博碩士論文 109324057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:145 、訪客IP:3.138.110.119
姓名 陳佳珊(Chia-Shan Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用陽極氧化鋁奈米模板法製備可調變之鎳/鈷比例合金奈米線及單根奈米線電性量測技術開發
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究之研究內容主要分成兩個部份,第一部分為利用陽極氧化鋁奈米模板製備一維純鎳、鈷金屬及其合金奈米線,而第二部分主要探討其單根奈米線之電性。本研究利用兩次陽極氧化處理法成功地製備出大面積奈米孔洞之陽極氧化鋁奈米模板,其孔洞大小分別以草酸及磷酸電解液製備出約48 nm 及187 nm之孔徑。此外,也利用陽極氧化鋁奈米模板進一步結合電化學沉積法,製備出一維純鎳、鈷金屬及其不同組成比例合金(Co:Ni = 2:8、Co:Ni = 1:1、Co:Ni = 8:2)之奈米線。經由穿透式電子顯微鏡(TEM)影像圖及其相對應之電子選區繞射(SAED)鑑定分析可得知所製備出之純鎳奈米線為單晶FCC晶體結構,純鈷奈米線為單晶HCP晶體結構,而三種不同組成成份之鎳/鈷合金奈米線則皆為單晶HCP晶體結構。在單根電性之量測方面,本研究以一種新穎之量測方法成功量測出純鎳、鈷及其合金之單根奈米線電性,其方法不需冗長的前處理、昂貴的成本且可避免金屬奈米線暴露於大氣環境中而造成的氧化,並且經由量測後發現添加不同比例之鎳、鈷金屬及不同直徑大小對於純鎳、鈷金屬及其合金單根奈米線的電阻率皆有所影響。
摘要(英) This study is divided in two parts. In the first part of this study, we fabricated the pure Ni, Co, and Co/Ni alloy nanowires by anodic aluminum oxide (AAO) template method. In the second part of this study, we explore the electrical properties of single pure Ni, Co, and Co/Ni alloy nanowires. In this work, the two-step anodizing approach is successfully used to fabricate large area nanoporous AAO template. The AAO template with pore diameters of 48 nm (oxalic acid) and 187 nm (phosphoric acid), respectively. In addition, we have demonstrated that one dimensional pure Ni, Co, and Co/Ni alloy nanowires with different concentration ratios of Co to Ni (Co:Ni=2:8, Co:Ni=1:1, Co:Ni=8:2) nanowires were successfully produced by using the AAO template combined with the electrochemical deposition technique. From TEM and SAED analysis indicated that the pure Ni, Co and Co/Ni alloy nanowires were single crystalline with FCC, HCP and HCP structures, respectively. To measure the electrical properties of single nanowire, a variety of measurement techniques have been developed. However, the low processing speed, high-cost, and oxidation make them challenging to use. In this study, we propose a novel approach to measure the electrical properties of single nanowire, it is found that the addition of Co to Ni and different diameter sizes could strongly affect the resistivity of pure Ni, Co and Co/Ni alloy nanowires.
