博碩士論文 109827014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.133.146.143
姓名 許境恩(Ching-En-Hsu)  查詢紙本館藏   畢業系所 生物醫學工程研究所
論文名稱 應用稀疏時頻表現式解析生理系統間非線性耦合機轉
(Probing the Nonlinear Mechanisms Between Physiological Systems by Time- Frequency Sparse Representation)
相關論文
★ 不同麻醉深度之相位-振幅耦合量測及強度比較★ 設計及製作可攜式非侵入性心搏輸出量監測系統
★ 開發可攜式十二導程心電圖和聲學雙功能系統於居家分析心臟電生理訊號★ 應用非侵入性方法來探究透析過程中血流動力學變化及心血管疾病之預後
★ 開發具深度學習應用於自動追蹤耳膜功能之數位耳鏡於中耳炎輔助系統★ 反覆編曲結構音樂對人體生理訊號之影響
★ 設計具低功耗無線傳輸及結合人工智慧判讀之長時間聽診監測系統★ 實踐經驗模態分解於高度非穩態生理訊號之訊號特徵擷取
★ Exploring Beat-to-Beat Photoplethysmography Features at the Upper and Lower Extremities as Potential Biomarkers for Early Diagnosis of Peripheral Arterial Occlusive Disease: A Comparative study with Ultrasound Doppler and Ankle-Brachial Index★ 基於功能性近紅外光腦光譜與腦電圖發展多模態腦活動無線監測系統
★ 脂質奈米顆粒在mRNA疫苗技術應用發展綜述★ 自12導程心電圖擷取P波特徵辨識竇性心律下之 心房顫動高風險病患
★ 探討以非侵入方式的影像心衝擊圖形態特徵來評估左心室射血分數 : 基於數學模型與臨床驗證的初步研究★ 發展可用於肺部疾病患者呼吸音監測之高解析加速度陣列感測器
★ 以光體積變化描記儀作為男性勃起功能及陰莖血液動力學及性功能客觀指標之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-9-6以後開放)
摘要(中) 跨頻率耦合(Cross Frequency Coupling, CRC)可用來定義不同系統之前的交互作用,當兩系統開始耦合時,兩系統的訊號可被觀察到有相似特徵,交互作用的訊息可能會載在訊號的頻率、相位或者振幅之中。
在生理系統中,跨頻率耦合現象廣泛出現,例如腦波中存在相位-振幅調變
(Phase-Amplitude Coupling, PAC),也就是存在兩震盪子之間的相互作用,低頻訊號的相位,會改變高頻訊號的振幅,因此高頻震盪訊號除了自己的調頻(Carrier Frequency)外,其振幅能量強度由低頻訊號控制。其中腦波中的PAC便可應用於麻醉場域,而PAC的強度可用來監控患者的麻醉深度與意識狀態。
欲將低頻震盪子的信息載到高頻震盪子上,便牽涉的通訊領域的震幅調變(Amplitude Modulation)與頻率調變(Frequency Modulation),不同於應用於通訊領域,將訊息(Message)載於已知載波(Carrier)上,在探勘生理系統中的非線性耦合現象,並無法訊息或載波的性質,因此本文的主要目的是提出訊號處理的方法,可針對非線性耦合訊號進行估測。
頻率調變與振幅調變是一種時變且非線性轉換,然而確保有一定的穩定性(Stationary),因此本文欲針對調變的頻率響應進行分析,且採用時頻展開式(Time Frequency Representation)針對非線性的調變進行觀測,數理證明以時頻轉換解析訊號調變與頻率調變的可行性,提出一套訊號處理方法,可以對訊號中的振幅與頻率調變進行估測,最終以此方法為基礎,檢測生理系統中未知的跨頻率耦合反應,以分析系統間交互作用。
摘要(英) Cross-frequency coupling (CFC) serves a critical role to define the interaction and synchronization between different systems. When systems begin to communicate, the phase, frequency, or amplitude of these systems may indicate similar pattern.
In electroencephalogram (EEG), the low frequency oscillators’ phase could modulate the high frequency oscillators’ amplitude, which is known as phase-amplitude coupling (PAC). PAC occurs in EEG especially when the subject losses consciousness. Therefore, PAC is an important factor to monitor both the depth of unconsciousness due to anesthesia in surgery and sleepiness in sleep medicine. Moreover, phase frequency coupling (PFC) , another kind of CFC, reflects the interaction between respiratory system and the cardiovascular system. The respiratory sinus arrhythmia (RSA) is defined as the increase and decrease of the rate of heartbeat during inhalation and expiration, respectively. Subject with terrible autonomic nervous function has poor RSA. That is, PFC is a practical tool to evaluate autonomic nervous system.
Given that different modulations are able to explain mechanisms between systems, it is essential to develop the signal processing tool that precisely quantitate coupling activities. CFCs are phenomena comprised of amplitude modulation (AM) and the frequency modulation (FM) in communication domain. AM and FM are non-linear frequency interactions that pose obstacle for Fourier-based method to access correct frequency. The traditional method is to acquire modulation index with constant bandwidth band-pass filter, through this method is not able to discover non-stationary coupling. In this paper, we aim to propose a method based on time frequency representation (TFR) that distinguishes different CFC precisely. TFR also provides an opportunity to deal with non-stationary coupling. We are looking forward to applying our method to other CFCs, including amplitude-amplitude coupling (AAC) and phase-phase coupling (PPC). Eventually, with proposed toolbox, we expect to establish a standard to observe the CFC correctly.
