博碩士論文 109324026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.119.133.90
姓名 陳建良(Jian Liang Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 模擬計算探討UiO-66混合基材薄膜中氣體輸送行為
(Computational Investigation of Gas Transport Behavior in UiO-66-Based Mixed Matrix Membranes)
相關論文
★ 利用固相反應法與電鍍法製備鈣鈦礦太陽能電池之研究★ 設計以雙噻吩併環戊二烯為核心的電洞傳輸材料並製備高效率穩定鈣鈦礦太陽能電池
★ 反溶劑處理對於製備大面積鈣鈦礦太陽能電池影響★ 二氧化鈦奈米粒徑尺寸對介觀結構鈣鈦礦太陽能電池光伏特性之影響
★ 塗佈溫度與混合溶劑比例對於刮刀塗佈製備鈣鈦礦層影響及鈣鈦礦太陽能電池性能表現探討★ 熱處理效應對於混合陽離子鈣鈦礦太陽能電池之光電性質及電池穩定性影響
★ 蔗糖水熱碳化法及後續活化製備活性碳以及活性碳對空氣過濾的應用★ 雙金屬有機骨架結構混合基質膜合成及芳香烴吸附第一原理計算
★ 製膜溶劑對於混合基質膜中金屬有機框架結構沉澱影響與其氣體滲透特性之探討★ 金屬有機骨架材料與活性碳共填充之混和基材膜性質探討
★ 蒸氣相成長金屬有機框架材料合成★ 外表面積和靜電相互作用機理對MOFs染料吸附的重要性
★ 第一原理計算對於氮摻石墨烯在氧氣還原反應與拉曼增強的探討★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
★ 鋯金屬有機框架結構之二氧化碳吸附性質探討★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-9-28以後開放)
摘要(中) 自從工業革命以來,溫室氣體的排放量便急遽上升導致當前全球暖化的現象。隨著人類經濟活動的繁盛,逐年惡化的溫室效應所導致必然發生的全球氣候變化使人們開始注意工業廢氣的處理。薄膜分離程序是種常用的廢氣處理手段。近年來一種被稱為混合基材薄膜(mixed matrix membranes, MMMs) 被研究團隊廣泛討論,為的是克服Robeson’s upper bounds中所描述的選擇性和渗透性之間的取捨,而由高分子與有機金屬框架(Metal Organic Frameworks, MOFs)所構成的混合基材薄膜展現出極大的可能性。
在本作中,我們通過使用分子動力學(molecular dynamics, MD)模擬,將UiO-66作為填料加入到聚苯並咪唑中建構混成的MMMs系統,其中,分子動力學模擬能為我們提供詳細的分子等級的信息,成為傑出的研究工具。本作選用UiO-66作為填料是基於其非常高的表面積和高熱穩定性,通過密度泛函理論(Density functional theory, DFT)對UiO-66進行結構優化,然後將優化後的UiO-66結構分為特徵四面體(tetrahedral cage)和八面體(octahedral cage)。
透過大正則系綜蒙特卡羅(Grand canonical Monte Carlo, GCMC)及分子動力學計算,我們分析了薄膜模型中的MMM氣體傳輸性能,並討論填入四面體和八面體特徵結構的MMMs。
摘要(英) Global warming is a phenomenon that has been caused by a sharp rise in greenhouse gas emissions since the industrial revolution. As human economic activities flourish, the inevitable global climate change caused by the worsening greenhouse effect each year has led to attention being paid to the treatment of industrial emissions. Membrane separation processes are a common means of exhaust gas treatment. In recent years a type of film called mixed matrix membranes (MMMs) has been widely discussed to overcome the trade-off between selectivity and permeability described in Robeson′s upper bounds. Mixed matrix membranes composed of polymers and Metal Organic Frameworks (MOFs) show great potential.