關鍵字(中) ★ 陽極氧化鋁奈米模板
★ 單根奈米線電性量測
★ 鎳/鈷合金奈米線
關鍵字(英)
論文目次 第一章 前言及文獻回顧 1
1-1前言 1
1-2陽極氧化鋁奈米模板 2
1-2-1陽極氧化鋁奈米模板之發展背景 2
1-2-2 陽極氧化鋁奈米模板成長機制 3
1-2-3 陽極氧化鋁奈米模板成長控制變因 5
1-2-4 陽極氧化鋁奈米模板規則化孔洞製程 6
1-3 一維金屬奈米結構 7
1-3-1一維金屬奈米線之製備 7
1-3-2 一維金屬奈米線之應用 9
1-4 單根金屬奈米線之電性量測 10
1-5 研究動機及目標 11
第二章 實驗步驟及實驗設備 13
2-1 陽極氧化鋁奈米模板之製程 13
2-1-1 高純度鋁片之前處理 13
2-1-2 高純度鋁片之表面平坦化處理 13
2-1-3 以草酸製備陽極氧化鋁奈米模板 14
2-1-4 以磷酸製備陽極氧化鋁奈米模板 15
2-2 電化學沉積法製備一維純鎳、鈷及其合金奈米線 16
2-3 電性量測之試片製備 17
2-4 實驗設備 17
2-4-1 陽極氧化鋁奈米模板製備系統 17
2-4-2 電化學沉積系統 17
2-4-3 電性量測系統 17
2-5 儀器分析實驗 18
2-5-1 掃描式電子顯微鏡 18
2-5-2 穿透式電子顯微鏡 18
2-5-3 高解析穿透式電子顯微鏡 19
第三章 結果與討論 20
3-1 高純度鋁片之電解拋光 20
3-2 陽極氧化鋁奈米模板之製備 21
3-2-1 利用草酸電解液製備陽極氧化鋁奈米模板 21
3-2-2 利用磷酸電解液製備陽極氧化鋁奈米模板 22
3-2-3 不同時間下陽極氧化鋁奈米模板之生成速率 24
3-2-4 陽極氧化鋁奈米模板阻障層開孔之製程 24
3-3 陽極氧化鋁奈米模板結合電化學沉積法製備一維純鎳、鈷金屬及其合金奈米線 26
3-3-1 純鎳金屬奈米線之結構分析 27
3-3-2 純鈷金屬奈米線之結構分析 27
3-3-3 鎳/鈷合金金屬奈米線之結構分析 28
3-4一維純鎳、鈷金屬及其合金之單根奈米線電性量測分析 29
3-4-1 以大孔徑模板製備之純鎳、鈷金屬及其合金之單根奈米線電性分析30
3-4-2 以小孔徑模板製備之純鎳、鈷金屬及其合金之單根奈米線電性分析32
第四章 結論與未來展望 34
4-1 結論 34
4-2 未來與展望 34
參考文獻 36
表目錄 43
圖目錄 44
參考文獻 [1] G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R.B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gösele, "Highly ordered monocrystalline silver nanowire arrays, " J. Appl. Phys. 91 (2002) 3243.
[2] F.J. Wendisch, M. Rey, N. Vogel, and G.R. Bourret, "Large-scale synthesis of highly uniform silicon nanowire arrays using metal-assisted chemical etching, " Chem. Mater. 32 (2020) 9425.
[3] L. Cai, H. Li, H. Zhang, W. Fan, J. Wang, Y. Wang, X. Wang, Y. Tang, and Y. Song, "Enhanced performance of the tangerines-like CuO-based gas sensor using ZnO nanowire arrays, " Mater. Sci. Semicond. Process. 118 (2020) 105196.
[4] H. Rao, X. Xue, H. Wang, and Z. Xue, "Gold nanorod etching-based multicolorimetric sensors: strategies and applications, " J. Mater. Chem. C. 7 (2019) 4610.
[5] S.Y. Liu, X.D. Tian, Y. Zhang, and J.F. Li, "Quantitative surface-enhanced raman spectroscopy through the interface-assisted self-assembly of three-dimensional silver nanorod substrates, " Anal. Chem. 90 (2018) 7275.
[6] S. Yalamanchili, E. Verlage, W.H. Cheng, K.T. Fountaine, P.R. Jahelka, P.A. Kempler, R. Saive, N.S. Lewis, and H.A. Atwater, "High broadband light transmission for solar fuels production using dielectric optical waveguides in TiO2 nanocone arrays, " Nano Lett. 20 (2020) 502.
[7] K. Skibińska, K. Kołczyk-Siedlecka, D. Kutyła, M. Gajewska, and P. Żabiński, "Synthesis of Co-Fe 1D nanocone array electrodes using aluminum oxide template, " Materials. 14(7) (2021) 1717.
[8] A. Glotov, A. Vutolkina, A. Pimerzin, V. Vinokurov, and Y.Lvov, "Clay nanotube-metal core/shell catalysts for hydroprocesses, " Chem. Soc. Rev. 50 (2021) 9240.
[9] V. Schroeder, S. Savagatrup, M. He, S. Lin, and T.M. Swager, "Carbon nanotube chemical sensors, " Chem. Rev. 119 (2019) 599.
