博碩士論文 106686601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:52.15.191.241
姓名 王小玫(Vuong Thi Hong Nhi)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 不連續雙黏性流模式之發展與應用 : 以泥石流、山崩型海嘯及局部沖刷為例
(Development and Application of Discontinuous Bi-Viscous Model to Mudslides, Landslide Tsunamis, and Local Scours)
相關論文
★ 雙向流固耦合移動邊界法發展及其於山崩海嘯之研究★ 三維真實地形數值模擬之海嘯上溯研究
★ 發展風暴潮影響強度分析法以重建1845雲林口湖風暴朝事件★ 發展適用於印度洋之氣旋風暴潮預報模式
★ 2006年屏東外海地震引發海嘯的數值模擬探討★ 馬尼拉海溝地震引發海嘯的潛勢分析
★ 三維海嘯湧潮對近岸結構物之影響★ 海嘯逆推方法之研發及其於2006 年屏東地震之應用
★ 以三維賓漢流數值模式模擬海嘯沖刷坑之發展★ 以三維數值模擬探討海嘯湧潮與結構物之交互作用
★ 三維雙黏性流模式於高濃度泥沙流及泥沙底床沖刷之發展及應用★ 海岸樹林及消波結構物對海嘯能量消散之模擬
★ 重建台灣九棚海嘯石之古海嘯事件及孤立波與水下圓板交互作用之模擬★ 裙礁流場之數值分析與消能特性之探討
★ 風暴潮速算系統之建立及1845年雲林口湖事件之還原與研究★ 台灣海嘯速算系統建置暨1867年 基隆海嘯事件之還原與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以三維不可壓縮流模式Splash3D為基礎,發展可模擬泥石流、山崩型海嘯、以及局部沖刷之模式。Splash3D模式以PLIC法(Piecewise Linear Interface Construction)及流體體積法(Volume of Fluid, VOF),求解Navier-Stokes方程式。該模式在發展之初,僅適用於模擬牛頓流體之行為。然而如泥、粉砂、黏土、土壤等具有複雜之流變特性之物質,因無法精確地以牛頓流體進行描述,應是將其視作具黏滯性之非牛頓流體。因此本研究拓展原有之Splash 3D模式,使其能進一步模擬非牛頓流體之運動行為。此一新模式名為「不連續雙黏性流模式」(Discontinuous Bi-viscous Model, DBM),可適用於研究泥石流、山崩型海嘯以及局部沖刷模擬。
DBM模式中將物質視為非牛頓流體,以降伏應變率 (Yield strain rate) 為分界,可分為固化區(Plug zone)及液化區(Liquefied zone),此時所對應之應力值即為該物質之降伏應力(Yield stress)。模式須輸入四個主要參數,分別為降伏應變率、降伏應力、固化區黏滯度及液化區黏滯度。藉由調整降伏應變率與降伏應力,甚至能將模式轉換為傳統之賓漢流模式或牛頓流體模式。此外,本研究亦新增內部造波功能,以實現規則波與不規則波之輸入。
此DBM模式除耦合多項功能外,更經過全面且縝密的驗證,包含理論解與實驗解之比較。比對項目如泥石流、造波波型、受力分布與沖刷坑發展等,各項目都呈現良好之一致性。本論文亦模擬與討論三個DBM模式之應用,其一為模擬1966年美國德州之石膏尾礦潰壩案例;二為海底山崩所致之海嘯模擬,此例中山崩物質組成將視為非牛頓流體;第三則為局部沖刷模擬,如單樁風機受洋流作用,或是複雜橋墩結構受河流影響下之沖刷發展。此模式於上述應用皆有良好成果並套用於國內數項工程計畫,細部討論亦於文中展現。
摘要(英) Natural materials such as muds, silts, clays, and soils are generally cohesive non-Newtonian fluids with complex rheological properties, which a Newtonian model cannot characterize precisely. This study adopts a three-dimensional model, Splash3D, which resolves the Navier-Stokes equations with PLIC-VOF surface-tracking algorithm. However, the original version of Splash3D is only available for Newtonian fluid prediction. One of the main contributions of this study is compiling a non-Newtonian fluid model into Splash3D model. This non-Newtonian fluid model is named Discontinuous Bi-viscous Model (DBM), which deals with the rheology feature of natural materials. This compiled model is used to study mudflow, landslide tsunami, and scouring problems.
DBM illustrates a discontinuity in the stress-strain relation of the mixture, which contains both solid and liquid phases (un-yield/plug and yield/liquefied phases). A yield strain rate is introduced as the indicator to identify the slip surface, which separates the un-yield and yield region. The new version of DBM can switch to the conventional Bingham model flexibly, where the yield strain rate equals zero. DBM includes four variables as yield stress, yield strain rate, plug zone viscosity, and liquefied zone viscosity, which a rheometer can measure. In addition, the internal source wave maker, which can deliver both regular and irregular waves, is also integrated into the model.
The coupling model is carefully validated with theoretical solutions and laboratory data, including the mudflows, wave generations, force calculation, and scour profiles. All of them get good agreements. This study provides three major applications and discussions of DBM. The first is the mudflow of the gypsum tailings dam in East Texas in 1966. The second is the submarine landslide tsunamis in which the volume of submarine material is treated as a rheological material. The third is the local scour around complex bridge piers caused by river floods and the scouring nearby a mono-pile wind turbine caused by ocean waves. The model is also employed to undertake some important projects in Taiwan. The results are acceptable compared with the survey data. Detailed discussions are presented in the contents.