In this work, we have used molecular dynamics (MD) simulations to construct a hybrid MMMs system by adding UiO-66 as a filler to polybenzimidazole. In particular, the molecular dynamics simulation provides detailed information on the molecular hierarchy and is an excellent research tool. In this work, UiO-66 was selected as a filler due to its very high surface area and high thermal stability, and the structure of UiO-66 was optimized by density functional theory (DFT). The optimized UiO-66 structure is divided into a tetrahedral cage and octahedral cage.
By using Grand canonical Monte Carlo (GCMC) and molecular dynamics calculations, we analyze the gas transport behavior of MMMs and discuss MMMs filled with different characteristic structures.
關鍵字(中) ★ 聚苯並咪唑
★ 有機金屬框架
★ 混合基材薄膜
★ 分子動力學
關鍵字(英) ★ polybenzimidazole
★ metal-organic frameworks
★ mixed matrix membranes
★ molecular dynamics simulation
論文目次 摘要 ii
Abstract iv
Acknowledgment vi
Table of Content vii
List of Figures ix
List of Tables xiii
1. Background - 1 -
1.1 Introduction - 1 -
1.2 Literature review - 4 -
1.2.1 Membranes model construction - 4 -
1.2.2 Introduction of UiO-66 - 5 -
1.2.3 Mixed matrix membranes model construction - 11 -
1.3 Motivation - 17 -
2. Theory - 18 -
2.1 Molecular Dynamics - 18 -
2.2 Force field - 21 -
2.3 Radial distribution function - 23 -
2.4 Monte Carlo method - 24 -
2.5 Solubility - 26 -
2.6 Diffusivity - 27 -
2.7 Permeability - 28 -
3. Simulation Method - 30 -
3.1 Membrane construction - 30 -
3.2 UiO-66 bulk structure and cluster - 34 -
3.3 Sorption isotherm - 34 -
3.4 Diffusivity - 36 -
4. Results and Discussion - 38 -
4.1 Structural information - 38 -
4.2 Gas solubility and adsorption isotherm of membranes-42-
4.3 Gas diffusivity of membranes - 45 -
4.4 Gas permeability and selectivity of membranes- 55 -
4.5 Cage arrangement discussion - 58 -
5. Conclusions - 76 -
6. Future Work - 78 -
References - 79 -
Appendix - 85 -
S1. The QEq charges of the UiO-66 tetrahedral cage and octahedral cage. - 85 -
參考文獻 1. Ritchie, H., M. Roser, and P. Rosado, CO₂ and greenhouse gas emissions. Our world in data, 2020.
2. Oberle, B., et al., Global resources outlook 2019: natural resources for the future we want. 2019.
3. Tung, K.-L. and K.-T. Lu, Effect of tacticity of PMMA on gas transport through membranes: MD and MC simulation studies. Journal of membrane science, 2006. 272(1-2): p. 37-49.
4. Robeson, L.M., The upper bound revisited. Journal of membrane science, 2008. 320(1-2): p. 390-400.
5. Castarlenas, S., C. Téllez, and J. Coronas, Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids. Journal of Membrane Science, 2017. 526: p. 205-211.
6. Ghalei, B., et al., Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nature Energy, 2017. 2(7): p. 1-9.
7. Choi, S., et al., Layered silicates by swelling of AMH‐3 and nanocomposite membranes. Angewandte Chemie International Edition, 2008. 47(3): p. 552-555.
8. Yang, T., Y. Xiao, and T.-S. Chung, Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification. Energy & Environmental Science, 2011. 4(10): p. 4171-4180.
9. Li, L., et al., ZIF‐11/Polybenzimidazole composite membrane with improved hydrogen separation performance. Journal of Applied Polymer Science, 2014. 131(22).
10. Li, X., et al., Influence of polybenzimidazole main chain structure on H2/CO2 separation at elevated temperatures. Journal of Membrane Science, 2014. 461: p. 59-68.
11. Kumbharkar, S., Y. Liu, and K. Li, High performance polybenzimidazole based asymmetric hollow fibre membranes for H2/CO2 separation. Journal of membrane science, 2011. 375(1-2): p. 231-240.