[10] S. Nam, M. Song, D.H. Kim, B. Cho, H.M. Lee, J.D. Kwon, S.G. Park, K.S. Nam, Y. Jeong, S.H. Kwon, Y.C. Park, S.H. Jin, J.W. Kang, S. Jo, and C.S. Kim, "Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode, " Sci. Rep. 4 (2014) 1.
[11] J.L. Duan, D.Y. Lei, F. Chen, S.P. Lau, W.I. Milne, M.E. Toimil-Molares, C. Trautmann, and J. Liu, "Vertically-aligned single-crystal nanocone arrays: controlled fabrication and enhanced field emission, " ACS Appl. Mater. Interfaces. 8 (2016) 472.
[12] H. Niu, S. Gao, W. Yue, Y. Li, W. Zhou, and H. Liu, "Highly morphology-controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure, " Small. 16 (2020) 1.
[13] C.H. Lai, K.W. Huang, J.H. Cheng, C.Y. Lee, B.J. Hwang, and L.J. Chen, "Direct growth of high-rate capability and high capacity copper sulfide nanowire array cathodes for lithium-ion batteries, " J. Mater. Chem. 20 (2010) 6638.
[14] K.M. Chahrour, F.K. Yam, N.M. Ahmed, M.R. Hashim, N.G. Elfadill, A.M. Al-Diabat, and H.S. Lim, "AAO-assisted synthesis of aligned CuO nanorod arrays by electrochemical deposition for self-powered NIR photodetection, " J. Electron. Mater. 48 (2019) 7465.
[15] N. Vesali, S. Erfanifam, L. Jamilpanah, M. Hasheminejad, Y. Rahmani, and S.M. Mohseni, "Growth behavior of Cu, Ni and Cu/Ni electrodeposited microwires within porous Si, " Surf. Coatings Technol. 364 (2019) 16.
[16] A.P. Singh, K. Roccapriore, Z. Algarni, R. Salloom, T.D. Golden, and U. Philipose, "Structure and electronic properties of InSb nanowires grown in flexible polycarbonate membranes, " Nanomaterials. 9 (2019) 1.
[17] Y. Seo, J.Y. Jung, J. Chung, and S. Lee, "Enhancement of corrosion resistance of aluminum 7075 surface through oil impregnation for subsea application, " Appl. Sci. 9 (2019) 1.
[18] G. Mistura, L. Bruschi, and W. Lee, "Adsorption on highly ordered porous alumina, " J. Low Temp. Phys. 185 (2016) 138.
[19] A. Ganapathi, P. Swaminathan, and L. Neelakantan, "Anodic aluminum oxide template assisted synthesis of copper nanowires using a galvanic displacement process for electrochemical denitrification, " ACS Appl. Nano Mater. 2 (2019) 5981.
[20] N. Ates and N. Uzal, "Removal of heavy metals from aluminum anodic oxidation wastewaters by membrane filtration, " Environ. Sci. Pollut. Res. 25 (2018) 22259.
[21] M. Kaur, S. Ishii, S.L. Shinde, and T. Nagao, "All-ceramic solar-driven water purifier based on anodized aluminum oxide and plasmonic titanium nitride, " Adv. Sustain. Syst. 3(2) (2018) 1800112.
[22] L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, and J. Zhu, "Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation, " Sci. Adv. 2(4) (2016) e1501227.
[23] M. Porta-i-Batalla, E.X. Pérez, C. Eckstein, J.F. Borrull, and L.F. Marsal, "3D nanoporous anodic alumina structures for sustained drug release, " Nanomaterials. 7(8) (2017) 227.
[24] Y. Guo, S. Gao, W. Yue, C. Zhang, and Y. Li, "Anodized aluminum oxide-assisted low-cost flexible capacitive pressure sensors based on double-sided nanopillars by a facile fabrication method, " ACS Appl. Mater. Interfaces. 11 (2019) 48594.
[25] Z. Hosseinabadi, A. Ramazani, and M.A. Kashi, "Developing Cu pore-filling percentage in hard anodized anodic aluminum oxide templates with large diameters , " Mater. Chem. Phys. 260 (2021) 124109.
[26] A. Pereira, J.L. Palma, J.C. Denardin, and J. Escrig, "Temperature-dependent magnetic properties of Ni nanotubes synthesized by atomic layer deposition, " Nanotechnology. 27 (2016) 1.