關鍵字(中) ★ 非牛頓流體
★ 流變學
★ 不連續雙黏性流
★ 泥石流
★ 山崩型海嘯
★ 局部沖刷
關鍵字(英) ★ non-Newtonian fluid
★ rheology
★ mudflow
★ landslide tsunami
★ local scour
★ random wave
論文目次 CHINESE ABSTRACT/中文摘要 i
ABSTRACT i
ACKNOWLEDGMENTS iv
TABLE OF CONTENTS v
LIST OF FIGURES ix
LIST OF TABLES xx
CHAPTER 1. INTRODUCTION 1
1.1 Review for Mudflows, Landslides 1
1.2 Review for Submarine landslide tsunamis 4
1.3 Review for Local scour 7
1.3.1 Local scour around a pipeline 7
1.3.2 Local scour around a vertical pile 15
1.4 Rheology of natural materials 19
1.4.1 The basic concept of rheology 19
1.4.2 Rheological models 25
1.4.3 Rheology measurement systems 30
1.4.4 Discontinuous property of clayey soils 37
1.5 Scope of this dissertation 39
CHAPTER 2. SPLASH3D MODEL 40
2.1. Governing equations 40
2.2 Volume tracking algorithm 42
2.2.1 The Volume of Fluid method 42
2.2.2 Volume Tracking Algorithm. 44
2.3 Evaluate Momentum Diffusion 51
2.4 Finite Volume Method 53
2.5 Algorithms 56
2.5.1 Evaluate momentum advection 56
2.5.2 Transfer the cell-centered Velocity to Faces 60
2.5.3 Projection 63
2.5.4 Adjust Cell Centered Velocity for Pressure Gradient 63
CHAPTER 3. MODEL DEVELOPMENT 65
3.1 Discontinuous Bi-viscous Model 65
3.2 Internal source wave maker 71
3.2.1 Water waves 71
3.2.2 Wavemaker 74
CHAPTER 4. VALIDATION 78
4.1 Bingham flow driven by a pressure gradient 78
4.2 Spreading of Bingham fluid on an inclined plane 82
4.3 Wave generation 84
4.3.1 Regular wave 84
4.3.2 Random wave 86
4.4 Force and moment exerted on the vertical cylinder 88
4.5 Local scour around a pipeline 90
CHAPTER 5. APPLICATIONS 93
5.1 Simulating mudflows, landslides 93
5.1.1 The evolution of Discontinuous Bi-viscous model 93
5.1.2 Difference between the Bingham model and DBM 102
5.1.3 The role of the grid resolution 104
5.1.4 Rheological properties 105
5.2 Submarine landslide tsunamis 109
5.2.1 Slump-type landslide tsunamis 109
5.2.2 Effect from the Rheology Parameters 114
5.2.3 Scale Effect 121
5.3 Local Scour 133
5.3.1 Local scour around complex bridge piers caused by a flood 133
5.3.2 Local scour around a monopole caused by waves and current 148
5.3.3 Local scour around a tripod and a jack-up wind turbine caused by waves and current 155
CHAPTER 6. CONCLUSIONS 170
CHAPTER 7. FUTURE WORKS 174
APPENDIX - RESPONSE TO COMMITTEE QUESTIONS AND COMMENTS 178
1. Basic Information of Dissertation Defense 178
2. Committee#1 (Prof. Tai-Wen Hsu) 180
3. Committee#2 (Prof. Shih-Chun Hsiao) 187
4. Committee#3 (Prof. Chung-Yue, Wang) 189
5. Committee#4 (Prof. Chia-Ren Chu) 191
6. Committee#5 (Prof. Tso-Ren Wu) 198
REFERENCES 202
參考文獻 Abadie, S., Paris, A., Ata, R., Le Roy, S., Arnaud, G., Poupardin, A., Clous, L., Heinrich, P., Harris, J., Pedreros, R., and Krien, Y. (2019). La Palma landslide tsunami: computation of the tsunami source with a calibrated multi-fluid Navier–Stokes model and wave impact assessment with propagation models of different types. In Natural Hazards and Earth System Sciences Discussions (Issue July, pp. 1–50).
Albert, M., and Jones, S. J. (2002). Effects of Cohesion on Bridge Scour. First International Conference on Scour of Foundations, ICSF-1.
Ansari, S. A., Kothyari, U. C., and Ranga Raju, K. G. (2002). Influence of cohesion on scour around bridge piers. Journal of Hydraulic Research, 40(6), 717–729. https://doi.org/10.1080/00221680209499918
Assier-Rzadkiewicz, S., Heinrich, P., Sabatier, P. C., Savoye, B., and Bourillet, J. F. (2000). Numerical modelling of a landslide-generated tsunami: The 1979 nice event. Pure and Applied Geophysics, 157(10), 1707–1727. https://doi.org/10.1007/pl00001057
Ataie-Ashtiani, B., and Nik-Khah, A. (2008). Impulsive waves caused by subaerial landslides. In Environmental Fluid Mechanics (Vol. 8, Issue 3, pp. 263–280). https://doi.org/10.1007/s10652-008-9074-7
Ayol, A. (2005). Determination of rheological properties of sludges produced at different treatment stages.
Balmforth, N. J., Frigaard, I. A., and Ovarlez, G. (2014). Yielding to Stress: Recent Developments in Viscoplastic Fluid Mechanics. Annual Review of Fluid Mechanics. https://doi.org/10.1146/annurev-fluid-010313-141424
Bardet, J. P. (1986). Bounding Surface Plasticity Model for Sands. Journal of Engineering Mechanics, 112(11), 1198–1217. https://doi.org/10.1061/(asce)0733-9399(1986)112:11(1198)
Bates, B. M., and Ancey, C. (2017). The dam-break problem for eroding viscoplastic fluids. In Journal of Non-Newtonian Fluid Mechanics (Vol. 243, pp. 64–78). https://doi.org/10.1016/j.jnnfm.2017.01.009
Baudez, J. C. (2002). Rheology and physico-chemistry of pasty sewage sludge in view of storing and spreading. In Houille Blanche (Issues 6–7, pp. 98–103). https://doi.org/10.1051/lhb/2002091
Below, C., and Moncada-m, R. B. A. T. (1999). Cour below. SEPTEMBER, 953–958.
Berlamont, J., Ockenden, M., Toorman, E., and Winterwerp, J. (1993). The characterisation of cohesive sediment properties. In Coastal Engineering (Vol. 21, Issues 1–3, pp. 105–128). https://doi.org/10.1016/0378-3839(93)90047-C
Beverly, C. R., and Tanner, R. I. (1992). Numerical analysis of three-dimensional Bingham plastic flow. In Journal of Non-Newtonian Fluid Mechanics (Vol. 42, Issues 1–2, pp. 85–115). https://doi.org/10.1016/0377-0257(92)80006-J
Bird, R. B., Dai, G. C., and Yarusso, B. J. (1983). Rheology and flow of viscoplastic materials. Reviews in Chemical Engineering, 1(1), 1–70.
Biscarini, C. (2010). Computational fluid dynamics modelling of landslide generated water waves. In Landslides (Vol. 7, Issue 2, pp. 117–124). https://doi.org/10.1007/s10346-009-0194-z
Breien, H., De Blasio, F. V., Elverhøi, A., Nystuen, J. P., and Harbitz, C. B. (2010). Transport mechanisms of sand in deep-marine environments-insights based on laboratory experiments. Journal of Sedimentary Research, 80(11–12), 975–990. https://doi.org/10.2110/jsr.2010.079
Brørs, B. (1999). Numerical Modeling of Flow and Scour at Pipelines. Journal of Hydraulic Engineering, 125(5), 511–523. https://doi.org/10.1061/(asce)0733-9429(1999)125:5(511)
CECI. (2011). Cause Analysis on the Shuang-Yuan Bridge Collapse in Typhoon Morakot.
Chang, W. Y., Lai, J. S., and Yen, C. L. (2004). Evolution of scour depth at circular bridge piers. Journal of Hydraulic Engineering, 130(9), 905–913. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:9(905)
Chaplin, J. R., Rainey, R. C. T., and Yemm, R. W. (1997). Ringing of a vertical cylinder in waves. Journal of Fluid Mechanics, 350, 119–147. https://doi.org/10.1017/S002211209700699X
Chen, H. C. (2002). Numerical Simulation of Scour Around Complex Piers in Cohesive Soil. First International Conference on Scour of Foundations, 14–33.
Chen, and Peng, S. H. (2006). Two-dimensional numerical model of two-layer shallow water equations for confluence simulation. Advances in Water Resources. https://doi.org/10.1016/j.advwatres.2005.12.001
Chen, R., Wilson, M., Leong, Y. K., Bryant, P., Yang, H., and Zhang, D. K. (2011). Preparation and rheology of biochar, lignite char and coal slurry fuels. Fuel, 90(4), 1689–1695.