12. Biswal, B.P., et al., Selective interfacial synthesis of metal–organic frameworks on a polybenzimidazole hollow fiber membrane for gas separation. Nanoscale, 2015. 7(16): p. 7291-7298.
13. Chung, T.-S., A critical review of polybenzimidazoles: historical development and future R&D. Journal of Macromolecular Science, Part C: Polymer Reviews, 1997. 37(2): p. 277-301.
14. Yang, T., G.M. Shi, and T.S. Chung, Symmetric and asymmetric zeolitic imidazolate frameworks (ZIFs)/polybenzimidazole (PBI) nanocomposite membranes for hydrogen purification at high temperatures. Advanced Energy Materials, 2012. 2(11): p. 1358-1367.
15. Yang, T. and T.-S. Chung, High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor. international journal of hydrogen energy, 2013. 38(1): p. 229-239.
16. Bhaskar, A., R. Banerjee, and U. Kharul, ZIF-8@ PBI-BuI composite membranes: elegant effects of PBI structural variations on gas permeation performance. Journal of Materials Chemistry A, 2014. 2(32): p. 12962-12967.
17. Bai, Y., et al., Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chemical Society Reviews, 2016. 45(8): p. 2327-2367.
18. Liu, X., Metal-organic framework UiO-66 membranes. Frontiers of Chemical Science and Engineering, 2020. 14(2): p. 216-232.
19. Amani, M., et al., Study of nanostructure characterizations and gas separation properties of poly (urethane–urea) s membranes by molecular dynamics simulation. Journal of membrane Science, 2014. 462: p. 28-41.
20. Dutta, R.C. and S.K. Bhatia, Transport Diffusion of Light Gases in Polyethylene Using Atomistic Simulations. Langmuir, 2017. 33(4): p. 936-946.
21. Larsen, G.S., et al., Molecular simulations of PIM-1-like polymers of intrinsic microporosity. Macromolecules, 2011. 44(17): p. 6944-6951.
22. Semino, R., et al., Microscopic model of the metal–organic framework/polymer interface: a first step toward understanding the compatibility in mixed matrix membranes. ACS Applied Materials & Interfaces, 2016. 8(1): p. 809-819.
23. Cavka, J.H., et al., A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008. 130(42): p. 13850-13851.
24. Gaab, M., et al., The progression of Al-based metal-organic frameworks–From academic research to industrial production and applications. Microporous and mesoporous materials, 2012. 157: p. 131-136.
25. Winarta, J., et al., A decade of UiO-66 research: a historic review of dynamic structure, synthesis mechanisms, and characterization techniques of an archetypal metal–organic framework. Crystal Growth & Design, 2019. 20(2): p. 1347-1362.
26. Trickett, C.A., et al., Definitive molecular level characterization of defects in UiO‐66 crystals. Angewandte Chemie International Edition, 2015. 54(38): p. 11162-11167.
27. Hu, Z., et al., A modulated hydrothermal (MHT) approach for the facile synthesis of UiO-66-type MOFs. Inorganic Chemistry, 2015. 54(10): p. 4862-4868.
28. Biswas, S., et al., Enhanced selectivity of CO2 over CH4 in sulphonate-, carboxylate-and iodo-functionalized UiO-66 frameworks. 2013.
29. Bueken, B., et al., Tackling the defect conundrum in UiO-66: a mixed-linker approach to engineering missing linker defects. Chemistry of Materials, 2017. 29(24): p. 10478-10486.
30. Shan, B., et al., Investigation of missing-cluster defects in UiO-66 and ferrocene deposition into defect-induced cavities. Industrial & Engineering Chemistry Research, 2018. 57(42): p. 14233-14241.
31. Cliffe, M.J., et al., Correlated defect nanoregions in a metal–organic framework. Nature communications, 2014. 5(1): p. 1-8.
32. DeStefano, M.R., et al., Room-temperature synthesis of UiO-66 and thermal modulation of densities of defect sites. Chemistry of Materials, 2017. 29(3): p. 1357-1361.