[27] J. Ma, Y. Ai, L. Kang, W. Liu, Z. Ma, P. Song, Y. Zhao, F. Yang, and X. Wang, "A novel nanocone cluster microstructure with anti-reflection and superhydrophobic properties for photovoltaic devices, " Nanoscale Res. Lett. 13(1) (2018) 1.
[28] C. Feng, Z. Zhang, J. Li, Y. Qu, D. Xing, X. Gao, Z. Zhang, Y. Wen, Y. Ma, J. Ye, and R. Sun, "A bioinspired, highly transparent surface with dry-style antifogging, antifrosting, antifouling, and moisture self-cleaning properties, " Macromol. Rapid Commun. 40 (2019) 1.
[29] O. Jessensky, F. Müller, and U. Gösele, " Self-organized formation of hexagonal pore arrays in anodic alumina, " Appl. Phys. Lett. 72(10) (1998) 1173.
[30] G.E. Thompson, "Porous anodic alumina: fabrication, characterization and applications, " Thin Solid Films. 297(1-2) (1997) 192.
[31] K.M. Chahrour, N.M. Ahmed, M.R. Hashim, N.G. Elfadill, W. Maryam, M.A. Ahmad, and M. Bououdina, "Effects of the voltage and time of anodization on modulation of the pore dimensions of AAO films for nanomaterials synthesis, " Superlattices Microstruct. 88 (2015) 489.
[32] Y. Li, Y. Qin, S. Jin, X. Hu, Z. Ling, Q. Liu, J. Liao, C. Chen, Y. Shen, and L. Jin, "A new self-ordering regime for fast production of long-range ordered porous anodic aluminum oxide films," Electrochim. Acta. 178 (2015) 11.
[33] M. Iwai, T. Kikuchi, and R.O. Suzuki, "Self-ordered nanospike porous alumina fabricated under a new regime by an anodizing process in alkaline media, " Sci. Rep. 11 (2021) 1.
[34] A.P. Li, F. Müller, A. Bimer, K. Nielsch, and U. Gösele, "Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina, " J. Appl. Phys. 84 (1998) 6023.
[35] C.K. Chung, M.W. Liao, H.C. Chang, and C.T. Lee, "Effects of temperature and voltage mode on nanoporous anodic aluminum oxide films by one-step anodization, " Thin Solid Films. 520 (2011) 1554.
[36] Y.C. Chien and H.C. Weng, "Cost-effective technique to fabricate a tubular through-hole anodic aluminum oxide membrane using one-step anodization," Microelectron. Eng. 247 (2021) 111589.
[37] K.B. Kim, B.C. Kim, S.J. Ha, and M.W. Cho, "Effect of pre-treatment polishing on fabrication of anodic aluminum oxide using commercial aluminum alloy, " J. Mech. Sci. Technol. 31 (2017) 4387.
[38] D. Ma, S. Li, and C. Liang, "Electropolishing of high-purity aluminium in perchloric acid and ethanol solutions, " Corros. Sci. 51 (2009) 713.
[39] S.S.A. Karim, M.A. Mohamed, T.Y. Tiong, A.R. Mdzain, and C.F. Dee, "Effect of electropolishing on the uniformity and distribution of nanopores of anodic aluminium oxide template, " In: 2018 International Symposium on Electronics and Smart Devices (ISESD). IEEE (2018) 1.
[40] U.S. Kim and J.W. Park, "High-quality surface finishing of industrial three-dimensional metal additive manufacturing using electrochemical polishing, " Int. J. Precis. Eng. Manuf. - Green Technol. 6 (2019) 11.
[41] H. Masuda and K. Fukuda, "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, " Sci. 268 (1995) 1466.
[42] H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, "Highly ordered nanochannel-array architecture in anodic alumina, " Appl. Phys. Lett. 71 (1997) 2770.
[43] H. Masuda, M. Yotsuya, M. Asano, K. Nishio, M. Nakao, A. Yokoo, and T. Tamamura, "Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina, " Appl. Phys. Lett. 78 (2001) 826.
[44] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, "Square and triangular nanohole array architectures in anodic alumina, " Adv. Mater. 13 (2001) 189.