Cheng, L., Yeow, K., Zang, Z., and Li, F. (2014). 3D scour below pipelines under waves and combined waves and currents. Coastal Engineering, 83, 137–149. https://doi.org/10.1016/j.coastaleng.2013.10.006
Cheng, L., Yeow, K., Zhang, Z., and Teng, B. (2009). Three-dimensional scour below offshore pipelines in steady currents. Coastal Engineering, 56(5–6), 577–590. https://doi.org/10.1016/j.coastaleng.2008.12.004
Chhabra, R. P. (2006). Bubbles, Drops, and Particles in Non-Newtonian Fluids. In Bubbles, Drops, and Particles in Non-Newtonian Fluids. https://doi.org/10.1201/9781420015386
Chhabra, R. P., and Richardson, J. F. (2008). Non-newtonian flow and applied rheology. In Non-Newtonian Flow and Applied Rheology. https://doi.org/10.1016/B978-0-7506-8532-0.X0001-7
Chiew, Y. (1990). Mechanics of Local Scour Around Submarine Pipelines. Journal of Hydraulic Engineering, 116(4), 515–529. https://doi.org/10.1061/(asce)0733-9429(1990)116:4(515)
Chiew, Y. (1991). Prediction of Maximum Scour Depth at Submarine Pipelines. Journal of Hydraulic Engineering, 117(4), 452–466. https://doi.org/10.1061/(asce)0733-9429(1991)117:4(452)
Chrisohoides, A., Sotiropoulos, F., and Sturm, T. W. (2003). Coherent structures in flat-bed abutment flow: Computational fluid dynamics simulations and experiments. Journal of Hydraulic Engineering, 129(3), 177–186.
Christen, M., Bühler, Y., Bartelt, P., Leine, R., Glover, J., Schweizer, A., Graf, C., McArdell, B. W., Gerber, W., and Deubelbeiss, Y. (2012). Integral hazard management using a unified software environment. In 12th Congress Interpraevent (pp. 77–86).
Christoffersen, J. B., and Jonsson, I. G. (1985). Bed friction and dissipation in a combined current and wave motion. 12(5), 387–423.
Chu, C. R. (2014). Numerical Analysis of Scour Depth and Hydrodynamic Loading of Exposed Bridge Piles.
Coussot, P. (2007). Rheophysics of pastes: A review of microscopic modelling approaches. In Soft Matter (Vol. 3, Issue 5, pp. 528–540). https://doi.org/10.1039/b611021p
Coussot, P. (2017). Mudflow rheology and dynamics. In Mudflow Rheology and Dynamics (pp. 1–255). https://doi.org/10.1201/9780203746349
Coussot, P., and Boyer, S. (1995). Determination of yield stress fluid behaviour from inclined plane test. Rheologica Acta. https://doi.org/10.1007/BF00712314
Coussot, P., and Piau, J. M. (1994). On the behavior of fine mud suspensions. Rheologica Acta, 33(3), 175–184. https://doi.org/10.1007/BF00437302
Coussot, P., Proust, S., and Ancey, C. (1996). Rheological interpretation of deposits of yield stress fluids. In Journal of Non-Newtonian Fluid Mechanics (Vol. 66, Issue 1, pp. 55–70). https://doi.org/10.1016/0377-0257(96)01474-7
Dafalias, Y. F. (1986). Bounding Surface PlasticityBounding surface plasticity. I: Mathematical foundation and hypoplasticity. Journal of Engineering Mechanics, 112(9), 966–987.
Dafalias, Y. F., and Popov, E. P. (1975). A model of nonlinearly hardening materials for complex loading. Acta Mechanica, 21(3), 173–192.
Dafalias, Y. F., and Popov, E. P. (1976). Plastic Internal Variables Formalism of Cyclic Plasticity. In American Society of Mechanical Engineers (Paper) (Issues 76-WA/APM-21).
Dai, Z., Huang, Y., Cheng, H., and Xu, Q. (2014). 3D numerical modeling using smoothed particle hydrodynamics of flow-like landslide propagation triggered by the 2008 Wenchuan earthquake. Engineering Geology, 180, 21–33. https://doi.org/10.1016/j.enggeo.2014.03.018
Daugherty, R. L., and Franzini, J. B. (1977). Fluid mechanics with engineering applications.
Dean, R. G., and Dalrymple, R. A. (1991). Water wave mechanics for engineers and scientists (Vol. 2). World scientific publishing company. https://doi.org/10.1029/eo066i024p00490-06
Didenkulova, I., Nikolkina, I., Pelinovsky, E., and Zahibo, N. (2010). Tsunami waves generated by submarine landslides of variable volume: Analytical solutions for a basin of variable depth. Natural Hazards and Earth System Science, 10(11), 2407–2419. https://doi.org/10.5194/nhess-10-2407-2010
Duan, J. G., Wang, S. S. Y., and Yafei, J. (2001). The applications of the enhanced CCHE2D model to study the alluvial channel migration processes. In Journal of Hydraulic Research (Vol. 39, Issue 5, pp. 469–480). https://doi.org/10.1080/00221686.2001.9628272
Elverhoi, A., Breien, H., De Blasio, F. V., Harbitz, C. B., and Pagliardi, M. (2010). Submarine landslides and the importance of the initial sediment composition for run-out length and final deposit. Ocean Dynamics, 60(4), 1027–1046. https://doi.org/10.1007/s10236-010-0317-z
Elverhøi, A., Issler, D., De Blasio, F. V., Ilstad, T., Harbitz, C. B., and Gauer, P. (2005). Emerging insights into the dynamics of submarine debris flows. Natural Hazards and Earth System Science, 5(5), 633–648. https://doi.org/10.5194/nhess-5-633-2005
Eshtiaghi, N., Markis, F., Yap, S. D., Baudez, J. C., and Slatter, P. (2013). Rheological characterization of municipal sludge review. Water Research, 47(15), 5493–5510.
Eymard, R., Gallouët, T., and Herbin, R. (2000). Finite volume methods. In Solution of Equation in ℝn (Part 3), Techniques of Scientific Computing (Part 3) (Vol. 7, pp. 713–1018). Elsevier. https://doi.org/https://doi.org/10.1016/S1570-8659(00)07005-8
Ferziger, J. H., Peric, M., and Leonard, A. (1997). Computational Methods for Fluid Dynamics Table of Contents. Physics Today, 50(3), 80. http://scitation.aip.org/content/aip/magazine/physicstoday/article/50/3/10.1063/1.881751
Fredsoe, J., and Deigaard, R. (1992). Mechanics of coastal sediment transport. In World scientific publishing company. (Vol. 3). https://doi.org/10.1016/0378-3839(94)90032-9
Fuhrman, D. R., Baykal, C., Mutlu Sumer, B., Jacobsen, N. G., and Fredsøe, J. (2014). Numerical simulation of wave-induced scour and backfilling processes beneath submarine pipelines. Coastal Engineering, 94, 10–22. https://doi.org/10.1016/j.coastaleng.2014.08.009
Govier, G. W., Aziz, K., and Schowalter, W. R. (1973). The Flow of Complex Mixtures in Pipes. In Journal of Applied Mechanics (Vol. 40, Issue 2, pp. 404–404). https://doi.org/10.1115/1.3422996
Griffiths, R. W. (2000). The Dynamics of Lava Flows. Annual Review of Fluid Mechanics. https://doi.org/10.1146/annurev.fluid.32.1.477
Guibaud, G., Dollet, P., Tixier, N., Dagot, C., and Baudu, M. (2004). Characterization of the evolution of activated sludges using rheological measurements. Process Biochemistry, 39(11), 1803–1810.
