博碩士論文 105683003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.237.87.69
姓名 吳宗祐(Tsung-Yu Wu)  查詢紙本館藏   畢業系所 太空科學與工程研究所
論文名稱 利用全球導航衛星系統全電子含量觀察電離層月相效應
(Ionospheric lunar phase effects observed by GNSS total electron content)
相關論文
★ 台灣地區1996年散塊E層之變化★ 2000年4月6日磁暴研究
★ 利用GPS觀測與IRI 模擬研究1997及2000年台灣經度赤道異常峰之變化★ 台灣地區1996及2000年電離層散狀F層與全球定位系統相位擾亂之比較
★ 電離層地震前兆之研究★ 電離層波動垂直能量傳播之研究
★ 南美洲磁赤道地區散狀F層於太陽活動極大期之研究★ 台灣地區中界層於第22-23太陽週期間之特性研究
★ 利用全球定位系統觀測電離層地震前兆★ 臺灣地區電離層季節異常與太陽活動之相關性研究
★ 台灣地區地震與閃電之研究★ 台灣地區地震前之電離層電子濃度異常
★ 磁暴時低緯度電離層變化★ 電離層赤道異常與赤道電噴流
★ 日出前及日落後電離層高度變化之研究★ 電離層探測儀與全球定位系統聯合觀測電離層F層電漿密度不規則體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電離層赤道異常(EIA)是低緯度電離層中最顯著的結構,其峰值分佈在±15°N磁緯度的兩團高濃度帶電粒子。形成原因來自磁赤道的北向水平磁場與大氣潮汐中性風產生之東向電場,並令帶電粒子產生E×B向上漂移,位於較高高度的帶電粒子再受到重力與壓力梯度力延著磁場線傳輸,並堆積在磁赤道兩側產生高濃度帶電粒子,形成所謂的「赤道異常峰」帶,這個傳輸過程稱為赤道噴泉效應。中性風、大氣化學成份組成、緯向電場均為影響電離層赤道異常的主要因子。此外,月球重力對於電離層中性風發電機制也伴演一定程度之角色,因此,月相(Lunar phase)變化可以調節E×B向上漂移,進而影響赤道噴泉效應。
本論文利用全球導航衛星系統(GNSS)與全球電離層圖(GIM)全電子含量(TEC)觀察2000至2017年間的電離層赤道異常峰之強度、時間以及緯度對月相之響應,並且研究全日食事件與平流層驟暖事件發生時的電離層月相效應。2000至2017的統計分析顯示月相會以14.76天週期調節電離層赤道異常峰的時間和緯度。新月或滿月時的電離層赤道異常峰頂峰時刻相較於18年的平均時間提早約20–40分鐘; 上弦月或下弦月時的頂峰時刻落後18年平均約20–40分鐘。此外,電離層赤道異常峰之緯度分別在新月或滿月後 2-5 天向極區方向偏移1度,在上弦月或下弦月後 2-5 天則向磁赤道方向偏移1度。14.76天週期的赤道異常峰之頂峰時間和緯度訊號的變化幅度,在地球位於軌道近日點時最為顯著,在地球位於軌道遠日點則最微小,其頂峰時刻和緯度的最大振幅分別達到1小時與2度。此一現象說明太陽與地球軌道的距離與傾角也在電離層赤道異常扮演著關鍵的角色。由於赤道異常峰頂峰時刻以14.76天週期變化,且於新月或滿月日最為領先,這導致全電子含量於08:00太陽當地時間(Solar local time; SLT)之後增強,反之則在 14:00 SLT 之後減弱。相對的,因為頂峰時刻在上弦月或下弦月最為落後,造成全電子含量在08:00 SLT後減弱,在 14:00 SLT 後增強。另一方面,本論文採用2000-2013 年間的全球電離層圖全電子含量和12個平流層驟暖事件來檢驗月相與平流層驟暖事件之間的關係。統計結果顯示,無論月相如何,平流層驟暖都可以進一步令電離層赤道異常頂峰時刻提前0.47小時。然而,由於赤道異常峰頂峰時刻受平流層驟暖調節的幅度不如月相效應顯著,因此電離層全電子含量的增強和減弱特徵受月相主導。平流層驟暖如果不是發生在新月或滿月前後的日子,可能無法造成全電子含量在早上增強。此外,電離層日食效應包含全電子含量的主要衰退(Major depression; MD)、日食前增強(Pre-ascension; PA)、日落後增強(Sunset ascension; SA)和二次衰退(Secondary depression; SD)。本論文以2200多個全球導航衛星系統地面接收站全電子含量觀察2017年8月21日的日全食事件與月相效應。結果顯示,由於月相效應的影響,PA分別在14:00 SLT前後得到增強和抑制;SA和SD分別在14:00–20:00 SLT 期間被抑制和增強;MD在14:00 SLT 之前被低估,在14:00之後被高估。雖然月相效應難以被避免,如果利用接近日食天的日子建立參考值可以大幅降低觀測到的月相效應,並且增強日食訊號。結論上,月相可以顯著調節電離層赤道異常峰的頂峰時刻、緯度位置並主導全電子含量的增減特徵,因此在研究平流層驟暖或日食事件時應考慮電離層月相效應。
摘要(英) The Equatorial Ionization Anomaly (EIA) is the most pronounced low-latitude ionospheric structure, featuring two dense bands of electron density around ±15°N magnetic latitude straddling the magnetic equator. In this study, the total electron content (TEC) derived from Global Navigation Satellite System (GNSS) and Global Ionosphere Map (GIM) in 2000–2017 are utilized to examine the response of EIA crests strength, appearance time, and latitude to lunar phase, as well as lunar phase