1、 錫鈣鈦礦層的製備條件優化 50
3-1-1. 篩選錫鈣鈦礦前驅液的濃度製備成膜所組裝之元件的光伏表現 50
3-1-2. 篩選錫鈣鈦礦前驅液中SnI2 :有機鹵化物之比例製備成膜所組裝之元件的光伏表現 52
3-1-3. 錫鈣鈦礦前驅液旋轉塗佈時不同的轉速所組裝之元件的光伏表現 54
3-1-4. 篩選不同比例的混溶劑配製錫鈣鈦礦前驅溶液 55
3-1-5. 篩選錫鈣鈦礦前驅膜的加熱溫度 57
3-2、 WO3電洞傳遞層的製備條件篩選 59
3-2-1. 篩選WO3電洞傳遞層之厚度 59
3-2-2. WO3膜的修飾 60
3-3、 錫鈣鈦礦層之優化 70
3-3-1. 細篩滴入反溶劑的時機點 70
3-4、 不同電洞傳遞層所組裝之元件的IPCE值及遲滯因子 74
3-5、 不同電洞傳遞層所組裝之元件手套箱中的長時間穩定性
3-6、 不同電洞傳遞層所組裝之元件大氣下的長時間穩定性 78
3-7、 不同電洞傳遞層所組裝之元件的熱穩定性 79
3-8、 不同電洞傳遞層的SEM表面形貌 80
3-9、 沉積在不同電洞傳遞層上之錫鈣鈦礦膜的SEM表面形貌及剖面圖 81
3-10、 沉積在不同電洞傳遞層上之錫鈣鈦礦膜的XRD圖 83
3-11、 PEDOT:PSS膜及WO3膜的UV-Vis穿透光譜 84
3-12、 不同電洞傳遞層之前置軌域能階 86
3-13、 不同電洞傳遞層上沉積錫鈣鈦礦的XPS能譜圖 88
3-14、 沉積在不同電洞傳遞層上之錫鈣鈦礦膜的PL及TRPL光譜 90
3-15、 錫鈣鈦礦前驅溶液與PEDOT:PSS膜及WO3膜的相容性 91
3-16、 不同電洞傳遞層所組裝之反式錫鈣鈦礦太陽能電池之穩態電流密度及效率輸出之影響 93
3-17、 不同電洞傳遞層所組裝之反式錫鈣鈦礦太陽能電池之暗電流的影響 94
3-18、 不同電洞傳遞層之電洞遷移率及沉積在不同電洞傳遞層上錫鈣鈦礦層之缺陷密度 96
第4章 結論 100
參考文獻 101
參考文獻 [1] Rahul Singh, Pramod K. Singh, B. Bhattacharya, Hee-Woo Rhee. Review of current progress in inorganic hole-transport materials for perovskitesolar cells, Applied Materials Today. 2018, 14, 175-200
[2] Yan Li, Bin Ding, Qian-Qian Chu, Guan-JunYang, Mingkui Wang, Chang-Xin Li and Chang-Jiu Li. Ultra-high open-circuit voltage of perovskite solar cells induced by nucleation thermodynamics on rough substrates, Sci. Rep., 2017, 7, 46141-46151.
[3] Feng Hao, Constantinos C. Stoumpos, Duyen Hanh Cao, Robert P. H. Chang and Mercouri G. Kanatzidis. Lead-free solid-state organic-inorganic halide perovskite solar cells, Nature Photon., 2014, 8, 489-494.
[4] Mulmudi Hemant Kumar, Sabba Dharani, Wei Lin Leong, Pablo P. Boix, Rajiv Ramanujam Prabhakar, Tom Baikie, Chen Shi, Hong Ding Ramamoorthy Ramesh, Mark Asta, Michael
Gra¨tzel, Subodh G. Mhaisalkar and Nripan Mathews. LeadFree Halide Perovskite Solar Cells with High Photocurrents
Realized Through Vacancy Modulation, Adv. Mater., 2014, 26,
7122-7127.
[5] Wei-qiang Liao, De-wei Zhao, Yue Yu, Corey R. Grice, Changlei Wang, Alexander J. Cimaroli, Philip Schulz, Weiwei Meng, KaiZhu, Ren-Gen Xiong and Yanfa Yan. Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%, Adv. Mater., 2016, 28, 9333-9340.
[6] Bin-Bin Yu, Zhenhua Chen, Yudong Zhu, Yiyu Wang, Bing Han, Guocong Chen, Xusheng Zhang, Zheng Du, and Zhubing He.
Heterogeneous 2D/3D Tin-Halides Perovskite Solar Cells with
Certified Conversion Efficiency Breaking 14%, Adv. Funct.