33. Firth, F.C., et al., Engineering new defective phases of UiO family metal–organic frameworks with water. Journal of Materials Chemistry A, 2019. 7(13): p. 7459-7469.
34. Ghalei, B., et al., Rational tuning of zirconium metal–organic framework membranes for hydrogen purification. Angewandte Chemie International Edition, 2019. 58(52): p. 19034-19040.
35. Zhang, L., Z. Hu, and J. Jiang, Metal–organic framework/polymer mixed-matrix membranes for H2/CO2 separation: A fully atomistic simulation study. The Journal of Physical Chemistry C, 2012. 116(36): p. 19268-19277.
36. Ozcan, A., et al., Modeling of gas transport through polymer/MOF interfaces: A microsecond-scale concentration gradient-driven molecular dynamics study. Chemistry of Materials, 2020. 32(3): p. 1288-1296.
37. Ozcan, A., et al., Concentration gradient driven molecular dynamics: a new method for simulations of membrane permeation and separation. Chemical science, 2017. 8(5): p. 3858-3865.
38. Velioglu, S. and S. Keskin, Simulation of H 2/CH 4 mixture permeation through MOF membranes using non-equilibrium molecular dynamics. Journal of Materials Chemistry A, 2019. 7(5): p. 2301-2314.
39. Verlet, L., Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical review, 1967. 159(1): p. 98.
40. Allen, M.P. and D.J. Tildesley, Computer simulation of liquids. 2017: Oxford university press.
41. Lorentz, H., Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Annalen der physik, 1881. 248(1): p. 127-136.
42. Tan, H., et al., Pervaporative recovery of n-butanol from aqueous solutions with MCM-41 filled PEBA mixed matrix membrane. Journal of membrane science, 2014. 453: p. 302-311.
43. Evans, J.D., et al., Feasibility of mixed matrix membrane gas separations employing porous organic cages. The Journal of Physical Chemistry C, 2014. 118(3): p. 1523-1529.
44. Bui, V.T., A. Abdelrasoul, and D.W. McMartin, Investigation on the stability and antifouling properties of polyvinylidene fluoride (PVDF)-zwitterion mixed matrix membranes (MMMs) using molecular dynamics simulation (MDS). Computational Materials Science, 2021. 187: p. 110079.
45. Yan, T., et al., Screening and design of COF-based mixed-matrix membrane for CH4/N2 separation. 中国化学工程学报, 2022. 42(2): p. 170-177.
46. Mayo, S.L., B.D. Olafson, and W.A. Goddard, DREIDING: a generic force field for molecular simulations. Journal of Physical chemistry, 1990. 94(26): p. 8897-8909.
47. Rappé, A.K., et al., UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American chemical society, 1992. 114(25): p. 10024-10035.
48. Potoff, J.J. and J.I. Siepmann, Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE journal, 2001. 47(7): p. 1676-1682.
49. Kopera, B.A. and M. Retsch, Computing the 3d radial distribution function from particle positions: an advanced analytic approach. Analytical chemistry, 2018. 90(23): p. 13909-13914.
50. Camisasca, G., et al., Radial distribution functions of water: Models vs experiments. The Journal of chemical physics, 2019. 151(4): p. 044502.
51. Kim, Y.-W., J.-J. Kim, and Y.H. Kim, Surface characterization of biocompatible polysulfone membranes modified with poly (ethylene glycol) derivatives. Korean Journal of Chemical Engineering, 2003. 20(6): p. 1158-1165.
52. Wade, A.D., L.-P. Wang, and D.J. Huggins, Assimilating radial distribution functions to build water models with improved structural properties. Journal of chemical information and modeling, 2018. 58(9): p. 1766-1778.
53. Kanehashi, S. and K. Nagai, Analysis of dual-mode model parameters for gas sorption in glassy polymers. Journal of Membrane Science, 2005. 253(1-2): p. 117-138.
54. Golzar, K., et al., Molecular simulation study of penetrant gas transport properties into the pure and nanosized silica particles filled polysulfone membranes. Journal of membrane science, 2014. 451: p. 117-134.