effects during the stratospheric sudden warming (SSW) and the total solar eclipse. The 18‐year statistical analysis shows that lunar phases can modulate the appearance time and latitude of the EIA crests with a 14.76-day periodicity. The EIA crests on the new moon or full moon lead those of the 18‐year average by about 20–40 minutes. By contrast, the EIA crests on the first quarter or third quarter lag those of the 18‐year average by about 20–40 minutes. Meanwhile, EIA crests move the furthest poleward and equatorward with 1° latitude 2–5 days after the new moon or full moon and the first quarter or third quarter, respectively. The maximum amplitude of 14.76-day variations in the appearance time extends to 1 hour and the latitude reaches 2°, which appears around the perihelion. By contrast, the minimum amplitude of the 14.76-day variation occurs around the aphelion. Since the appearance time of EIA crests varies with a 14.76-day period, the TEC around the new moon or full moon yields a larger value after 08:00 solar local time (SLT) but a smaller value after 14:00 SLT. On the contrary, around the first quarter or third quarter, TEC decreases after 08:00 SLT and increases after 14:00 SLT. This study further employs the GIM TEC and 12 SSW events during 2000–2013 to examine the relation between lunar phases and SSWs. The statistical analysis shows that SSWs can advance the appearance time of the EIA crests by about 0.47 hours regardless of lunar phases. However, since the modified EIA crest appearance time by the SSWs is smaller than that by the lunar phases, the TEC increases/decreases pattern is dominated by lunar phases. Thus, SSW may not result in an enhancement of TEC in the morning sector, except around the new moon or full moon days. On the other hand, the GNSS TEC is utilized to analyze the 14.76-day signatures in the solar eclipse effects of the major depression (MD), pre-ascension (PA), sunset ascension (SA), and secondary depression (SD) on 21 August 2017. The results show that due to the lunar phase effects, PAs are enhanced and suppressed before and after 14:00 SLT, respectively; SAs and SDs are suppressed and enhanced during 14:00–20:00 SLT, respectively; and MDs have been underestimated before and overestimated after 14:00 SLT. While, a reference nearby the solar eclipse day(s) can minimize the lunar phase effect but enhance solar eclipse signatures. In conclusion, lunar phases can significantly modulate the appearance time, latitude, and pattern of daily TEC of the EIA crests, which should be considered when studying an SSW or a total solar eclipse.