[45] C.Y. Liu, A. Datta, and Y.L. Wang, "Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces, " Appl. Phys. Lett. 78 (2001) 120.
[46] L. Xu, X. Li, Z. Zhan, L. Wang, S. Feng, X. Chai, W. Lu, J. Shen, Z. Weng, and J. Sun, "Catalyst-free, selective growth of ZnO nanowires on SiO2 by chemical vapor deposition for transfer-free fabrication of UV photodetectors, " ACS Appl. Mater. Interfaces. 7 (2015) 20264.
[47] J. Du, X. Li, K. Li, X. Gu, W. Qi, and K. Zhang, "High hydrophilic Si-doped TiO2 nanowires by chemical vapor deposition, " J. Alloys Compd. 687 (2016) 893.
[48] C. Brun, P.H. Elchinger, G. Nonglaton, C.T. Diagne, R. Tiron, A. Thuaire, D. Gasparutto, and X. Baillin, "Metallic conductive nanowires elaborated by PVD metal deposition on suspended DNA bundles, " Small. 13 (2017) 1.
[49] X. Liu, S. Hu, Y. Hong, Z. Li, J. Luo, K. Li, L. Song, Y. Zhang, U. Younis, and V.D. Botcha, "Growth of necklace-like In2Se3 nanowires using MoS2 seed layer during PVD method, " J. Cryst. Growth. 526 (2019) 125215.
[50] M. Xiao, K.P. Musselman, W.W. Duley, and N.Y. Zhou, "Resistive switching memory of TiO2 nanowire networks grown on Ti foil by a single hydrothermal method, " Nano-Micro Lett. 9 (2017) 1.
[51] K. Nguyen, N.D. Hoa, C.M. Hung, D.T. Thanh, N.V. Duy, and N.V. Hieu, "A comparative study on the electrochemical properties of nanoporous nickel oxide nanowires and nanosheets prepared by a hydrothermal method, " RSC Adv. 8 (2018) 19449.
[52] N. Kaur, E. Comini, N. Poli, D. Zappa, and G. Sberveglieri, "Nickel oxide nanowires growth by VLS technique for gas sensing application, " Procedia Eng. 120 (2015) 760.
[53] K. Winkler, E. Bertagnolli, and A. Lugstein, "Origin of anomalous piezoresistive effects in VLS grown Si nanowires, " Nano Lett. 15 (2015) 1780.
[54] H.W. Shin and J.Y. Son, "Magnetic domain structure and magnetic anisotropy in ferromagnetic Y3Fe5O12 nanowires formed by step-edge decoration, " J. Magn. Magn. Mater. 444 (2017) 102.
[55] M. Xu, Z. Xue, L. Yu, S. Qian, Z. Fan, J. Wang, J. Xu, Y. Shi, K. Chen, and P. Roca I Cabarrocas, "Operating principles of in-plane silicon nanowires at simple step-edges, " Nanoscale. 7 (2015) 5197.
[56] D.I. Tishkevich, A.I. Vorobjova, and D.A. Vinnik, "Template assisted Ni nanowires fabrication, " Mater. Sci. Forum. 946 (2019) 235.
[57] J. Guiliani, J. Cadena, and C. Monton, "Template-assisted electrodeposition of Ni and Ni/Au nanowires on planar and curved substrates, " Nanotechnology. 29(7) (2018) 075301.
[58] F. Yin, J. Ren, G. Wu, C. Zhang, and Y. Zhang, "Polypyrrole nanowires with ordered largemesopores: Synthesis, characterization and applications in supercapacitor and lithium/sulfur batteries, " Polymers 11(2) (2019) 277.
[59] M.P. Zach, K.H. Ng, and R.M. Penner, "Molybdenum nanowires by electrodeposition, " Science 290(5499) (2000) 2120.
[60] D. Mudusu, K.R. Nandanapalli, S.R. Dugasani, J.W. Kang, S.H. Park, and C.W. Tu, "Growth of single-crystalline cubic structured tin(II) sulfide (SnS) nanowires by chemical vapor deposition, " RSC Adv. 7 (2017) 41452.