Hajikarimi, P., and Nejad, F. M. (2021). Application of viscoelasticity for experimental tests. In Applications of Viscoelasticity. https://doi.org/10.1016/b978-0-12-821210-3.00001-2
Harbitz, C. B., Løvholt, F., and Bungum, H. (2014). Submarine landslide tsunamis: How extreme and how likely? In Natural Hazards (Vol. 72, Issue 3, pp. 1341–1374). https://doi.org/10.1007/s11069-013-0681-3
Harten, A., Lax, P. D., and Leer, B. van. (1983). On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws. SIAM Review. https://doi.org/10.1137/1025002
Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Eake, K., Euring, J. A., Gicnapp, A., Hasselmann, D. E., Kruseman, P., Meerburg, A., Mullen, P., Olbers, D. J., Richren, K., Sell, W., and Walden, H. (1973). Measurements of wind-wave growth and swell decay during the joint North Sea wave project (JONSWAP).
Healy, T., Wang, Y., and Healy, J. A. (Eds. ). (2002). Muddy Coasts of the World: Processes, Deposits and Function. In Elsevier. https://doi.org/10.1016/s0272-7714(03)00091-x
Heinrich, P., Guibourg, S., Mangeney, A., and Roche, R. (1999). Numerical modeling of a landslide-generated tsunami following a potential explosion of the Montserrat volcano. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 24(2), 163–168. https://doi.org/10.1016/S1464-1895(99)00013-7
Heinrich, P. H., Piatanesi, A., and Hébert, H. (2001). Numerical modelling of tsunami generation and propagation from submarine slumps: The 1998 Papua New Guinea event. Geophysical Journal International, 145(1), 97–111. https://doi.org/10.1111/j.1365-246X.2001.00336.x
Heller, V., Bruggemann, M., Spinneken, J., and Rogers, B. D. (2016). Composite modelling of subaerial landslide-tsunamis in different water body geometries and novel insight into slide and wave kinematics. Coastal Engineering, 109, 20–41. https://doi.org/10.1016/j.coastaleng.2015.12.004
Heller, V., Hager, W. H., and Minor, H. E. (2008). Scale effects in subaerial landslide generated impulse waves. In Experiments in Fluids (Vol. 44, Issue 5, pp. 691–703). https://doi.org/10.1007/s00348-007-0427-7
Hill, R. (1952). On discontinuous plastic states, with special reference to localized necking in thin sheets. In Journal of the Mechanics and Physics of Solids (Vol. 1, Issue 1, pp. 19–30). https://doi.org/10.1016/0022-5096(52)90003-3
Huang, B., Wang, S. C., and Zhao, Y. B. (2017). Impulse waves in reservoirs generated by landslides into shallow water. Coastal Engineering, 123, 52–61. https://doi.org/10.1016/j.coastaleng.2017.03.003
Huang, and Garcia, M. H. (1998). A Herschel-Bulkley model for mud flow down a slope. Journal of Fluid Mechanics, 374, 305–333. https://doi.org/10.1017/S0022112098002845
Huang, X., and Garcı́a, M. H. (1999). Modeling of non-hydroplaning mudflows on continental slopes. Marine Geology, 154(1–4), 131–142.
Huang, Z., and Aode, H. (2009). A laboratory study of rheological properties of mudflows in Hangzhou Bay, China. International Journal of Sediment Research, 24(4), 410–424. https://doi.org/10.1016/S1001-6279(10)60014-5
Hudson, R. Y. (1979). Coastal hydraulic models. In U.S.Army Coastal Engineering Research Center, Special Report (Vol. 5).
Imran, J., Harff, P., and Parker, G. (2001). A numerical model of submarine debris flow with graphical user interface. In Computers and Geosciences (Vol. 27, Issue 6, pp. 717–729). https://doi.org/10.1016/S0098-3004(00)00124-2
James, A. E., Williams, D. J. A., and Williams, P. R. (1987). Direct measurement of static yield properties of cohesive suspensions. Rheologica Acta, 26(5), 437–446. https://doi.org/10.1016/s1369-5274(98)80020-9
Jeng, Y. N., and Chen, J. L. (1992). Truncation error analysis of the finite volume method for a model steady convective equation. In Journal of Computational Physics (Vol. 100, Issue 1, pp. 64–76). https://doi.org/10.1016/0021-9991(92)90310-U
Jeong, S. W. (2014). The effect of grain size on the viscosity and yield stress of fine-grained sediments. In Journal of Mountain Science (Vol. 11, Issue 1, pp. 31–40). https://doi.org/10.1007/s11629-013-2661-1
Jeong, S. W. (2015). Geotechnical and rheological characteristics of waste rock deposits influencing potential debris flow occurrence at the abandoned Imgi Mine, Korea. In Environmental Earth Sciences (Vol. 73, Issue 12, pp. 8299–8310). https://doi.org/10.1007/s12665-014-3991-1
Jeong, S. W. (2019). Shear rate-dependent rheological properties of mine tailings: Determination of dynamic and static yield stresses. In Applied Sciences (Switzerland) (Vol. 9, Issue 22). https://doi.org/10.3390/app9224744
Jeong, S. W., Leroueil, S., and Locat, J. (2009). Applicability of power law for describing the rheology of soils of different origins and characteristics. In Canadian Geotechnical Journal (Vol. 46, Issue 9, pp. 1011–1023). https://doi.org/10.1139/T09-031
Jeong, S. W., Locat, J., Torrance, J. K., and Leroueil, S. (2015). Thixotropic and anti-thixotropic behaviors of fine-grained soils in various flocculated systems. In Engineering Geology (Vol. 196, pp. 119–125). https://doi.org/10.1016/j.enggeo.2015.07.014
Jeong, S. W., Wu, Y. H., Cho, Y. C., and Ji, S. W. (2018). Flow behavior and mobility of contaminated waste rock materials in the abandoned Imgi mine in Korea. In Geomorphology (Vol. 301, pp. 79–91). https://doi.org/10.1016/j.geomorph.2017.10.021
Jeyapalan, J. K., Duncan, J. M., and Seed, H. B. (1983). Investigation of flow failures of tailings dams. Journal of Geotechnical Engineering, 109(2), 172–189. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:2(172)
Jing, H. X., Liu, C. G., and Tao, J. H. (2015). An extended form of Boussinesq-type equations for nonlinear water waves. Journal of Hydrodynamics, 27(5), 696–707. https://doi.org/10.1016/S1001-6058(15)60532-7
Journée, J. M. J., and Massie, W. W. (2001). Offshore hydromechanics. Delft University of Technology.