Mater. 2021, 33, 2102055-2102065.
[7] Min Chen, Qing-shun Dong, Felix T. Eickemeyer, Yu-hang Liu, Zheng-hong Dai, Alexander D. Carl, Behzad Bahrami, Ashraful H. Chowdhury, Ronald L. Grimm, Yan-tao Shi, Qi-quan Qiao, Shaik Mohammed Zakeeruddin, Michael Gratzel, and Nitin P. Padture. High-Performance Lead-Free Solar Cells Based on TinHalide Perovskite Thin Films Functionalized by a Divalent
Organic Cation, ACS Energy Lett., 2020, 5, 2223-2230
[8] Zong-long Zhu, Chu-Chen Chueh, Nan Li, Cheng-yi Mao, and
Alex K.-Y. Jen. Realizing Efficient Lead-free Formamidium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route, Adv. Mater., 2017, 30, 1703800.
[9] Seon Joo Lee, Seong Sik Shin, Young Chan Kim, Dasom Kim,
Tae Kyu Ahn, Jun Hong Noh, Jangwon Seo and Sang Il Seok.
Fabrication of Efficient Formamidinium Tin Iodide Perovskite
Solar Cells through SnF2-Pyrazine Complex, J. Am. Chem. Soc., 2016, 138, 3974-3977.
[10] Ju-Ho Lee, Young-Wook Noh, In-Su Jin, Sang Hyun Park and JaeWoong Jung. Efficient Perovskite Solar Cells with Negligible Hysteresis Enabled by Sol-Gel Driven Spinel Nickel Cobalt Oxide as Hole Transport Layer, J. Mater. Chem. C, 2019, 7, 7288-7298
[11] Zong-Liang Tseng, Lung-Chien Chen, Chien-Hung Chiang,
Sheng-Hsiung Chang, Cheng-Chiang Chen, Chun-Guey Wu.
Efficient inverted-type perovskite solar cells using UV-ozone treated MoOx and WOx as hole transporting layers, Sol. Energy 2016, 139, 484-488
[12] Yu-qin Liao, He-fei Liu, Wen-jia Zhou, Dong-wen Yang, Yue-qun Shang, Zhi-fang Shi, Bing-han Li, Xian-yuan Jiang, Li-jun Zhang, Li-Na Quan, Rafael Quintero-Bermudez, Brandon R. Sutherland, Qi-xi Mi, Edward H. Sargent, and Zhi-jun Ning. Highly Oriented Low-Dimensional Tin Halide Perovskites with Enhanced Stability and Photovoltaic Performance, J. Am. Chem. Soc., 2017, 139, 6693-6699
[13] Zhi-wei Li. Stable Perovskite Solar Cells Based on WO3
Nanocrystals as Hole Transport Layer, Chemistry Letters, 2015, 44, 1140-1141
[14] Guan-Woo Kim, Gyeon-gho Kang, Kyoung-won Choi, Hyun-tae
Choi, and Taiho Park. Solution Processable Inorganic–Organic
Double-Layered Hole Transport Layer for Highly Stable Planar
Perovskite Solar Cells, Adv. Energy Mater. 2018, 8, 1801386-
1801393
[15] Persson Kristin. Materials Data on WO3 (SG:221) by Materials
Project. 2014 Nov. DOI: 10.17188/1194398
Available from: https://materialsproject.org/materials/mp-19390/
[16] Persson Kristin. Materials Data on WO3 (SG:14) by Materials
Project. 2014 Nov. DOI: 10.17188/1193818
Available from: https://materialsproject.org/materials/mp-19033/
[17] Feng-xian Xie, Chun-Chao Chen, Yong-zhen Wu, Xing Li, Molang Cai, Xiao Liu, Xu-dong Yang, Li-yuan Han. Vertical
recrystallization for highly efficient and stable formamidiniumbased inverted-structure perovskite solar cells, Energy Environ. Sci. 2 , 10, 1942-1949.
[18] Hua Zhang, Huan Wang, Hong-mei Zhu, Chu-Chen Chueh, Wei
Chen, Shi-he Yang, Alex K.-Y. Jen. Low-Temperature SolutionProcessed CuCrO2 Hole-Transporting Layer for Efficient and Photostable Perovskite Solar Cells, Adv. Energy Mater. 2 , 8, 1702762-1702770.
[19] Chien-Hung Chiang, Cheng-Chiang Chen, Mohammad Khaja
Nazeeruddin, Chun-Guey Wu. A newly developed lithium cobalt
oxide super hydrophilic film for large area, thermally stable and highly efficient inverted perovskite solar cells, J. Mater. Chem. A, 2, 6, 13751-13760.