關鍵字(中) ★ 電離層月相效應
★ 電離層赤道異常
★ 電離層平流層驟暖效應
★ 電離層日食效應
關鍵字(英) ★ Ionospheric lunar phase effect
★ Equatorial ionization anomaly
★ Stratospheric sudden warming effect
★ Solar eclipse effect
論文目次 摘要 i
Abstract iii
誌謝 v
Table of Contents vi
List of Figures vii
List of Tables xi

Chapter 1 Introduction 1
1.1 Motivation and Objective 1
1.2 Ionosphere and equatorial ionization anomaly (EIA) 4
1.3 Tides 11

Chapter 2 Observation Instruments 21
2.1 Global Navigation Satellite System Total Electron Content (GNSS TEC) 21

Chapter 3 Lunar gravitational effects of EIA crest 29
3.1 Statistical analysis of EIA crest versus lunar phases 29
3.2 Discussions and remarks 48

Chapter 4 Response of daily TEC to lunar phases and stratospheric sudden warmings (SSWs) 59
4.1 Lunar phase effects in TEC 62
4.2 SSW effects in TEC 66
4.3 Statistical analysis of TEC and EIA crest on various lunar phases and SSWs 71
4.4 Discussion and remarks 91

Chapter 5 Lunar phase effects in the total solar eclipse on 21 August 2017 94
5.1 GNSS TEC during the 21 August 2017 solar eclipse 95
5.2 Discussion and remarks 111

Chapter 6 Conclusion 120

Reference 122
參考文獻 Anderson, D. N. (1973). A theoretical study of the ionospheric F‐region equatorial anomaly, I, Theory. Planetary and Space Science, 21, 409–419. https://doi.org/10.1016/0032‐0633(73)90040‐8
Appleton, E. V. (1946). Two anomalies in the ionosphere. Nature, 157, 691.
Balan, N., & Bailey, G. J. (1995). Equatorial plasma fountain and its effects: Possibility of an additional layer. Journal of Geophysical Research, 100(A11), 21,421–21,432.
Bilitza, D. (2001). International reference ionosphere 2000. Radio Science, 36, 261–275.
Butler, A. H. et al. (2015). Defining sudden stratospheric warmings. Bull. Am. Meteor. Soc. 96(11), 1913–1928.
Chapman, S., & Lindzen, R. S. (1970). Atmospheric tides: Thermal and gravitational (pp. 200). New York: Gordon and Breach.
Charlton, A. J., & Polvani, L. M. (2007). A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. Journal of Climate, 20(3), 449–469.
Chen, C. H., Liu, J. Y., Yumoto, K., Lin, C. H., & Fang, T. W. (2008). Equatorial ionization anomaly of the total electron content and equatorial electrojet of ground‐based geomagnetic field strength. Journal of Atmospheric and Solar‐Terrestrial Physics, 70, 2172–2183. https://doi.org/10.1016/j.jastp.2008.09.021
Cherniak, I., & Zakharenkova, I. (2018). Ionospheric total electron content response to the great American solar eclipse of 21 August 2017. Geophysical Research Letters, 45, 1199–1208. https://doi.org/10.1002/2017GL075989
Coster, A. J., Goncharenko, L., Zhang, S.-R., Erickson, P. J., Rideout, W., & Vierinen, J. (2017). GNSS observations of ionospheric variations during the 21 August 2017 solar eclipse. Geophysical Research Letters, 44, 12041–12048. https://doi.org/10.1002/2017GL075774
David Morrison & Tobias Owen. (1996). The Planetary System.
Davies, K. (1990). Ionospheric radio. IEE electromagnetic wave series, (Vol. 31, p. 580). London: Peter Peregrinus ltd.
Duncan, R. A. (1960). The equatorial F-region of the ionosphere. Journal of Atmospheric and Terrestrial Physics, 18, 89–100. https://doi.org/ 10.1016/0021‐9169(60)90081‐7.
Fang, T. W., Richmond, A. D., Liu, J. Y., & Maute, A. (2008a). Wind dynamo effects on ground magnetic perturbations and vertical drifts. Journal of Geophysical Research, 113, A11313. https://doi.org/10.1029/2008JA013513.
Fang, T. W., Richmond, A. D., Liu, J. Y., Maute, A., Lin, C. H., Chen, C. H., & Harper, B. (2008b). Model simulation of the equatorial electrojet in the Peruvian and Philippine sectors. Journal of Atmospheric Solar Terrestrial Physics, 70, 2203–2211.
Fejer, B. G. et al. (2010). Lunar-dependent equatorial ionospheric electrodynamic effects during sudden stratospheric warmings. Journal of Geophysical Research 115, A00G03. https://doi.org/10.1029/2010JA015273.