55. BIOVIA, D.S.m., Materials Studio. 2020, Dassault Systèmes San Diego.
56. Stewart J. Clark*, I., Matthew D. SegallII, Chris J. PickardII, Phil J. HasnipIII, Matt I. J. ProbertIV, Keith RefsonV and Mike C. PayneII, First principles methods using CASTEP. Z. Kristallogr. 220 (2005) 567–570.
57. BIOVIA, D.S., Sorption. 2021, San Diego, CA.
58. Akkermans, R.L., N.A. Spenley, and S.H. Robertson, Monte Carlo methods in materials studio. Molecular Simulation, 2013. 39(14-15): p. 1153-1164.
59. Chen, Y.-R., et al., Structural characteristics and transport behavior of triptycene-based PIMs membranes: A combination study using ab initio calculation and molecular simulations. Journal of Membrane Science, 2016. 514: p. 114-124.
60. Wang, C., et al., Molecular Simulation Study of Gas Solubility and Diffusion in a Polymer-Boron Nitride Nanotube Composite. J Phys Chem B, 2016. 120(7): p. 1273-84.
61. Semino, R., et al., Microscopic Model of the Metal-Organic Framework/Polymer Interface: A First Step toward Understanding the Compatibility in Mixed Matrix Membranes. ACS Appl Mater Interfaces, 2016. 8(1): p. 809-19.
62. Hoover, W.G., Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A Gen Phys, 1985. 31(3): p. 1695-1697.
63. H. J. C. Berendsen, J.P.M.P., W. F. van Gunsteren, A. DiNola, and J. R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684 (1984), 1984.
64. Jeffrey J. Potoff, J.I.S., Vapor-Liquid Equilibria of Mixtures Containing Alkanes, Carbon Dioxide, and Nitrogen. AIChE Journal, 2001. 47.
65. Marcus G. Martin, J.I.S., Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes. J. Phys. Chem. B 1998, 102, 2569-2577, 1998.
66. Frenkel, D. and B. Smit, Understanding molecular simulation: from algorithms to applications. Vol. 1. 2001: Elsevier.
67. Einstein, A., On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat. Annalen der physik, 1905. 17(549-560): p. 208.
68. Li, T., D.O. Kildsig, and K. Park, Computer simulation of molecular diffusion in amorphous polymers. Journal of controlled release, 1997. 48(1): p. 57-66.
69. Finch, C.A., Encyclopedia of polymer science and engineering Executive Editor Jacqueline I. Kroschwitz, John Wiley & Sons, New York, 1988. Volume 13, Poly(phenylene ether) to Radical polymerization. pp. xxiv + 867, single volume price £120.00. ISBN 0-471-80945-4 Volume 14, Radiopaque polymers to Safety. pp. xxiv + 827, single volume price £120.00. ISBN 0-471-80446-2 (For subscription details see British Polymer Journal, 17 (1985). British Polymer Journal, 1989. 21(5): p. 443-443.
70. Mark, J.E., Polymer data handbook. 1999, New York: Oxford University Press.
71. Auras, R., Chapter 19-Solubility of Gases and Vapors in Polylactide Polymers In: Letcher TM, editor. Thermodynamics, Solubility and Environmental Issues. 2007, Amsterdam: Elsevier.
72. Wang, J. and T. Hou, Application of molecular dynamics simulations in molecular property prediction II: Diffusion coefficient. Journal of computational chemistry, 2011. 32(16): p. 3505-3519.
73. Hu, Z., et al., Mixed matrix membranes containing UiO-66 (Hf)-(OH) 2 metal–organic framework nanoparticles for efficient H2/CO2 separation. Industrial & Engineering Chemistry Research, 2016. 55(29): p. 7933-7940.
74. Hao, L., et al., Hierarchically porous UiO-66: facile synthesis, characterization and application. Chemical Communications, 2018. 54(83): p. 11817-11820.
指導教授 張博凱(Bor Kae Chang) 審核日期 2022-9-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明