博碩士論文 108626601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.146.176.191
姓名 張明南(Nhat-Minh Truong)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 近岸地區受風作用下之捲浪破碎機制研究
(An investigation of plunging breakers in the nearshore area under the influence of wind)
相關論文
★ 雙向流固耦合移動邊界法發展及其於山崩海嘯之研究★ 三維真實地形數值模擬之海嘯上溯研究
★ 發展風暴潮影響強度分析法以重建1845雲林口湖風暴朝事件★ 發展適用於印度洋之氣旋風暴潮預報模式
★ 2006年屏東外海地震引發海嘯的數值模擬探討★ 馬尼拉海溝地震引發海嘯的潛勢分析
★ 三維海嘯湧潮對近岸結構物之影響★ 海嘯逆推方法之研發及其於2006 年屏東地震之應用
★ 以三維賓漢流數值模式模擬海嘯沖刷坑之發展★ 以三維數值模擬探討海嘯湧潮與結構物之交互作用
★ 三維雙黏性流模式於高濃度泥沙流及泥沙底床沖刷之發展及應用★ 海岸樹林及消波結構物對海嘯能量消散之模擬
★ 重建台灣九棚海嘯石之古海嘯事件及孤立波與水下圓板交互作用之模擬★ 裙礁流場之數值分析與消能特性之探討
★ 風暴潮速算系統之建立及1845年雲林口湖事件之還原與研究★ 台灣海嘯速算系統建置暨1867年 基隆海嘯事件之還原與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究旨在了解風效應對近岸地區卷浪發展之作用,尤其是衝浪波。這項研究有三種不同風的類型:陸風、海風和無風。本文利用結合大渦模擬 (LES) 之 Navier-Stokes 方程進行流場模擬與分析。流體體積函數 (VOF) 被用於追蹤水與空氣之界面。數值模擬採用內源造波器以生成目標波浪,在邊界上則採用海綿層法吸收反射波。驗證案例為存在和不存在陸風之情況下波浪淺化過程。比對結果可以看出數值模式與實驗波高計時序紀錄有良好之一致性。完成驗證後,進行實驗室尺度和野外尺度之波浪淺化過程模擬,並討論陸風和海風對卷浪發展過程之影響。為了解風力對於波浪上溯中碎波對於底床之影響,本研究添加數值染料以追蹤碎波帶水體運動過程。數值結果顯示,在海風情況下,卷浪破碎點發生較晚,其對海床之衝擊較海風或無風條件下之卷浪碎波機制更強。對於現場尺度模擬部分,本文探討吹程(Fetch)、風速大小和斜坡坡度效應對卷浪破碎過程之影響。數值結果顯示,隨著風速的增加,較長之吹程會影響卷浪破碎點位置以及卷浪波傳播速度。此外,較強之陸風會導致波碎點較早出現,而較強之海風會導致破碎點較晚出現。底床坡度對卷浪點位置有很大影響。陡峭的斜坡使卷浪破碎點位置更靠近海岸線。在上下文中提供詳細之分析和討論。
摘要(英) This study aims to understand the role of wind effects on the development of plunging waves in the nearshore region especially surfing waves. There are three different types of wind for this study: onshore, offshore, and no wind. In this study, the Navier-Stokes Equation associated with Large Eddy Simulation (LES) is used to simulate and analyze the flow field. The Volume-of-Fluid function (VOF) has been adopted to track the air and water interface. The numerical experiments are deployed and validated with laboratory experiments. The numerical simulations used the internal-source wavemaker and sponge-layer methods to generate the incident waves and absorb the reflected waves on the boundary. The validation cases are the shoaling processes in the absence and presence of onshore wind. The comparison results show that numerical model is good agreement with experimental altimeter time series records. After the verification is completed, the simulation of the wave shallowing process at the laboratory scale and the field scale is carried out, and the influence of the offshore and onshore wind on the wave development is discussed. In order to understand the effect of wind on the near-bed of breaking waves in the up-going wave, numerical dyes were added in this study to track the water movement process in the breaking wave zone. The numerical results show that the breaking points occurred later in the case of offshore wind, and its impact on the seabed is stronger than the breaking wave mechanism of the breaking waves under the sea breeze or no wind conditions. As for the field-scale simulations, this paper discusses the influence of blowing distance (Fetch), wind speed and slope effect on the wave-breaking process. The numerical results show that with the increase of wind speed, the longer blowing distance will affect the position of the breaking point and the propagation speed of the wave. In addition, the stronger onshore wind will cause earlier breaking points, while stronger offshore wind will cause later breaking points. The slope of the bed has a great influence on the position of the breaking point. The steep slope brings the breaking point of the wave closer to the shoreline. A steeper slope made the location of the breaking point closer to the shoreline. Detailed analysis and discussions are presented in the context.