[61] Q. Zhao, G. Wen, Z. Liu, Y. Fan, G. Zou, L. Li, R. Zheng, S.P. Ringer, and H.K. Mao, "Synthesis of dense, single-crystalline CrO2 nanowire arrays using AAO template-assisted chemical vapor deposition, " Nanotechnology. 22(12) (2011) 125603.
[62] W. Wang, N. Li, X. Li, W. Geng, and S. Qiu, "Synthesis of metallic nanotube arrays in porous anodic aluminum oxide template through electroless deposition," Mater. Res. Bull. 41 (2006) 1417.
[63] M.I. Irshad, F. Ahmad, N.M. Mohamed, and M.Z. Abdullah, "Preparation and structural characterization of template assisted electrodeposited copper nanowires," Int. J. Electrochem. Sci. 9 (2014) 2548.
[64] L.N. Quan, J. Kang, C.Z. Ning, and P. Yang, "Nanowires for photonics," Chem. Rev. 119 (2019) 9153.
[65] M. Zhang, M. Wang, M. Zhang, A. Maimaitiming, L. Pang, Y. Liang, J. Hu, and G. Wu, "Fe3O4 nanowire arrays on flexible polypropylene substrates for UV and magnetic sensing," ACS Appl. Nano Mater. 1 (2018) 5742.
[66] V. Martinez, F. Stauffer, M.O. Adagunodo, C. Forro, J. Vörös, and A. Larmagnac, "Stretchable silver nanowire-elastomer composite microelectrodes with tailored electrical properties," ACS Appl. Mater. Interfaces. 7 (2015) 13467.
[67] X. Li, Y. Wang, C. Yin, and Z. Yin, "Copper nanowires in recent electronic applications: Progress and perspectives," J. Mater. Chem. C. 8 (2020) 849.
[68] K. Lee, J.W. Shin, J.H. Park, J. Lee, C.W. Joo, J.I. Lee, D.H. Cho, J.T. Lim, M.C. Oh, B.K. Ju, and J. Moon, "A light scattering layer for internal light extraction of organic light-emitting diodes based on silver nanowires," ACS Appl. Mater. Interfaces. 8 (2016) 17409.
[69] S. Lee, J. Jang, T. Park, Y.M. Park, J.S. Park, Y.K. Kim, H.K. Lee, E.C. Jeon, D.K. Lee, B. Ahn, and C.H. Chung, "Electrodeposited silver nanowire transparent conducting electrodes for thin-film solar cells," ACS Appl. Mater. Interfaces. 12 (2020) 6169.
[70] L. Cai, S. Zhang, Y. Zhang, J. Li, J. Miao, Q. Wang, Z. Yu, and C. Wang, "Direct printing for additive patterning of silver nanowires for stretchable sensor and display applications," Adv. Mater. Technol. 3 (2018) 1.
[71] J.M. Hu, Z. Li, L.Q. Chen, and C.W. Nan, "High-density magnetoresistive random access memory operating at ultralow voltage at room temperature," Nat. Commun. 2 (2011) 553.
[72] X. Zhang, X. Jiang, F. Xiong, C. Wang, and S. Yang, "Controlled synthesis and magnetic properties of Ni nanotubes and nanowires," Mater. Res. Bull. 95 (2017) 248.
[73] R. Zhang, Z. Xue, J. Qin, M. Sawangphruk, X. Zhang, and R. Liu, "NiCo-LDH/Ti3C2 MXene hybrid materials for lithium ion battery with high-rate capability and long cycle life, " J. Energy Chem. 50 (2020) 143.
[74] Y. Wang, Y. Liu, H. Wang, W. Liu, Y. Li, J. Zhang, H. Hou, and J. Yang, "Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes," ACS Appl. Energy Mater. 2 (2019) 2063.
[75] R.C. Munoz and C. Arenas, "Size effects and charge transport in metals: Quantum theory of the resistivity of nanometric metallic structures arising from electron scattering by grain boundaries and by rough surfaces," Appl. Phys. Rev. 4(1) (2017) 011102.
[76] F.M. Brunbauer, E. Bertagnolli, J. Majer, and A. Lugstein, "Electrical transport properties of single-crystal Al nanowires," Nanotechnology. 27(38) (2016) 385704.
[77] Z. Cheng, L. Liu, S. Xu, M. Lu, and X. Wang, "Temperature dependence of electrical and thermal conduction in single silver nanowire," Sci. Rep. 5 (2015) 1.