Julien, P. Y. (2010). Erosion and sedimentation, Second edition. In Erosion and Sedimentation, Second Edition. https://doi.org/10.1017/CBO9780511806049
Julien, P. Y., and Lan, Y. (1991). Rheology of Hyperconcentrations. In Journal of Hydraulic Engineering (Vol. 117, Issue 3, pp. 346–353). https://doi.org/10.1061/(asce)0733-9429(1991)117:3(346)
Kaftori, D., Hetsroni, G., and Banerjee, S. (1995a). Particle behavior in the turbulent boundary layer. I. Motion, deposition, and entrainment. Physics of Fluids, 7(5), 1095–1106. https://doi.org/10.1063/1.868551
Kaftori, D., Hetsroni, G., and Banerjee, S. (1995b). Particle behavior in the turbulent boundary layer. II. Velocity and distribution profiles. Physics of Fluids, 7(5), 1107–1121. https://doi.org/10.1063/1.868552
Kamphuis, J. W., and Bowering, R. J. (1970). Impulse waves generated by landslides. Coastal Engineering Proceedings, 12, 35–35. https://doi.org/10.9753/icce.v12.35
Kattel, P., Khattri, K. B., Pokhrel, P. R., Kafle, J., Tuladhar, B. M., and Pudasaini, S. P. (2016). Simulating glacial lake outburst floods with a two-phase mass flow model.pdf. Annals of Glaciology, 57(71), 349–358.
Khabazi, N. P., Taghavi, S. M., and Sadeghy, K. (2016). Peristaltic flow of Bingham fluids at large Reynolds numbers: A numerical study. In Journal of Non-Newtonian Fluid Mechanics (Vol. 227, pp. 30–44). https://doi.org/10.1016/j.jnnfm.2015.11.004
Kílöz, B., Çevik, E., and Yüksel, Y. (2013). Scour below submarine pipelines under irregular wave attack. Coastal Engineering, 79, 1–8. https://doi.org/10.1016/j.coastaleng.2013.04.001
Kim, G. B., Cheng, W., Sunny, R. C., Horrillo, J. J., McFall, B. C., Mohammed, F., Fritz, H. M., Beget, J., and Kowalik, Z. (2020). Three Dimensional Landslide Generated Tsunamis: Numerical and Physical Model Comparisons. In Landslides (Vol. 17, Issue 5, pp. 1145–1161). https://doi.org/10.1007/s10346-019-01308-2
Kirkil, G., Constantinescu, S. G., and Ettema, R. (2008). Coherent Structures in the Flow Field around a Circular Cylinder with Scour Hole. Journal of Hydraulic Engineering, 134(5), 572–587. https://doi.org/10.1061/(asce)0733-9429(2008)134:5(572)
Kjeldsen, S. P., Gjorsvik, O., Bringaker, K. G., and Jacobsen, J. (1973). Local scour near offshore pipelines. In Paper Available Only as Part of the Complete Proceedings of the Second International Conference on Port and Ocean Engineering Under Arctic Conditions (POAC).
Kothe, D. B. (1998). Perspective on Eulerian Finite Volume Methods for Incompressible Interfacial Flows. In Free Surface Flows (pp. 267–331). https://doi.org/10.1007/978-3-7091-2598-4_6
Kouh, J. S., Chen, Y. J., and Chau, S. W. (2009). Numerical study on scale effect of form factor. In Ocean Engineering (Vol. 36, Issue 5, pp. 403–413). https://doi.org/10.1016/j.oceaneng.2009.01.011
Krieg, R. D. (1975). A practical two surface plasticity theory. Journal of Applied Mechanics, Transactions ASME, 42(3), 641–646. https://doi.org/10.1115/1.3423656
Larson, R. G. (1999). The Structure and Rheology of Complex Fluids. In New York: Oxford university press (Vol. 150). https://doi.org/10.1515/arh-2000-0024
Law, L., and Brebner, A. (1968). On water waves generated by landslides. In Proceedings of the Third Australasian Conference on Hydraulics and Fluid Mechanics, 155–159.
Leong, Y. K., Scales, P. J., Healy, T. W., and Boger, D. V. (1995). Effect of particle size on colloidal zirconia rheology at the isoelectric point. Journal of the American Ceramic Society, 78(8), 2209–2212. https://doi.org/10.1016/j.powtec.2020.07.078
Li, F., and Cheng, L. (1999). Numerical model of local scour of submarine pipeline. Journal of Hydraulic Engineering, April, 400–406.
Li, F., and Cheng, L. (2000). Numerical simulation of pipeline local scour with lee-wake effects. International Journal of Offshore and Polar Engineering, 10(03).
Li, G., Chen, G., Li, P., and Jing, H. (2019). Efficient and accurate 3-D numerical modelling of landslide Tsunami. Water (Switzerland), 11(10), 1–17. https://doi.org/10.3390/w11102033
Li, Gong, J. H., Zhu, J., Ye, L., Song, Y. Q., and Yue, Y. J. (2012). Efficient dam break flood simulation methods for developing a preliminary evacuation plan after the Wenchuan Earthquake. In Natural Hazards and Earth System Science (Vol. 12, Issue 1, pp. 97–106). https://doi.org/10.5194/nhess-12-97-2012
Li, X. S., and Dafalias, Y. F. (2000). Dilatancy for cohesionless soils. Géotechnique, 50(4), 449–460. https://doi.org/10.1680/geot.51.8.729.40474
Liang, R. Y., and Ma, F. (1992a). A unified elasto-viscoplasticity model for clays, part I: Theory. Computers and Geotechnics, 13(2), 71–87.
Liang, R. Y., and Ma, F. (1992b). Anisotropic plasticity model for undrained cyclic behavior of clays. II: Verification. Journal of Geotechnical Engineering, 118(2), 246–265. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:2(246)
Lin, C. (2005). Mitigation Methods for Scouring of Bridge Foundation. In Technical Report for Directorate General of Highways, the Ministry of Transportation and Communication, Taiwan, R.O.C.
Lin, P., and Liu, P. L. F. (1999). Internal wave-maker for Navier-Stokes equations models. Journal of Waterway, Port, Coastal, and Ocean Engineering, 125(4), 207–215.