關鍵字(中) ★ 卷浪
★ 碎波
★ 風效應
★ LES
★ VOF
關鍵字(英) ★ plunging waves
★ breaking waves
★ wind effects
★ LES
★ VOF
論文目次 Table of Contents
CHINESE ABSTRACT v
ABSTRACT vi
ACKNOWLEDGMENTS vii
TABLE OF CONTENTS viii
LIST OF FIGURES xi
LIST OF TABLES xvii
CHAPTER 1 INTRODUCTION 1
1.1 MOTIVATION 1
1.2 LITERATURE REVIEW OF WIND WAVES 4
1.2.1 THEORETICAL ANALYSES OF WIND-WAVES INTERACTION 5
1.2.2 BREAKING WAVES UNDER WIND ACTION 6
1.3 BREAKING WAVES MECHANISMS 10
1.3.1 GEOMETRICAL BREAKING CRITERIA 11
1.3.2 EXPERIMENTAL STUDIES 13
1.3.3 NUMERICAL STUDIES 16
CHAPTER 2 EQUATION AND ALGORITHM 22
2.1 NAVIER-STOKES EQUATION 22
2.2 TURBULENCE MODELLING 23
2.3 LARGE-EDDY SIMULATION (LES) 25
2.3.1 SPATIAL-FILTERING OPERATION 25
2.3.2 LES GOVERNING EQUATION 26
2.4 VOLUME-OF-FLUID METHOD FOR MULTI-PHASE FLOW 28
2.5 VOLUME-TRACKING ALGORITHM 30
2.6 PROJECTION METHOD 32
2.7 PARTIAL-CELL TREATMENT 33
2.8 COMPUTATIONAL CYCLE 33
2.9 BOUNDARY CONDITIONS 34
2.9.1 FREE-SLIP WALL BOUNDARY CONDITION 34
2.9.2 NO-SLIP WALL BOUNDARY CONDITION 35
2.9.3 DIRICHLET BOUNDARY CONDITION 35
2.10 NUMERICAL STABILITY 35
2.11 INTERNAL-SOURCE WAVEMAKER 36
2.12 SPONGE LAYER 37
CHAPTER 3 MODEL VALIDATION 39
3.1 MODEL VALIDATION 1 39
3.1.1 NUMERICAL SETUP 39
3.1.2 RESULTS 42
3.2 MODEL VALIDATION 2 46
3.2.1 EXPERIMENTAL SETUP 46
3.2.2 NUMERICAL SETUP 49
3.2.3 MODEL QUALITY ASSESSMENT 52
3.2.4 RESULTS 53
3.3 SHORT SUMMARY 59
CHAPTER 4 RESULTS AND DISCUSSION 60
4.1 LABORATORY-SCALE SIMULATION 60
4.1.1 PURPOSE OF NUMERICAL EXPERIMENT 60
4.1.2 NUMERICAL SETUP 60
4.1.3 RESULTS 62
4.1.4 MODELLING FOR NEAR-BED FLOWS UNDER WIND EFFECTS 110
4.1.5 RESULTS 111
4.2 FILED-SCALE SIMULATION 120
4.2.1 WIND-SPEED EFFECTS 120
4.2.2 SLOPING BEACH EFFECTS 133
CHAPTER 5 CONCLUSION AND FUTURE WORK 140
5.1 CONCLUDING REMARK 140
5.2 SUGGESTING FUTURE WORK 142
APPENDIX A-RECORD OF ORAL DEFENSE AND RESPONSE TO REVIEW COMMENTS 144
BIBLIOGRAPHY 155
參考文獻 Al-Zanaidi, M.A., Hui, W.H., 1984. Turbulent airflow over water waves-a numerical study. J. Fluid Mech. 148, 225–246. https://doi.org/10.1017/S0022112084002329
Banner, M.L., 1990. The influence of wave breaking on the surface pressure distribution in wind-wave interactions. J. Fluid Mech. 211, 463–495. https://doi.org/10.1017/S0022112090001653
Banner, M.L., Melville, W.K., 1976. On the separation of airflow over water waves. J. Fluid Mech. 77, 825–842. https://doi.org/10.1017/S0022112076002905
Banner, M.L., Peirson, W.L., 2007. Wave breaking onset and strength for two-dimensional deep-water wave groups. J. Fluid Mech. 585, 93–115. https://doi.org/10.1017/S0022112007006568
Banner, M.L., Peirson, W.L., 1998. Tangential stress beneath wind-driven air-water interfaces. J. Fluid Mech. 364, 115–145. https://doi.org/10.1017/S0022112098001128
Banner, M.L., Peregrine, D.H., 1993. Wave breaking in deep water. Annu. Rev. Fluid Mech. 25, 373–397. https://doi.org/10.1146/annurev.fluid.25.1.373
Banner, M.L., Phillips, M., 1974. On the incipient breaking of small scale waves, Journal of Fluid Mechanics.
Barranco, I., Liu, P.L.F., 2021. Run-up and inundation generated by non-decaying dam-break bores on a planar beach. J. Fluid Mech. 915, 1–29. https://doi.org/10.1017/jfm.2021.98
Battjes, J.A., 1988. Surf-zone dynamics. Annu. Rev. Fluid Mech. 20, 257–93. https://doi.org/10.1007/978-3-642-84847-6_4
Battjes, J.A., 1974. Surf similarity, in: Coastal Engineering Proceedings. pp. 466–479. https://doi.org/10.9753/icce.v14.26
Belcher, S.E., Hunt, J.C.R., 1993. Turbulent shear flow over slowly moving waves. J. Fluid Mech. 251, 109–148. https://doi.org/10.1017/S0022112093003350
Blenkinsopp, C.E., Chaplin, J.R., 2007. Void fraction measurements in breaking waves. Proc. R. Soc. A Math. Phys. Eng. Sci. 463, 3151–3170. https://doi.org/10.1098/rspa.2007.1901
Boussinesq, J., 1872. Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Mathématiques Pures Appliquées 2e série 17, 55–108.