Forbes, J. M. (1982). Atmospheric tides. II. The solar and lunar semidiurnal components. Journal of Geophysical Research, 87, 5241–5252.
Forbes, J. M. & Zhang, X. (2012). Lunar tide amplification during the January 2009 stratosphere warming event: observations and theory. Journal of Geophysical Research 117, A12312. https://doi.org/10.1029/2012JA017963.
Forbes, J. M., & Zhang, X. (2019). Lunar tide in the F region ionosphere. Journal of Geophysical Research: Space Physics, 124, 7654–7669. https://doi.org/10.1029/2019JA026603
Goncharenko, L. P., J. L. Chau, H.‐L. Liu, and A. J. Coster (2010a), Unexpected connections between the stratosphere and ionosphere, Geophys. Res. Lett., 37, L10101, doi:10.1029/2010GL043125.
Goncharenko, L. P., Coster, A. J., Chau, J. L. & Valladares, C. E. (2010b). Impact of sudden stratospheric warmings on equatorial ionization anomaly. Journal of Geophysical Research 115, A00G07. https://doi.org/10.1029/2010JA015400
Hanson, W. B., & Moffett, R. J. (1966). Ionization transport effects in the equatorial F region. Journal of Geophysical Research, 71, 5559
Hofmann-Wellenhof, B., Lichtenegger, H., and Collins, J. (1994). GPS Theory and Practice, 3rd version, Springer-Verlag, Wien, New York
Huang, C. R., Liu, C. H., Yeh, K. C., Lin, K. H., Tsai, W. H., Yeh, H. C., & Liu, J. Y. (1999). A study of tomographically reconstructed ionospheric images during a solar eclipse. Journal of Geophysical Research, 104, 79–94.
Jin, H. et al. (2012). Response of migrating tides to the stratospheric sudden warming in 2009 and their effects on the ionosphere studied by a whole atmosphere-ionosphere model GAIA with COSMIC and TIMED/SABER observations. Journal of Geophysical Research, 117, A10323. https://doi.org/10.1029/2012JA017650
Kelley, M. C. (1989). The Earth′s ionosphere: Plasma physics and electrodynamics. San Diego, Calif: Academic.
Limpasuvan, V., Thompson, D. W., and Hartmann, D. L. (2004). The life cycle of the Northern Hemisphere sudden stratospheric warmings. Journal of Climate, 17, 2584–2596.
Lin, C. H., Liu, J. Y., Fang, T. W., Chang, P. Y., Tsai, H. F., Chen, C. H., & Hsiao, C. C. (2007). Motions of the equatorial ionization anomaly crests imaged by FORMOSAT‐3/COSMIC. Geophysical Research Letters, 34, L19101. https://doi.org/10.1029/2007GL030741
Lin, C. H. et al. (2012). Observations of global ionospheric responses to the 2009 stratospheric sudden warming event by FORMOSAT-3/ COSMIC. Journal of Geophysical Research, 117, A06323. https://doi.org/10.1029/2011JA017230
Lin, J. T. et al. (2019). Revisiting the modulations of ionospheric solar and lunar migrating tides during the 2009 stratospheric sudden warming by using global ionosphere specification. Space Weather, 17, 767–777. https://doi.org/10.1029/2019SW002184
Liu, J. Y., Tsai, H. F. and Jung, T. K. (1996a). Total Electron Content Obtained by Using the Global Positioning System. Terrestrial Atmospheric and Oceanic Sciences, 7, 107-117.
Liu, J. Y. (1996b). A Study of Quasi-16-Day Ionospheric Oscillations. Radiophysics and Quantum Electronics, 39, 155-165.
Liu, J. Y., Tsai, H. F., Tsai, L. C. and Chen, M. Q. (1999). Ionospheric total electron content observed during the 24 October 1995 solar eclipse, Adv. Space Res., 24, 1495-1498, 1999.