[20] We-ihai Sun, Yun-long Li, Sen-yun Ye, Hai-xia Rao, Wei-bo Yan, Hai-tao Peng, Yu Li, Zhi-wei Liu, Shu-feng Wang, Zhi-jian Chen, Li-xin Xiao, Zu-qiang Bian, Chun-hui Huang. High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer, Nanoscale, 2 , 8, 10806-10813.
[21] Hai-xia Rao, Wei-hai Sun, Sen-yun Ye, Wei-bo Yan, Yun-long Li, Hai-tao Peng, Zhi-wei Liu, Zu-qiang Bian, Chun-hui Huang. Solution-Processed CuS NPs as an Inorganic Hole-Selective Contact Material for Inverted Planar Perovskite Solar Cells, ACS Appl. Mater. Interfaces, 2 , 8, 7800-7805.
[22] Wei-hai Sun, Sen-yun Ye, Hai-xiao Rao, Yun-long Li, Zhi-wei Liu, Li-xin Xiao, Zhi-jian Chen, Zu-qiang Bian, Chun-hui Huang. Room-Temperature and Solution-Processed Copper Iodide as Hole Transport Layer for Inverted Planar Perovskite Solar Cells, Nanoscale, 2 , 8, 15954-15960.
[23] Xiang Yao, Jun Qi, Wen-zhan Xu, Xiao-fang Jiang, Xiong Gong, Yong Cao. Cesium-Doped Vanadium Oxide as the Hole
Extraction Layer for Efficient Perovskite Solar Cells, ACS
Omega, 2 , 3, 1117-1125.
[24] Ke Chen, Pan Wu, Wen-qiang Yang, Rui Su, De-ying Luo, Xiaoyu Yang, Yong-guang Tu, Rui Zhu and Qi-huang Gong. Lowdimensional Perovskite Interlayer for Highly Efficient Lead-free Formamidinium Tin Iodide Perovskite Solar Cells, Nano Energy, 2, 49, 411-418.
[25] Cong Liu, Jin Tu, Xiao-tian Hu, Zeng-qi Huang, Xiang-chuan Meng, Jia Yang, Xiao-peng Duan, Li-cheng Tan, Zhen Li, and Yi-wang Chen. Enhanced Hole Transportation for Inverted TinBased Perovskite Solar Cells with High Performance and
Stability, Adv. Funct. Mater., 2019, 29, 1808059.
[26] Syed A. Moiz, Iqbal. A. Khan, Waheed A. Younis and Khasan S. Karimov. Space Charge-Limited Current Model for Polymers, Conducting Polymers, 2016, chapter 5, 91-117.
[27] Gui-ying Xu, Peng-qing Bi, Shu-hui Wang, Rong-ming Xue,
Jing-wen Zhang, Haiyang Chen, Wei-jie Chen, Xiao-tao Hao,
Yao-wen Li and Yong-fang Li. Integrating Ultrathin BulkHeterojunction Organic Semiconductor Intermediary for HighPerformance Low-Bandgap Perovskite Solar Cells with Low
Energy Loss, Adv. Funct. Mater., 2018, 28, 1804427.
[28] Qing-feng Dong, Yan-jun Fang, Yu-chuan Shao, Padhraic
Mulligan, Jie Qiu, Lei Cao, Jin-song Huang. Electron-hole
diffusion lengths > 175 mm in solution-grown CH3NH3PbI3
single crystals, Science, 2015, 347, 967-970.
[29] Cong Liu, Jin Tu, Xiao-tian Hu, Zeng-qi Huang, Xiang-chuan Meng, Jia Yang, Xiao-peng Duan, Li-cheng Tan, Zhen Li, and Yi-wang Chen. Enhanced Hole Transportation for Inverted TinBased Perovskite Solar Cells with High Performance and
Stability, Adv. Funct. Mater., 2019, 29, 1808059.
[30] Hai-mang Yi, Dian Wang, Lei-ping Duan, Faiazul Haque,
Cheng Xu, Yu Zhang, Gavin Conibeer, Ashraf Uddin. Solutionprocessed WO3 and water-free PEDOT:PSS composite for hole transport layer in conventional perovskite solar cell,
Electrochimica Acta. 2019, 319, 349-358.
[31] Xiang-yue Meng, Tian-hao Wu, Xiao Liu, Xin He, Takeshi
Noda, Yan-bo Wang, Hiroshi Segawa, and Liyuan Han. Highly
Reproducible and Efficient FASnI3 Perovskite Solar Cells
Fabricated with Volatilizable Reducing Solvent, J. Phys. Chem. Lett 2 2 , 11, 2965-2971.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2022-9-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明