Burgers, G., Makin, V.K., 1993. Boundary-layer model results for wind-sea growth. J. Phys. Oceanogr. 23, 372–385.
Carter, D.J.T., 1982. Prediction of wave height and period for a constant wind velocity using the JONSWAP results. Ocean Eng. 9, 17–33. https://doi.org/10.1016/0029-8018(82)90042-7
Chang, K.A., Liu, P.L.F., 1998. Velocity, acceleration and vorticity under a breaking wave. Phys. Fluids 10, 327–329. https://doi.org/10.1063/1.869544
Chen, G., Belcher, S.E., 2000. Effects of long waves on wind-generated waves. J. Phys. Oceanogr. 30, 2246–2256. https://doi.org/10.1175/1520-0485(2000)030<2246:EOLWOW>2.0.CO;2
Cho, Y.S., Liu, P.L.F., 1999. Crest-length effects in nearshore tsunami run-up around islands. J. Geophys. Res. Ocean. 104, 7907–7913. https://doi.org/10.1029/1999jc900012
Chorin, A.J., 1969. On the convergence of discrete approximations to the Navier-Stokes Equations. Math. Comput. 23, 341. https://doi.org/10.2307/2004428
Chorin, A.J., 1968. Numerical solution of the Navier-Stokes. Math. Comput. 22, 745–762. https://doi.org/10.2307/2004575
Chu, C.-R., Chung, C.-H., Wu, T.-R., Wang, C.-Y., 2016. Numerical Analysis of Free Surface Flow over a Submerged Rectangular Bridge Deck. J. Hydraul. Eng. 142, 1–11. https://doi.org/10.1061/(asce)hy.1943-7900.0001177
Chu, C.R., Lin, Y.A., Wu, T.R., Wang, C.Y., 2018a. Hydrodynamic force of a circular cylinder close to the water surface. Comput. Fluids 171, 154–165. https://doi.org/10.1016/j.compfluid.2018.05.032
Chu, C.R., Tran, T.T.T., Wu, T.R., 2021. Numerical analysis of free-surface flows over rubber dams. Water (Switzerland) 13. https://doi.org/10.3390/w13091271
Chu, C.R., Wu, Y.R., Wu, T.R., Wang, C.Y., 2018b. Slosh-induced hydrodynamic force in a water tank with multiple baffles. Ocean Eng. 167, 282–292. https://doi.org/10.1016/j.oceaneng.2018.08.049
Ciurana, A.B., Aguilar, E., 2020. Expected distribution of surfing days in the Iberian peninsula. J. Mar. Sci. Eng. 8. https://doi.org/10.3390/JMSE8080599
Cox, D.T., Shin, S., 2003. Laboratory measurements of void fraction and turbulence in the bore region of surf zone waves. ASCE 129, 1197–1205. https://doi.org/10.1061/ASCE0733-93992003129:101197
Davis, R.E., 1972. On the turbulent flow over a wavy boundary. J. Fluid Mech. 52, 287–306. https://doi.org/10.1017/S002211207000157X
Dean, R.G., Dalrymple, R.A., 1991. Water wave mechanics for engineers and scientists, World Scientific Publishing Co. Pte. Ltd.
Deane, G.B., Stokes, M.D., 2002. Scale dependence of bubble creation mechanisms in breaking waves. Nature 418, 839–844. https://doi.org/10.1038/nature00967
Deng, B., Wang, M., Yao, W., Tang, H., Jiang, C., 2021. Laboratory and numerical investigations on characteristics of air bubbles in plunging breakers on beach. Ocean Eng. 224. https://doi.org/10.1016/j.oceaneng.2021.108728
Dommermuth, D.G., Yue, D.K.P., Lin, W.M., Rapp, R.J., Chan, E.S., Melville, W.K., 1988. Deep-water plunging breakers: A comparison between potential theory and experiments. J. Fluid Mech. 189, 423–442. https://doi.org/10.1017/S0022112088001089
Douglass, S.L., 1990. Influence of wind on breaking waves. J. Waterw. Port, Coastal, Ocean Eng. 116, 651–663. https://doi.org/10.1061/(asce)0733-950x(1990)116:6(651)
Drazen, D.A., Melville, W.K., 2009. Turbulence and mixing in unsteady breaking surface waves. J. Fluid Mech. 628, 85–119. https://doi.org/10.1017/S0022112009006120
Feddersen, F., Veron, F., 2005. Wind effects on shoaling wave shape. J. Phys. Oceanogr. 35, 1223–1228. https://doi.org/10.1175/JPO2753.1
Fulgosi, M., Lakehal, D., Banerjee, S., De Angelis, V., 2003. Direct numerical simulation of turbulence in a sheared air-water flow with a deformable interface. J. Fluid Mech. 482, 319–345. https://doi.org/10.1017/S0022112003004154
Galloway, J.S., Collins, M.B., Moran, A.D., 1989. Onshore/offshore wind influence on breaking waves: An empirical study. Coast. Eng. 13, 305–323. https://doi.org/10.1016/0378-3839(89)90039-2
Galvin, C.J., 1972. Wave breaking in shallow water, Waves on Beaches and Resulting Sediment Transport. https://doi.org/10.1016/b978-0-12-493250-0.50015-1
Gent, P.R., Taylor, P.A., 1977. A note on “separation” over short wind waves. Boundary-Layer Meteorol. 11, 65–87. https://doi.org/10.1007/BF00221825
Gent, P.R., Taylor, P.A., 1976. A numerical model of the air flow above water waves. J. Fluid Mech. 77, 105–128. https://doi.org/10.1017/S0022112077000706
Grilli, S.T., Svendsen, I.A., Subramanya, R., 1997. Breaking criterion and characteristics for solitary waves on slopes. J. Waterw. Port, Coastal, Ocean Eng. 123, 102–112. https://doi.org/10.1061/(asce)0733-950x(1997)123:3(102)
Harlow, F.H., Welch, J.E., 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189. https://doi.org/10.1063/1.1761178
Henriquez, M., 2004. Artificial Surf Reefs. Delft University of Technology.