Link, O., Klischies, K., Montalva, G., and Dey, S. (2013). Effects of Bed Compaction on Scour at Piers in Sand-Clay Mixtures. Journal of Hydraulic Engineering, 139(9), 1013–1019. https://doi.org/10.1061/(asce)hy.1943-7900.0000762
Liu, Balmforth, N. J., Hormozi, S., and Hewitt, D. R. (2016). Two–dimensional viscoplastic dambreaks. Journal of Non-Newtonian Fluid Mechanics, 238, 65–79. https://doi.org/10.1016/j.jnnfm.2016.05.008
Liu, K. F., and Mei, C. C. (1989). Slow spreading of a sheet of Bingham fluid on an inclined plane. Journal of Fluid Mechanics, 207, 505–529. https://doi.org/10.1017/S0022112089002685
Liu, P. L. F., Higuera, P., Husrin, S., Prasetya, G. S., Prihantono, J., Diastomo, H., Pryambodo, D. G., and Susmoro, H. (2020). Coastal landslides in Palu Bay during 2018 Sulawesi earthquake and tsunami. Landslides, 17(9), 2085–2098. https://doi.org/10.1007/s10346-020-01417-3
Liu, P. L. F., Wu, T. R., Raichlen, F., Synolakis, C. E., and Borrero, J. C. (2005). Runup and rundown generated by three-dimensional sliding masses. Journal of Fluid Mechanics. https://doi.org/10.1017/S0022112005004799
Liu, X., and García, M. H. (2008). Three-Dimensional Numerical Model with Free Water Surface and Mesh Deformation for Local Sediment Scour. Journal of Waterway, Port, Coastal, and Ocean Engineering, 134(4), 203–217. https://doi.org/10.1061/(asce)0733-950x(2008)134:4(203)
Locat, J., and Demers, D. (1988). Viscosity, yield stress, remolded strength, and liquidity index relationships for sensitive clays. Canadian Geotechnical Journal, 25(4), 799–806. https://doi.org/10.1139/t88-088
Locat, J., Lee, H. J., Locat, P., and Imran, J. (2004). Numerical analysis of the mobility of the Palos Verdes debris avalanche, California, and its implication for the generation of tsunamis. In Marine Geology (Vol. 203, Issues 3–4, pp. 269–280). https://doi.org/10.1016/S0025-3227(03)00310-4
Løvholt, F., Harbitz, C. B., and Haugen, K. B. (2005). A parametric study of tsunamis generated by submarine slides in the Ormen Lange/Storegga area off western Norway. Marine and Petroleum Geology, 22(1-2 SPEC. ISS.), 219–231. https://doi.org/10.1016/j.marpetgeo.2004.10.017
Løvholt, F., Pedersen, G., Harbitz, C. B., Glimsdal, S., and Kim, J. (2015a). On the characteristics of landslide tsunamis. In Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (Vol. 373, Issue 2053). https://doi.org/10.1098/rsta.2014.0376
Løvholt, F., Pedersen, G., Harbitz, C. B., Glimsdal, S., and Kim, J. (2015b). On the characteristics of landslide tsunamis. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2053). https://doi.org/10.1098/rsta.2014.0376
Lucassen, R. J. (1984). Scour underneath submarine pipelines. https://repository.tudelft.nl/islandora/object/uuid%3A58ad37cd-2b22-4e1a-9b64-8c991fe8bfd0
Ma, G., Kirby, J. T., and Shi, F. (2013). Numerical simulation of tsunami waves generated by deformable submarine landslides. Ocean Modelling, 69, 146–165. https://doi.org/10.1016/j.ocemod.2013.07.001
Manzari, M. T., and Dafalias, Y. F. (1997). A critical state two-surface plasticity model for sands. Géotechnique, 47(2), 255–272.
Mao, J., Zhao, L., Liu, X., Cheng, J., and Avital, E. (2017). A three-phases model for the simulation of landslide-generated waves using the improved conservative level set method. Computers and Fluids, 159, 243–253. https://doi.org/10.1016/j.compfluid.2017.10.007
Mao, Y. (1987). Interaction between a pipeline and an erodible bed. In Series Paper Technical University of Denmark (Vol. 39).
Markgraf, W., Horn, R., and Peth, S. (2006). An approach to rheometry in soil mechanics-Structural changes in bentonite, clayey and silty soils. Soil and Tillage Research, 91(1–2), 1–14. https://doi.org/10.1016/j.still.2006.01.007
Maslov, N. N. (1968). Fundamentals of soil mechanics and engineering geology. Vysshaya Shkola, Moscow.
Mattioli, M., Alsina, J. M., Mancinelli, A., Miozzi, M., and Brocchini, M. (2012). Experimental investigation of the nearbed dynamics around a submarine pipeline laying on different types of seabed: The interaction between turbulent structures and particles. Advances in Water Resources, 48, 31–46. https://doi.org/10.1016/j.advwatres.2012.04.010
McDougall, S., and Hungr, O. (2004). A model for the analysis of rapid landslide motion across three-dimensional terrain. Canadian Geotechnical Journal. https://doi.org/10.1139/T04-052
Mehmood, A., Khan, W. A., Mahmood, R., and Rehman, K. U. (2020). Finite Element Analysis on Bingham – Papanastasiou Viscoplastic Flow in a Channel with Circular / Square.
Melville, B. W. (1992). Local scour at bridge abutments. Journal of Hydraulic Engineering, 118(4), 615–631. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:4(615)
Mergili, M., Fischer, J. T., Krenn, J., and Pudasaini, S. P. (2017). R.avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows. Geoscientific Model Development, 10(2), 553–569. https://doi.org/10.5194/gmd-10-553-2017
Meyer, J., Graf, K., and Slawig, T. (2020). Simulation of scour around arbitrary offshore foundations based on the volume-of-fluid method combined with a bingham model. ArXiv.
Mezger, T. G. (2019). The Rheology Handbook. In The Rheology Handbook. https://doi.org/10.1515/9783748600367
Mitsoulis, E., and Tsamopoulos, J. (2017). Numerical simulations of complex yield-stress fluid flows. Rheologica Acta. https://doi.org/10.1007/s00397-016-0981-0
Mohammed, F., and Fritz, H. M. (2012). Physical modeling of tsunamis generated by three-dimensional deformable granular landslides. In Journal of Geophysical Research: Oceans (Vol. 117, Issue 11). https://doi.org/10.1029/2011JC007850
Morison, J. R., Johnson, J. W., and Schaaf, S. A. (1950). The Force Exerted by Surface Waves on Piles. Journal of Petroleum Technology, 2(05), 149–154. https://doi.org/10.2118/950149-g
Murty, T. S. (1979). Submarine slide-generated water waves in Kitimat Inlet, Bitish Columbia. In J. Geophys. Res. (Vol. 84, Issues C12, Dec.20, 1979, pp. 7777–7779). https://doi.org/10.1029/jc084ic12p07777
New Mexico department of transportation. (1994). Standard Specifications for Highway and Bridge Construction.
Nichols, C. W., and Hirt, B. D. (1979). Volume of fluid (VOF) method for the dynamics of free boundaries. In Journal of Computational Physics (Vol. 42, Issue 3, pp. 201–225).
O’Brien, J. S., and Julien, P. Y. (1988). Laboratory analysis of mudflow properties. Journal of Hydraulic Engineering, 114(8), 877–887.