Liu, J. Y., Wu, T.Y., Sun, Y.Y., Pedatella, N. M., Lin, C.Y., Chang, L. C., et al. (2020). Lunar tide effects on ionospheric solar eclipse signatures: The August 21, 2017 event as an example. Journal of Geophysical Research: Space Physics, 125, e2020JA028472. https://doi. org/10.1029/2020JA028472
Lühr, H., Siddiqui, T. A., & Maus, S. (2012). Global characteristics of the lunar tidal modulation of the equatorial electrojet derived from CHAMP observations. Annales Geophysicae, 30(3):527-536. DOI: 10.5194/angeo-30-527-2012
Martyn, D. F. (1947). Atmospheric tides in the ionosphere. II. Lunar tidal variations in the F region near the magnetic equator. Proceedings Royal Society of London, A190, 273–288.
Matsushita, S. (1967). Lunar tides in the ionosphere. In J. Bartels (Ed.), Geophysik III/Geophysics III Handbuch der Physik/Encyclopedia of Physics (Vol. 10 / 49 / 2, pp. 547–602). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-46082-1_2
Matsushita, S. (1973). Solar and lunar tidal effects on the low-latitude ionosphere—A review. Journal of Atmospheric and Terrestrial Physics, 35, 1027–1034.
Miller, K. and Bernstein, R. (1957). An analysis of coherent integration and its application to signal detection," in IRE Transactions on Information Theory, vol. 3, no. 4, pp. 237-248. doi: 10.1109/TIT.1957.1057425.
Mo, X. H., Zhang, D. H., Goncharenko, L. R., Hao, Y. Q., and Xiao, Z. (2014). Quasi‐16‐day periodic meridional movement of the equatorial ionization anomaly. Annales Geophysicae, 32(2), 121–131. https://doi.org/10.5194/angeo‐32‐121‐2014
Mo, X. H., & Zhang, D. H. (2018). Lunar tidal modulation of periodic meridional movement of equatorial ionization anomaly crest during sudden stratospheric warming. Journal of Geophysical Research: Space Physics, 123, 1488–1499.
Namba, S., & Maeda, K. ‐I. (1939). Radio Wave Propagation, (p. 86). Tokyo: Corona.
Ratcliffe, J.A. (1972). An introduction to the ionosphere and magnetosphere, royal meteorological society.
Rishbeth, H. (2000). The equatorial F‐layer: Progress and puzzles. Annales Geophysicae, 18, 730–739. https://doi.org/10.1007/ s00585‐000‐0730‐6
Rishbeth, H. and Garriott, O. K. Introduction to Ionospheric Physics, Academic Press, New York and London, 1969. U.S. Standard Atmosphere, U.S. Government Printing Office, Washington, D.C., 1976.
Tsai, H. F. and Liu, J. Y. (1999) Ionospheric total electron contents response to solar eclipse. Journal of Geophysical Research, 104, 12,657-12,668.
Pedatella, N. M., & Forbes, J. M. (2010). Global structure of the lunar tide in ionospheric total electron content. Geophysical Research Letters, 37, L06103. https://doi.org/10.1029/2010GL042781
Pedatella, N. M. & Maute, A. (2015). Impact of the semidiurnal lunar tide on the midlatitude thermospheric wind and ionosphere during sudden stratosphere warmings. Journal of Geophysical Research: Space Physics, 120, 10740–10753. https://doi.org/10.1002/2015JA021986
Pugh, D. T. (1987). Tides, surges and mean sea‐level. Chichester, UK: John Wiley.
Tsai, H. F., & Liu, J. Y. (1999). Ionospheric total electron contents response to solar eclipse. Journal of Geophysical Research, 104(12), 12657–12668.
Sardón, E., Rius, A., & Zarraoa N. (1994), Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations. Radio Science, 29, 577–586, doi:10.1029/94RS00449.
Schaer S, Beutler G, Mervart L, Rothacher M, Wild U (1995) Global and regional ionosphere models using the GPS double difference phase observable. In: Proceedings of the IGS workshop on special topics and new directions, Potsdam, Germany, May 15–17, 77–92
Schaer S, Beutler G, Rothacher M (1996) Daily global ionosphere maps based on GPS carrier phase data routinely produced by the CODE analysis center. In: Proceedings of the IGS analysis center workshop, Silver Spring, MD, USA, 181–192
Schaer S, Beutler G, Rothacher M (1998) Mapping and predicting the ionosphere. In: Proceedings of the IGS analysis center workshop, Darmstadt, Germany, February 9–11, 307–318
Schoeberl, M. R. (1978). Stratospheric warmings: Observations and theory. Reviews of Geophysics, 16(4), 521–538, doi:10.1029/RG016i004p00521
Schwiderski, E. W. (1979). Global Ocean Tides, Part 2: the Semidiurnal Principal Lunar Tide (M2), Atlas of Tidal Charts and Maps (revised version). United States Naval Surface Weapons Center, Technical Report Center, NSWC-TR 79-414, 87 pp.