Hieu, P.D., Katsutoshi, T., Ca, V.T., 2004. Numerical simulation of breaking waves using a two-phase flow model. Appl. Math. Model. 28, 983–1005. https://doi.org/10.1016/j.apm.2004.03.003
Hieu, P.D., Vinh, P.N., Van Toan, D., Son, N.T., 2014. Study of wave-wind interaction at a seawall using a numerical wave channel. Appl. Math. Model. 38, 5149–5159. https://doi.org/10.1016/j.apm.2014.04.038
Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225. https://doi.org/10.1007/s40998-018-0069-1
Hoque, A., Aoki, S.I., 2005. Distributions of void fraction under breaking waves in the surf zone. Ocean Eng. 32, 1829–1840. https://doi.org/10.1016/j.oceaneng.2004.11.013
Hu, K.C., Hsiao, S.C., Hwung, H.H., Wu, T.R., 2012. Three-dimensional numerical modeling of the interaction of dam-break waves and porous media. Adv. Water Resour. 47, 14–30. https://doi.org/10.1016/j.advwatres.2012.06.007
Hubbard, M.E., Dodd, N., 2002. A 2D numerical model of wave run-up and overtopping. Coast. Eng. 47, 1–26. https://doi.org/10.1016/S0378-3839(02)00094-7
Hwang, P.A., 2006. Duration- and fetch-limited growth functions of wind-generated waves parameterized with three different scaling wind velocities. J. Geophys. Res. Ocean. 111. https://doi.org/10.1029/2005JC003180
Iafrati, A., 2009. Numerical study of the effects of the breaking intensity on wave breaking flows. J. Fluid Mech. 622, 371–411. https://doi.org/10.1017/S0022112008005302
Iribarren, C.R., Nogales, C.M., 1949. Protection des ports, in: 17th Int. Navigation Congress. pp. 180–193.
Israeli, M., Orszag, S.A., 1981. Approximation of radiation boundary conditions. J. Comput. Phys. 41, 115–135. https://doi.org/10.1016/0021-9991(81)90082-6
Iwata, K., Kawasaki, K., Kim, D.S., 1996. Breaking limit, breaking, and post-breaking wave deformation due to submerged structures. Proc. 25th Int. Conf. Coast. Eng. https://doi.org/10.1061/9780784402429.181
Jeffreys, H., 1925. On the formation of water waves by wind. Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character 107, 189–206. https://doi.org/10.1098/rspa.1925.0015
Jiang, C., Yang, Y., Deng, B., 2020. Study on the nearshore evolution of regular waves under steady wind. Water 12, 686. https://doi.org/10.3390/w12030686
Karambas, T. V., Koutitas, C., 1992. A breaking wave propagation model based on the Boussinesq equations. Coast. Eng. 18, 1–19. https://doi.org/10.1016/0378-3839(92)90002-C
Kawai, S., 1982. Structure of air flow separation over wind wave crests. Boundary-Layer Meteorol. 23, 503–521. https://doi.org/10.1007/BF00116275
Kawai, S., 1981. Visualization of airflow separation over wind-wave crests under moderate wind. Boundary-Layer Meteorol 21, 93–104.
Kharif, C., Giovanangeli, J.P., Touboul, J., Grare, L., Pelinovsky, E., 2008. Influence of wind on extreme wave events: Experimental and numerical approaches. J. Fluid Mech. 594, 209–247. https://doi.org/10.1017/S0022112007009019
Kim, J., Moin, P., Moser, R., 1987. Turbulence statistics in fully developed channel flow at low reynolds number. J. Fluid Mech. 177, 133–166. https://doi.org/10.1017/S0022112087000892
Kubo, H., Sunamura, T., 2001. Large-scale turbulence to facilitate sediment motion under spilling breakers, in: Coastal Dynamics. pp. 212–221.