O’Brien, J. S., Julien, P. Y., and Fullerton, W. T. (1993). Two-dimensional water flood and mudflow simulation. Journal of Hydraulic Engineering. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244)
Ovarlez, G., Rodts, S., Chateau, X., and Coussot, P. (2009). Phenomenology and physical origin of shear localization and shear banding in complex fluids. In Rheologica Acta (Vol. 48, Issue 8, pp. 831–844). https://doi.org/10.1007/s00397-008-0344-6
Papanastasiou, T. C. (1987). Flows of Materials with Yield. Journal of Rheology, 31(5), 385–404. https://doi.org/10.1122/1.549926
Pashias, N., Boger, D. V., Summers, J., and Glenister, D. J. (1996). A fifty cent rheometer for yield stress measurement. In Journal of Rheology (Vol. 40, Issue 6, pp. 1179–1189). https://doi.org/10.1122/1.550780
Pastor, M., Quecedo, M., Fernádez Merodo, J. A., Herrores, M. I., González, E., and Mira, P. (2002). Modelling tailings dams and mine waste dumps failures. Geotechnique, 52(8), 579–591. https://doi.org/10.1680/geot.2002.52.8.579
Pastor, M., Quecedo, M., González, E., Herreros, M. I., Merodo, J. A. F., and Mira, P. (2004). Simple Approximation to Bottom Friction for Bingham Fluid Depth Integrated Models. Journal of Hydraulic Engineering, 130(2), 149–155. https://doi.org/10.1061/(asce)0733-9429(2004)130:2(149)
Pelinovsky, E., and Poplavsky, A. (1996). Simplified model of tsunami generation by submarine landslides. In Physics and Chemistry of the Earth (Vol. 21, Issues 1-2 SPEC. ISS., pp. 13–17). https://doi.org/10.1016/s0079-1946(97)00003-7
Postacchini, M., and Brocchini, M. (2015). Scour depth under pipelines placed on weakly cohesive soils. Applied Ocean Research, 52, 73–79. https://doi.org/10.1016/j.apor.2015.04.010
Poupardin, A., Heinrich, P., Frère, A., Imbert, D., Hébert, H., and Flouzat, M. (2017). The 1979 Submarine Landslide-Generated Tsunami in Mururoa, French Polynesia. Pure and Applied Geophysics, 174(8), 3293–3311. https://doi.org/10.1007/s00024-016-1464-z
Press, W. H., Vetterling, W. T., Teukolsky, S. A., and Flannery, B. P. (1992). Numerical Recipes Example Book FORTRAN (Issue December). https://doi.org/10.1007/978-3-319-00672-7
Pudasaini, S. P., and Mergili, M. (2019). A Multi-Phase Mass Flow Model. Journal of Geophysical Research: Earth Surface, 124(12), 2920–2942. https://doi.org/10.1029/2019JF005204
Ratkovich, N., Horn, W., Helmus, F. P., Rosenberger, S., Naessens, W., Nopens, I., and Bentzen, T. R. (2013). Activated sludge rheology: A critical review on data collection and modelling. Water Research, 47(2), 463–482. https://doi.org/10.1016/j.watres.2012.11.021
Ren, Z., Zhao, X., and Liu, H. (2019). Numerical study of the landslide tsunami in the South China Sea using Herschel-Bulkley rheological theory. In Physics of Fluids (Vol. 31, Issue 5). https://doi.org/10.1063/1.5087245
Rhie, C. M., and Chow, W. L. (1983). Numerical study of the turbulent flow past an airfoil with trailing edge separation. In AIAA Journal (Vol. 21, Issue 11, pp. 1525–1532). https://doi.org/10.2514/3.8284
Rice, J. R., and Rudnicki, J. W. (1980). A note on some features of the theory of localization of deformation. In International Journal of Solids and Structures (Vol. 16, Issue 7, pp. 597–605). https://doi.org/10.1016/0020-7683(80)90019-0
Richardson, J. E., and Panchang, V. G. (1998). Three-dimensional simulation of scour-inducing flow at bridge piers. Journal of Hydraulic Engineering, 124(5), 530–540.
Richtmyer, R. D., and Morton, K. W. (1994). Difference methods for initial-value problems (Vol. 22, Issue 102). Krieger Publishing Co.
Rider, W. J., and Kothe, D. B. (1998). Reconstructing volume tracking. Journal of Computational Physics, 141(2), 112–152.
Roussel, N., and Coussot, P. (2005). “Fifty-cent rheometer” for yield stress measurements: From slump to spreading flow. Journal of Rheology. https://doi.org/10.1122/1.1879041
S.R. Meschyan. (1995). Experimental Rheology of Clayey Soils (p. 460).
Sader, J. E., and Davidson, M. R. (2005). Scaling behavior for gravity induced flow of a yield stress material. In Journal of Rheology (Vol. 49, Issue 1, pp. 105–112). https://doi.org/10.1122/1.1814113
Sammarco, P., and Renzi, E. (2008). Landslide tsunamis propagating along a plane beach. In Journal of Fluid Mechanics (Vol. 598, pp. 107–119). https://doi.org/10.1017/S0022112007009731
Schamber, D. R., and MacArthur, R. C. (1985). One-dimensional model for mud flows. In US Army Corps of Engineers, Hydrologic Engineering Center.
Schatzmann, M. (2005). Rheometry for large particle fluids and debris flows. ETH Zurich University.
Schatzmann, M., Bezzola, G. R., Minor, H. E., Windhab, E. J., and Fischer, P. (2009). Rheometry for large-particulated fluids: Analysis of the ball measuring system and comparison to debris flow rheometry. In Rheologica Acta (Vol. 48, Issue 7, pp. 715–733). https://doi.org/10.1007/s00397-009-0364-x
Scheuner, T., Schwab, S., and McArdell, B. W. (2011). Application of a two-dimensional numerical model in risk and hazard assessment in Switzerland. In International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proceedings (pp. 993–1001). https://doi.org/10.4408/IJEGE.2011-03.B-108
Schindler, R. J., Stripling, S., Whitehouse, R. J. S., and Harris, J. M. (2016). The influence of physical cohesion on scour around a monopile. Scour and Erosion - Proceedings of the 8th International Conference on Scour and Erosion, ICSE 2016, 325–334. https://doi.org/10.1201/9781315375045-39
Schofield, A., and Wroth, P. (1968). Critical state soil mechanics. In Engineering (Vol. 1, p. 218).
Seo, S. N., and Liu, P. L. F. (2013). Edge waves generated by the landslide on a sloping beach. Coastal Engineering, 73, 133–150. https://doi.org/10.1016/j.coastaleng.2012.10.008
Shakeel, A., Kirichek, A., and Chassagne, C. (2019). Is density enough to predict the rheology of natural sediments? Geo-Marine Letters, 39(5), 427–434. https://doi.org/10.1007/s00367-019-00601-2
Sharpe, C. F. (1938). landslide and related phenomena.
Shivaram, P., Leong, Y. K., Yang, H., and Zhang, D. K. (2013). Flow and yield stress behaviour of ultrafine Mallee biochar slurry fuels: The effect of particle size distribution and additives. Fuel, 104, 326–332. https://doi.org/10.1016/j.fuel.2012.09.015
Slingerland, R. L., and Voight, B. (1979). Occurrences, properties, and predictive models of landslide-generated water waves. In Developments in Geotechnical Engineering (Vol. 14, pp. 317–394). https://doi.org/10.1016/B978-0-444-41508-0.50017-X
Smagorinsky, J. (1963). General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Review, 91(3), 99–164. https://doi.org/10.1126/science.12.306.731-a
Smith, R. C., Hill, J., Collins, G. S., Piggott, M. D., Kramer, S. C., Parkinson, S. D., and Wilson, C. (2016). Comparing approaches for numerical modelling of tsunami generation by deformable submarine slides. Ocean Modelling. https://doi.org/10.1016/j.ocemod.2016.02.007
Soulsby, R. L. (1997). Dynamics of marine sands: a manual for practical applications. Dynamics of Marine Sands: A Manual for Practical Applications, 9(44), 947.
Sozanski, M. M., Kempa, E. S., Grocholski, K., and Bien, J. (1997). The rheological experiment in sludge properties research. Water Science and Technology, 36(11), 69–78.