[78] W.T. Peng, F.R. Chen, and M.C. Lu, "Thermal conductivity and electrical resistivity of single copper nanowires," Phys. Chem. Chem. Phys. 23 (2021) 20359.
[79] Y. Peng, T. Cullis, and B. Inkson, "Accurate electrical testing of individual gold nanowires by in situ scanning electron microscope nanomanipulators," Appl. Phys. Lett. 93 (2008) 1.
[80] A. Enrico, V. Dubois, F. Niklaus, and G. Stemme, "Scalable manufacturing of single nanowire devices using crack-defined shadow mask lithography," ACS Appl. Mater. Interfaces. 11 (2019) 8217.
[81] D.S. Choi, Y. Rheem, B. Yoo, N.V. Myung, and Y.K. Kim, "I-V characteristics of a vertical single Ni nanowire by voltage-applied atomic force microscopy," Curr. Appl. Phys. 10 (2010) 1037.
[82] C. Frantz, C. Vichery, J. Zechner, D. Frey, G. Bürki, H. Cebeci, J. Michler, and L. Philippe, "Pulse electrodeposition of adherent nickel coatings onto anodized aluminium surfaces," Appl. Surf. Sci. 330 (2015) 39.
[83] D.M. Dryden, T. Sun, R. McCormick, R. Hickey, R. Vidu, and P.Stroeve, "Anomalous deposition of Co-Ni alloys in film and nanowire morphologies from citrate baths, " Electrochim. Acta. 220 (2016) 595.
[84] S. Tebbakh, Y. Messaoudi, A. Azizi, N. Fenineche, G. Schmerber, and A. Dinia, "The influence of saccharin on the electrodeposition and properties of Co-Ni alloy thin films, " Trans. Inst. Met. Finish. 93 (2015) 196.
[85] I. Bakonyi, V.A. Isnaini, T. Kolonits, Z. Czigány, J. Gubicza, L.K. Varga, E. Tóth-Kádár, L. Pogány, L. Péter, and H.Ebert, "The specific grain-boundary electrical resistivity of Ni ," Philos. Mag. 99 (2019) 1139.
[86] C.K. Hu, J. Kelly, H. Huang, K. Motoyama, H. Shobha, Y. Ostrovski, J.H.C. Chen, R. Patlolla, B. Peethala, P. Adusumilli, T. Spooner, R. Quon, L.M. Gignac, C. Breslin, G. Lian, M. Ali, J. Benedict, X.S. Lin, S. Smith, V. Kamineni, X. Zhang, F. Mont, S. Siddiqui, and F. Baumann, "Future on-chip interconnect metallization and electromigration, " Int. Reliab. Phys. Symp. IEEE (2018) 4F.11.
[87] Y. Ke, F. Zahid, V. Timoshevskii, K. Xia, D. Gall, and H. Guo, "Resistivity of thin Cu films with surface roughness, " Phys. Rev. B 79(15) (2009) 155406.
[88] C. Durkan and M. E. Welland, "Size effects in the electrical resistivity of polycrystalline nanowires, " Phys. Rev. B 61 (2000) 14215.
[89] Y. Hu, S. Li and H. Bao, "First-principles based analysis of thermal transport in metallic nanostructures: Size effect and Wiedemann-Franz law, " Phys. Rev. B. 103(10) (2021) 104301.
[90] E. Yoo, J.H. Moon, Y.S. Jeon, Y. Kim, J.P. Ahn, and Y.K. Kim, "Electrical resistivity and microstructural evolution of electrodeposited Co and Co-W nanowires, " Mater. Charact. 166 (2020) 110451.
[91] T. Böhnert, V. Vega, A.K. Michel, V.M. Prida, and K. Nielsch, "Magneto-thermopower and magnetoresistance of single Co-Ni alloy nanowires, " Appl. Phys. Lett. 103(9) (2013) 092407.
[92] M.V. Kamalakar and A.K. Raychaudhuri, "Low temperature electrical transport in ferromagnetic Ni nanowires, " Phys. Rev. B. 79(20) (2009) 205417.
指導教授 鄭紹良 審核日期 2022-9-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明