Lakehal, D., Meier, M., Fulgosi, M., 2002. Interface tracking towards the direct simulation of heat and mass transfer in multiphase flows. Int. J. Heat Fluid Flow 23, 242–257. https://doi.org/10.1016/S0142-727X(02)00172-8
Lamarre, Melville, W.K., 1991. Air entrainment and dissipation in breaking waves. Nature 351, 469–471.
Lamb, K.G., 2014. Internal wave breaking and dissipation mechanisms on the continental slope/shelf. Annu. Rev. Fluid Mech. 46, 231–254. https://doi.org/10.1146/annurev-fluid-011212-140701
Larsen, J., Dancy, H., 1983. Open boundaries in short wave simulations - A new approach. Coast. Eng. 7, 285–297. https://doi.org/10.1016/0378-3839(83)90022-4
Leonard, A., 1975. Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys. 18, 237–248. https://doi.org/10.1016/S0065-2687(08)60464-1
Lim, H.J., Chang, K.A., Huang, Z.C., Na, B., 2015. Experimental study on plunging breaking waves in deep water. J. Geophys. Res. C Ocean. 120, 2007–2049. https://doi.org/10.1002/2014JC010269
Lin, C., Hwung, H., 1992. External and internal flow fields of plunging breakers. Exp. Fluids 12, 229–237. https://doi.org/10.1007/bf00187300
Lin, P., Li, C.W., 2003. Wave-current interaction with a vertical square cylinder. Ocean Eng. 30, 855–876. https://doi.org/10.1016/S0029-8018(02)00068-9
Lin, P., Liu, P.L.F., 1999. Internal wave-maker for Navier-Stokes equations models. J. Waterw. Port, Coastal, Ocean Eng. 124, 207–215.
Lin, P., Liu, P.L.F., 1998. Turbulence transport, vorticity dynamics, and solute mixing under plunging breaking waves in surf zone. J. Geophys. Res. Solid Earth 103, 15677–15694. https://doi.org/10.1029/98jc01360
Liu, D., Lin, P., 2008. A numerical study of three-dimensional liquid sloshing in tanks. J. Comput. Phys. 227, 3921–3939. https://doi.org/10.1016/j.jcp.2007.12.006
Liu, P.L.F., 1995. Model equations for wave propagations from deep to shallow water 125–157. https://doi.org/10.1142/9789812797582_0003
Liu, Philip L. F., Cho, Y.S., Briggs, M.J., Synolakis, C.E., Kanoglu, U., 1995. Run-up of solitary waves on a circular island. J. Fluid Mech. 302, 259–285.
Liu, P. L. F., Cho, Y.S., Yoon, S.B., Seo, S.N., 1995. Numerical Simulations of the 1960 Chilean Tsunami Propagation and Inundation at Hilo, Hawaii 99–115. https://doi.org/10.1007/978-94-015-8565-1_7
Liu, P.L.F., Wu, T.R., Raichlen, F., Synolakis, C.E., Borrero, J.C., 2005. Runup and rundown generated by three-dimensional sliding masses. J. Fluid Mech. 536, 107–144. https://doi.org/10.1017/S0022112005004799
Liu, Z.B., Fang, K.Z., Cheng, Y.Z., 2018. A new multi-layer irrotational Boussinesq-type model for highly nonlinear and dispersive surface waves over a mildly sloping seabed. J. Fluid Mech. 842, 323–353. https://doi.org/10.1017/jfm.2018.99
Lo, H.Y., Park, Y.S., Liu, P.L.F., 2013. On the run-up and back-wash processes of single and double solitary waves - An experimental study. Coast. Eng. 80, 1–14. https://doi.org/10.1016/j.coastaleng.2013.05.001
Longo, S., Petti, M., Losada, I.J., 2002. Turbulence in the swash and surf zones: A review. Coast. Eng. 45, 129–147. https://doi.org/10.1016/S0378-3839(02)00031-5
Longuet-Higgins, M.S., Cartwright, D. E., Smith, N.D., 1963. Observations of the directional spectrum of sea waves using the motions of a floating buoy. Ocean Wave Spectra, Prentice Hall 111–132. https://doi.org/10.1016/s0011-7471(76)80012-5
Longuet-Higgins, M.S., 1969. On Wave Breaking and the Equilibrium Spectrum of Wind-Generated Waves, in: Proceedings of the Royal Society of London. pp. 151–159. https://doi.org/10.1098/rspa.1969.0069
Longuet-Higgins, M.S., Cokelet, E.D., 1976. The deformation of steep surface waves on water - I. A numerical method of computation. Proc. R. Soc. London. A. Math. Phys. Sci. 350, 1–26. https://doi.org/10.1098/rspa.1976.0092
Lubin, P., Vincent, S., Abadie, S., Caltagirone, J.P., 2006. Three-dimensional Large Eddy Simulation of air entrainment under plunging breaking waves. Coast. Eng. 53, 631–655. https://doi.org/10.1016/j.coastaleng.2006.01.001
Lynett, P., Liu, P.L.F., 2004a. Linear analysis of the multi-layer model. Coast. Eng. 51, 439–454. https://doi.org/10.1016/j.coastaleng.2004.05.004
Lynett, P., Liu, P.L.F., 2004b. A two-layer approach to wave modelling. Proc. R. Soc. A Math. Phys. Eng. Sci. 460, 2637–2669. https://doi.org/10.1098/rspa.2004.1305
Maiti, S., Sen, D., 1999. Computation of solitary waves during propagation and runup on a slope. Ocean Eng. 26, 1063–1083. https://doi.org/10.1016/S0029-8018(98)00060-2
Melville, W.K., Matusov, P., 2002. Distribution of breaking waves at the ocean surface. Nature 417, 58–63.