Siddiqui, T. A. et al. (2018). On the variability of the semidiurnal solar and lunar tides of the equatorial electrojet during sudden stratospheric warmings. Annales Geophysicae, 36, 1545–1562. https://doi.org/10.5194/angeo-36-1545-2018
Sun, Y. Y., Liu, J.-Y., Lin, C.-H., Lin, C.-Y., Shen, M.-H., Chen, C.-H., et al. (2018). Ionospheric bow wave induced by the moon shadow ship over the continent of United States on 21 August 2017. Geophysical Research Letters, 45, 538–544. https://doi.org/10.1002/2017GL075926
Sun, Y. Y., Shen, M. M., Tsai, Y. L., Lin, C. Y., Chou, M. Y., Yu, T., Lin, K., Huang, Q., Wang, J., Qiu, L., Chen, C. H. and Liu, J. Y. (2021, Feb). Wave steepening in ionospheric total electron density due to the 21 August 2017 total solar eclipse. Journal of Geophysical Research: Space Physics, 126(3), 1-8, doi:10.1029/2020JA028931
Stening, R. J., Richmond, A. D., & Roble, R. G. (1999). Lunar tides in the thermosphere-ionosphere-electrodynamics general circulationmodel. Journal of Geophysical Research, 104, 1–13. https://doi.org/10.1029/98JA02663
Wu, T. Y., Liu, J. Y., Lin, C. Y., and Chang, L. C, (2020). Response of ionospheric equatorial ionization crests to lunar phase, Geophysical Research Letters, doi: 10.1029/2019GL086862
Wu, T. Y., Liu, J. Y., Chang, Loren C., Lin, C. H. & Chiu, Y. C. (2021). Equatorial ionization anomaly response to lunar phase and stratospheric sudden warming. Scientific Reports, 11, 14695. https://doi.org/10.1038/s41598-021-94326-x
Yamazaki, Y. (2013). Large lunar tidal effects in the equatorial electrojet during northern winter and its relation to stratospheric sudden warming events. Journal of Geophysical Research: Space Physics, 118, 7268–7271, doi:10.1002/2013JA019215
Yamazaki, Y., Richmond, A. D., & Yumoto, K. (2012). Stratospheric warmings and the geomagnetic lunar tide: 1958–2007. Journal of Geophysical Research, 117, A04301. https://doi.org/10.1029/2012JA017514
Yamazaki, Y., Stolle, C., Matzka, J., Siddiqui, T. A., Lühr, H., & Alken, P. (2017). Longitudinal variation of the lunar tide in the equatorial electrojet. Journal of Geophysical Research: Space Physics, 122, 12,445–12,463. https://doi.org/10.1002/2017JA024601
Yeh, K. C., Yu, D. C., Lin, K. H., Liu, C. H., Huang, C. R., Tsai, W. H., et al. (1997). Ionospheric response to a solar eclipse in the equatorial anomaly region. Terrestrial, Atmospheric and Oceanic Sciences, 8, 165–178.
Yue, X. et al. (2010). Global ionospheric response observed by COSMIC satellites during the January 2009 stratospheric sudden warming event. Journal of Geophysical Research, 115, A00G09. https://doi.org/10.1029/2010JA015466
Zhang, S.-R., Erickson, P. J., Goncharenko, L. P., Coster, A. J., Rideout, W., & Vierinen, J. (2017). Ionospheric bow waves and perturbations induced by the 21 August 2017 solar eclipse. Geophysical Research Letters, 44, 12067–12073. https://doi.org/10.1002/2017GL076054
Zhang, X. & Forbes, J. M. (2014). Lunar tide in the thermosphere and weakening of the northern polar vortex. Geophysical Research Letters, 41, 8201–8207. https://doi.org/10.1002/2014GL062103
指導教授 劉正彥(Jann-Yenq Liu) 審核日期 2022-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明