Staron, L., Lagrée, P.-Y., Ray, P., and Popinet, S. (2013). Scaling laws for the slumping of a Bingham plastic fluid. In Journal of Rheology (Vol. 57, Issue 4, pp. 1265–1280). https://doi.org/10.1122/1.4802052
Sumer, B. M., and Fredsøe, J. (1990). Scour below Pipelines in Waves. Journal of Waterway, Port, Coastal, and Ocean Engineering, 116(3), 307–323. https://doi.org/10.1061/(asce)0733-950x(1990)116:3(307)
Sumer, B. M., Truelsen, C., Sichmann, T., and Fredsøe, J. (2001). Onset of scour below pipelines and self-burial. Coastal Engineering, 42(4), 313–335. https://doi.org/10.1016/S0378-3839(00)00066-1
Sutherland, A. J. (1967). Proposed mechanism for sediment entrainment by turbulent flows. Journal of Geophysical Research, 72(24), 6183–6194. https://doi.org/10.1029/jz072i024p06183
Tan, G. M., Jiang, L., Shu, C. W., Ping, L. V., and Jun, W. A. N. G. (2010). Experimental study of scour rate in consolidated cohesive sediment. Journal of Hydrodynamics, 22(1), 51–57. https://doi.org/10.1016/S1001-6058(09)60027-5
Terry Hemphill, Wellington Campos, and Ali Pilehvari. (1993). Yield-power law model more accurately predicts mud rheology. In Oil and Gas Journal (Vol. 91, Issue 34, pp. 45–50). https://www.ogj.com/articles/print/volume-91/issue-34/in-this-issue/drilling/yield-power-law-model-more-accurately-predicts-mud-rheology.html
Ting, B. F. C. K., Member, A., Briaud, J., Chen, H. C., Gudavalli, R., Perugu, S., Member, S., and Wei, G. (2001). F Lume T Ests At. Manager, 127(November), 969–978.
Tseng, M. H., Yen, C. L., and Song, C. C. S. (2000). Computation of three-dimensional flow around square and circular piers. International Journal for Numerical Methods in Fluids, 34(3), 207–227. https://doi.org/10.1002/1097-0363(20001015)34:3<207::AID-FLD31>3.0.CO;2-R
Van Kessel, T., and Blom, C. (1998). Rheology of cohesive sediments: Comparison between a natural and an artificial mud. In Journal of Hydraulic Research (Vol. 36, Issue 4, pp. 591–612). https://doi.org/10.1080/00221689809498611
Vinokur, M. (1989). An analysis of finite-difference and finite-volume formulations of conservation laws. Journal of Computational Physics, 81(1), 1–52. https://doi.org/10.1016/0021-9991(89)90063-6
Viroulet, S., Cébron, D., Kimmoun, O., and Kharif, C. (2013). Shallow water waves generated by subaerial solid landslides. In Geophysical Journal International (Vol. 193, Issue 2, pp. 747–762). https://doi.org/10.1093/gji/ggs133
von Boetticher, A., Turowski, J. M., McArdell, B. W., Rickenmann, D., Hürlimann, M., Scheidl, C., and Kirchner, J. W. (2017). DebrisInterMixing-2.3: A finite volume solver for three-dimensional debris-flow simulations with two calibration parameters - Part 2: Model validation with experiments. Geoscientific Model Development, 10(11), 3963–3978. https://doi.org/10.5194/gmd-10-3963-2017
Vyalov, S. S. (1986). Rheological fundamentals of soil mechanics. In Rheological fundamentals of soil mechanics. https://doi.org/10.1016/0266-352x(86)90032-7
Walder, J. S., Watts, P., Sorensen, O. E., and Janssen, K. (2003). Tsunamis generated by subaerial mass flows. In Journal of Geophysical Research: Solid Earth (Vol. 108, Issue B5). https://doi.org/10.1029/2001jb000707
Wang, W., Chen, G., Han, Z., Zhou, S., Zhang, H., and Jing, P. (2016). 3D numerical simulation of debris-flow motion using SPH method incorporating non-Newtonian fluid behavior. Natural Hazards. https://doi.org/10.1007/s11069-016-2171-x
Watts, P. (1997). Water Waves Generated by Underwater Landslides (p. 319). http://thesis.library.caltech.edu/4067/1/Watts_p_1997.pdf
Watts, P., and Grillt, S. T. (2003). Underwater Landslide Shape, Motion, Deformation, and Tsunami Generation. In Proceedings of the International Offshore and Polar Engineering Conference (pp. 1709–1716).
Whittaker, C. N., Nokes, R. I., Lo, H. Y., Liu, P. L. F., and Davidson, M. J. (2017). Physical and numerical modelling of tsunami generation by a moving obstacle at the bottom boundary. Environmental Fluid Mechanics, 17(5), 929–958. https://doi.org/10.1007/s10652-017-9526-z
Whittaker, C., Nokes, R., and Davidson, M. (2015). Tsunami forcing by a low Froude number landslide. Environmental Fluid Mechanics, 15(6), 1215–1239. https://doi.org/10.1007/s10652-015-9411-6
Wu, T. R. (2004). A numerical study of three-dimensional breaking waves and turbulence effects. In Cornell University 2004 (Issue August).
Wu, T. R., Vuong, T. H. N., Lin, C. W., Wang, C. Y., and Chu, C. R. (2020). Modeling the slump-type landslide tsunamis part I: Developing a three-dimensional bingham-type landslide model. Applied Sciences (Switzerland), 10(18), 6501. https://doi.org/10.3390/APP10186501
Wu, Y., and Chiew, Y.-M. (2013). Mechanics of Three-Dimensional Pipeline Scour in UnidirectionalSteady Current. In Journal of Pipeline Systems Engineering and Practice (Vol. 4, Issue 1, pp. 3–10). https://doi.org/10.1061/(asce)ps.1949-1204.0000118
Xu, J., and Huhe, A. (2016). Rheological study of mudflows at Lianyungang in China. In International Journal of Sediment Research (Vol. 31, Issue 1, pp. 71–78). https://doi.org/10.1016/j.ijsrc.2014.06.002
Yao, Y.-P., and Kong, Y.-X. (2012). Extended UH Model: Three-Dimensional Unified Hardening Model for Anisotropic Clays. Journal of Engineering Mechanics, 138(7), 853–866. https://doi.org/10.1061/(asce)em.1943-7889.0000397
Yao, Y.-P., and Wang, N.-D. (2014). Transformed Stress Method for Generalizing Soil Constitutive Models. Journal of Engineering Mechanics, 140(3), 614–629. https://doi.org/10.1061/(asce)em.1943-7889.0000685
Yavari-Ramshe, S., and Ataie-Ashtiani, B. (2017). A rigorous finite volume model to simulate subaerial and submarine landslide-generated waves. Landslides, 14(1), 203–221. https://doi.org/10.1007/s10346-015-0662-6
Yin, Y. ping, Huang, B., Chen, X., Liu, G., and Wang, S. (2015). Numerical analysis on wave generated by the Qianjiangping landslide in Three Gorges Reservoir, China. Landslides, 12(2), 355–364. https://doi.org/10.1007/s10346-015-0564-7
Youngs, D. L. (1982). Time-dependent multi-material flow with large fluid distortion.
Zhao, M., and Cheng, L. (2006). Numerical modeling of local scour below a piggyback pipeline in currents. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, 2006, 1–9. https://doi.org/10.1115/OMAE2006-92035
Zhao, Z., and Fernando, H. J. S. (2007). Numerical simulation of scour around pipelines using an Euler - Euler coupled two-phase model. Environmental Fluid Mechanics, 7(2), 121–142. https://doi.org/10.1007/s10652-007-9017-8
Zienkiewicz, O. ., Taylor, R. ., and Zhu, J. . (2005). Finite Element Method for Solid and Structural Mechanics. 1, 6–8.
指導教授 吳祚任(Wu, Tso-Ren) 審核日期 2022-8-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明