Melville, W.K., 1996. The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech. 28, 279–321. https://doi.org/10.1146/annurev.fl.28.010196.001431
Melville, W.K., 1982. The instability and breaking of deep-water waves. J. Fluid Mech. 115, 165–185. https://doi.org/10.1017/S0022112082000706
Melville, W.K., Veron, F., White, C.J., 2002. The velocity field under breaking waves: Coherent structures and turbulence. J. Fluid Mech. 454, 203–233. https://doi.org/10.1017/S0022112001007078
Miles, J.W., 1960. On the generation of surface waves by turbulent shear flows. J. Fluid Mech. 7, 469–478.
Miles, J.W., 1957. On the generation of surface waves by shear flow. J. Fluid Mech. 3, 185–204. https://doi.org/10.1017/S0022112062000828
Mitsuyasu, H., 1985. A note on the momentum transfer from wind to waves. J. Geophys. Res. 90, 3343–3345. https://doi.org/10.1029/jc090ic02p03343
Mitsuyasu, H., 1966. Interactions between water waves and wind (I), Research Institute for Applied Mechanics (RIAM).
Mitsuyasu, H., Yoshida, Y., 2005. Air-sea interactions under the existence of opposing swell. J. Oceanogr. 61, 141–154. https://doi.org/10.1007/s10872-005-0027-1
Miyata, H., Kanai, A., Kawamura, T., Park, J.C., 1996. Numerical simulation of three-dimensional breaking waves. J. Mar. Sci. Technol. 1, 183–197. https://doi.org/10.1007/BF02390795
Mo, W., Jensen, A., Liu, P.L.F., 2013. Plunging solitary wave and its interaction with a slender cylinder on a sloping beach. Ocean Eng. 74, 48–60. https://doi.org/10.1016/j.oceaneng.2013.09.011
Mori, N., Kakuno, S., 2008. Aeration and bubble measurements of coastal breaking waves. Fluid Dyn. Res. 40, 616–626. https://doi.org/10.1016/j.fluiddyn.2007.12.013
Nadaoka, K., Hino, M., Koyano, Y., 1989. Structure of the turbulent flow field under breaking waves in the surf zone. J. Fluid Mech. 204, 359–387. https://doi.org/10.1017/S0022112089001783
Orszag, S.A., Patterson, G.S., 1972. Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Rev. Lett. 28, 76–79. https://doi.org/10.1103/PhysRevLett.28.76
Otsuka, J., Saruwatari, A., Watanabe, Y., 2017. Vortex-induced suspension of sediment in the surf zone. Adv. Water Resour. 110, 59–76. https://doi.org/10.1016/j.advwatres.2017.08.021
Perlin, M., Choi, W., Tian, Z., 2013. Breaking waves in deep and intermediate waters. Annu. Rev. Fluid Mech. 45, 115–145. https://doi.org/10.1146/annurev-fluid-011212-140721
Perlin, M., He, J., Bernal, L.P., 1996. An experimental study of deep water plunging breakers. Phys. Fluids 8, 2365–2374. https://doi.org/10.1063/1.869021
Phillips, O.M., 1957. On the generation of waves by turbulent wind. J. Fluid Mech. 2, 417–445. https://doi.org/10.1098/rsta.1980.0265
Phillips, O.M., Banner, M.L., 1974. Wave breaking in the presence of wind drift and swell. J. Fluid Mech. 66, 625–640. https://doi.org/10.1017/S0022112074000413
Rapp, R.J., Melville, W.K., 1990. Laboratory measurements of deep-water breaking waves. Philos. Trans. R. Soc. London. Ser. A, Math. Phys. Sci. 331, 735–800. https://doi.org/10.1098/rsta.1990.0098
Reul, N., Branger, H., Giovanangeli, J.P., 2008. Air flow structure over short-gravity breaking water waves. Boundary-Layer Meteorol. 126, 477–505. https://doi.org/10.1007/s10546-007-9240-3
Rider, W.J., Kothe, D.B., 1998. Reconstructing Volume Tracking. J. Comput. Phys. 141, 41.
Robertson, B., Hall, K., Zytner, R., Nistor, I., 2013. Breaking waves: review of characteristic relationship. Coast. Eng. J. 55, 40. https://doi.org/10.1142/S0578563413500022
Ronmarin, P., 1989. Geometric properties of deep-water breaking waves. J. Fluid Mech. 209, 405–433. https://doi.org/10.1017/S0022112089003162
Ryu, Y., Chang, K.A., Mercier, R., 2007. Runup and green water velocities due to breaking wave impinging and overtopping. Exp. Fluids 43, 555–567. https://doi.org/10.1007/s00348-007-0332-0
Scarfe, B.E., Elwany, M.H.S., Mead, S.T., Black, K.P., 2003. The Science of surfing waves and surfing breaks - A review.
Scarfe, B.E., Healy, T.R., Rennie, H.G., Mead, S.T., 2009. Sustainable management of surfing breaks: Case studies and recommendations. J. Coast. Res. 25, 684–703. https://doi.org/10.2112/08-0999.1
Shemdin, O.H., Hsu, E.Y., 1967. The dynamics of wind in the vicinity of progressive water waves. Coast. Eng. Proc. 30, 403–416. https://doi.org/10.9753/icce.v10.24
Sheng, W., Alcorn, R., Lewis, T., 2014. Physical modelling of wave energy converters. Ocean Eng. 84, 29–36. https://doi.org/10.1016/j.oceaneng.2014.03.019
Smagorinsky, J., 1963. General circulation experiments with the primitive equation. Mon. Weather Rev. 91, 99–164. https://doi.org/10.1126/science.12.306.731-a
Song, J.B., Banner, M.L., 2002. On determining the onset and strength of breaking for deep water waves. Part I: Unforced irrotational wave groups. J. Phys. Oceanogr. 32, 2541–2558. https://doi.org/10.1175/1520-0485-32.9.2541
Soper, H.E., Young, A.W., Cave, B.M., Lee, A., Pearson, K., 1917. On the Distribution of the Correlation Coefficient in Small Samples. Appendix II to the Papers of “Student” and R. A. Fisher. Biometrika 11, 328. https://doi.org/10.2307/2331830
Stanton, T., Marshall, D., Houghton, R., 1932. The growth of waves on water due to the action of the wind. Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character 137, 283–293. https://doi.org/10.1098/rspa.1932.0136
Sverdrup, H.U., Munk, W.H., 1947. Wind, Sea, and Swell: Theory of relations for forecasting. U.S Navy Hydrogr. Off. 44.
Tian, Z., Choi, W., 2013. Evolution of deep-water waves under wind forcing and wave breaking effects: Numerical simulations and experimental assessment. Eur. J. Mech. B/Fluids 41, 11–22. https://doi.org/10.1016/j.euromechflu.2013.04.001
Tian, Z., Perlin, M., Choi, W., 2010. Energy dissipation in two-dimensional unsteady plunging breakers and an eddy viscosity model. J. Fluid Mech. 655, 217–257. https://doi.org/10.1017/S0022112010000832
Ting, F.C.K., Kirby, J.T., 1994. Observation of undertow and turbulence in a laboratory surf zone. Coast. Eng. 24, 51–80. https://doi.org/10.1016/0378-3839(94)90026-4
Titov, V. V., Synolakis, C.E., 1998. Numerical modeling of tidal wave runup. J. Waterw. Port, Coastal, Ocean Eng. 124, 157–171. https://doi.org/10.1061/(asce)0733-950x(1998)124:4(157)
Titov, V. V, Synolakis, C.E., 1995. Modeling of breaking and nonbreaking Long-Wave evolution and runup using VTCS-2. J. Waterw. Port, Coastal, Ocean Eng. 121, 308–316. https://doi.org/10.1061/(asce)0733-950x(1995)121:6(308)
Troch, P., De Rouck, J., 1998. Development of two-dimensional numerical wave flume for wave interaction with rubble mound breakwaters, in: Coastal Engineering. pp. 1638–1649.
Ursell, F., 1956. Wave generation by wind, in: Surveys in Mechanics (Ed. Batchelor, G.K.). Cambridge Univ. Press, Cambridge. pp. 216–249.
Veeramony, J., Svendsen, I.A., 1998. Boussinesq model for breaking waves: comparisons with experiments. Proc. Coast. Eng. Conf. 1, 258–271. https://doi.org/10.1061/9780784404119.018
Vollestad, P., Ayati, A.A., Jensen, A., 2019. Experimental investigation of intermittent airflow separation and microscale wave breaking in wavy two-phase pipe flow. J. Fluid Mech. 878, 796–819. https://doi.org/10.1017/jfm.2019.660
Vollestad, P., Jensen, A., 2021. Modification of airflow structure due to wave breaking on a submerged topography. Boundary-Layer Meteorol. 180, 507–526. https://doi.org/10.1007/s10546-021-00631-3
Voorde, M. ten, 2009. Contribution to the design of Multi-Functional Artificial Reefs.
Vuong, T.H.N., Wu, T.R., Wang, C.Y., Chu, C.R., 2020. Modeling the slump-type landslide tsunamis part II: Numerical simulation of tsunamis with Bingham landslide model. Appl. Sci. 10, 1–23. https://doi.org/10.3390/app10196872
WAMDI Group, 1988. The WAM model -A third generation ocean wave prediction model 18, 1775–1810.
Ward, D.L., Wibner, C.G., Zhang, J., 1998. Runup on coastal revetments under the influence of onshore wind. J. Coast. Res. 14, 1325–1333.
Watanabe, Y., Saeki, H., 1999. Three-dimensional large eddy simulation of breaking waves. Coast. Eng. J. 41, 281–301. https://doi.org/10.1142/s0578563499000176
Watanabe, Y., Saeki, H., Hosking, R.J., 2005. Three-dimensional vortex structures under breaking waves. J. Fluid Mech. 545, 291–328. https://doi.org/10.1017/S0022112005006774
Willmott, C.J., Matsuura, K., 2005. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30, 79–82. https://doi.org/10.3354/cr030079
Wu, C.H., Nepf, H.M., 2002. Breaking criteria and energy losses for three-dimensional wave breaking. J. Geophys. Res. Ocean. 107. https://doi.org/10.1029/2001jc001077
Wu, T.-R., Lo, H.-Y., Tsai, Y.-L., Ko, L.-H., Chuang, M.-H., Liu, P.L.-F., 2021. Solitary Wave Interacting with a Submerged Circular Plate. J. Waterw. Port, Coastal, Ocean Eng. 147, 1–21. https://doi.org/10.1061/(asce)ww.1943-5460.0000605
Wu, T.R., 2004. A numerical study of three-dimensional breaking waves and turbulence effects. Cornell Univ. 2004.
Wu, T.R., Chu, C.R., Huang, C.J., Wang, C.Y., Chien, S.Y., Chen, M.Z., 2014. A two-way coupled simulation of moving solids in free-surface flows. Comput. Fluids 100, 347–355. https://doi.org/10.1016/j.compfluid.2014.05.010
Wu, T.R., Ho, T.C., 2011. High resolution tsunami inversion for 2010 Chile earthquake. Nat. Hazards Earth Syst. Sci. 11, 3251–3261. https://doi.org/10.5194/nhess-11-3251-2011
Wu, T.R., Huang, C.J., Chuang, M.H., Wang, C.Y., Chu, C.R., 2011. Dynamic coupling of multi-phase fluids with a moving obstacle. J. Mar. Sci. Technol. 19, 643–650. https://doi.org/10.51400/2709-6998.2206
Wu, T.R., Huang, H.C., 2009. Modeling tsunami hazards from Manila trench to Taiwan. J. Asian Earth Sci. 36, 21–28. https://doi.org/10.1016/j.jseaes.2008.12.006
Wu, T.R., Vuong, T.H.N., Lin, J.W., Chu, C.R., Wang, C.Y., 2018. Three-Dimensional Numerical Study on the Interaction between Dam-Break Wave and Cylinder Array. J. Earthq. Tsunami 12, 1–35. https://doi.org/10.1142/S1793431118400079
Xie, Z., 2014. Numerical modelling of wind effects on breaking solitary waves. Eur. J. Mech. B/Fluids 43, 135–147. https://doi.org/10.1016/j.euromechflu.2013.08.001
Yan, S., Ma, Q.W., 2010. Numerical simulation of interaction between wind and 2D freak waves. Eur. J. Mech. B/Fluids 29, 18–31. https://doi.org/10.1016/j.euromechflu.2009.08.001
Yan, B., Luo, M., Bai, W., 2019. An experimental and numerical study of plunging wave impact on a box-shape structure. Mar. Struct. 66, 272–287. https://doi.org/10.1016/j.marstruc.2019.05.003
Yang, Z., Deng, B.Q., Shen, L., 2018. Direct numerical simulation of wind turbulence over breaking waves. J. Fluid Mech. 850, 120–155. https://doi.org/10.1017/jfm.2018.466
Yang, Z., Liu, P.L.F., 2022. Depth-integrated wave-current models. Part 2. Current with an arbitrary profile. J. Fluid Mech. 936. https://doi.org/10.1017/jfm.2022.42
Yang, Z.T., Liu, P.L.F., 2019. Depth-integrated wave-current models. Part 1. Two-dimensional formulation and applications. J. Fluid Mech. 883. https://doi.org/10.1017/jfm.2019.831
Yim, S.C., Yuk, D., Panizzo, A., Di Risio, M., Liu, P.L.-F., 2008. Numerical Simulations of Wave Generation by a Vertical Plunger Using RANS and SPH Models. J. Waterw. Port, Coastal, Ocean Eng. 134, 143–159. https://doi.org/10.1061/(asce)0733-950x(2008)134:3(143)
Yoon, S.B., Liu, P.L.F., 1989. Interactions of currents and weakly nonlinear water waves in shallow water. J. Fluid Mech. 205, 397–419. https://doi.org/10.1017/S0022112089002089
Zarruk, G.A., Cowen, E.A., Wu, T.R., Liu, P.L.F., 2015. Vortex shedding and evolution induced by a solitary wave propagating over a submerged cylindrical structure. J. Fluids Struct. 52, 181–198. https://doi.org/10.1016/j.jfluidstructs.2014.11.001
Zhiyin, Y., 2015. Large-eddy simulation: Past, present and the future. Chinese J. Aeronaut. 28, 11–24. https://doi.org/10.1016/j.cja.2014.12.007
Zou, Q., Chen, H., 2017. Wind and current effects on extreme wave formation and breaking. J. Phys. Oceanogr. 47, 1817–1841. https://doi.org/10.1175/JPO-D-16-0183.1
指導教授 吳祚任(Tso-Ren Wu) 審核日期 2022-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明