關鍵字(中) ★ 跨頻率耦合
★ 鎮幅調變
★ 頻率調變
★ 時頻展開式
★ 時頻分析
關鍵字(英) ★ Cross Frequency Coupling
★ Amplitude Modulation
★ Frequency Modulation
★ Time Frequency Representation
論文目次 摘要 i
Abstract ii
Table of Contents iii
List of Figures v
Chapter 1 Introduction 1
Chapter 2 Background 3
2.1 Amplitude Modulation 3
2.2 Frequency Modulation 5
2.3 Time Frequency Representation (TFR) Based Measurement Method 7
2.3.1 Short Term Fourier Transform (STFT) 8
2.3.2 Continuous Wavelet Transform (CWT) 9
2.3.3 Inverse Transform of CWT 12
2.3.4 The Mathematical Foundation of CWT 12
2.3.5 Improvement of Time Frequency Representation 17
Chapter 3 Probe the Nonlinear Mechanism in Electrocardiography, ECG 20
3.1 Autonomic Neural Network Model 20
3.2 Integral Pulse Frequency Modulation Model (IPFM) 21
3.3 Unevenly Sampled Pulse Measurement with Synchrosqueezing Transform 24
3.4 Simulated Signal Model Measurement 26
3.5 Factors in Real-World Cardiac-Related Signal Measurement 27
3.6 The algorithm of the CWT Based Autonomic Function Measurement 30
3.7 CWT Based ECG-Derived Respiration (EDR) Measurement 31
Chapter 4 Proposed Nonlinear Measurement Method 34
4.1 The Amplitude Modulation Spectrum 35
4.1.1 Observation on the CWT-based Amplitude modulation Spectrum 37
4.1.2 The Reassignment Process in Amplitude modulation 37
4.2 The Frequency Modulation Spectrum 39
4.2.1 The Reassignment Process in Frequency modulation 41
4.3 Probing Cross Frequency Coupling 44
4.3.1 Phase amplitude Coupling (PAC) Measurement 44
4.3.2 2D Phase Reassignment on Cross Frequency Comodulogram 46
Chapter 5 Conclusion 47
5.1 Conclusion 47
5.2 Future Work to Cross Frequency Coupling 48
5.3 Future Work to Cardiac Dynamic Model 49
Reference 49
參考文獻 [1] S. Chamadia et al., "Delta oscillations phase limit neural activity during sevoflurane anesthesia," Communications biology, vol. 2, no. 1, pp. 1-10, 2019.
[2] E. Combrisson et al., "From intentions to actions: Neural oscillations encode motor processes through phase, amplitude and phase-amplitude coupling," NeuroImage, vol. 147, pp. 473-487, 2017.
[3] A. C. Onslow, R. Bogacz, and M. W. Jones, "Quantifying phase–amplitude coupling in neuronal network oscillations," Progress in biophysics and molecular biology, vol. 105, no. 1-2, pp. 49-57, 2011.
[4] A. B. Carlson, "communication systems: an introduction to signal noise in electrical communication," 2002.
[5] F. Auger et al., "Time-frequency reassignment and synchrosqueezing: An overview," IEEE Signal Processing Magazine, vol. 30, no. 6, pp. 32-41, 2013.
[6] R. Carmona, W.-L. Hwang, and B. Torresani, Practical Time-Frequency Analysis: Gabor and wavelet transforms, with an implementation in S. Academic Press, 1998.
[7] T. J. Gardner and M. O. Magnasco, "Sparse time-frequency representations," Proceedings of the National Academy of Sciences, vol. 103, no. 16, pp. 6094-6099, 2006.
[8] N. Delprat, B. Escudié, P. Guillemain, R. Kronland-Martinet, P. Tchamitchian, and B. Torresani, "Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies," IEEE transactions on Information Theory, vol. 38, no. 2, pp. 644-664, 1992.
[9] S. Mallat, A wavelet tour of signal processing. Elsevier, 1999.
[10] K. Kodera, C. De Villedary, and R. Gendrin, "A new method for the numerical analysis of non-stationary signals," Physics of the Earth and Planetary Interiors, vol. 12, no. 2-3, pp. 142-150, 1976.
[11] F. Auger and P. Flandrin, "Improving the readability of time-frequency and time-scale representations by the reassignment method," IEEE Transactions on signal processing, vol. 43, no. 5, pp. 1068-1089, 1995.
[12] K. R. Fitz and S. A. Fulop, "A unified theory of time-frequency reassignment," arXiv preprint arXiv:0903.3080, 2009.
[13] I. Daubechies, J. Lu, and H.-T. Wu, "Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool," Applied and Computational Harmonic Analysis, vol. 30, no. 2, pp. 243-261, 2011, doi: 10.1016/j.acha.2010.08.002.
[14] G. Thakur, E. Brevdo, N. S. Fučkar, and H.-T. Wu, "The Synchrosqueezing algorithm for time-varying spectral analysis: Robustness properties and new paleoclimate applications," Signal Processing, vol. 93, no. 5, pp. 1079-1094, 2013, doi: 10.1016/j.sigpro.2012.11.029.
[15] M. Brennan, M. Palaniswami, and P. Kamen, "Poincare plot interpretation using a physiological model of HRV based on a network of oscillators," American Journal of Physiology-Heart and Circulatory Physiology, vol. 283, no. 5, pp. H1873-H1886, 2002.
[16] J. Mateo and P. Laguna, "Improved heart rate variability signal analysis from the beat occurrence times according to the IPFM model," IEEE Transactions on Biomedical Engineering, vol. 47, no. 8, pp. 985-996, 2000.
[17] N. E. Huang et al., "On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 374, no. 2065, p. 20150206, 2016.
[18] B. Picinbono, "On instantaneous amplitude and phase of signals," IEEE Transactions on signal processing, vol. 45, no. 3, pp. 552-560, 1997.
[19] C. Pachaud, T. Gerber, M. Firla, N. Martin, and C. Mailhes, "Consequences of non-respect of the Bedrosian theorem when demodulating," in CM 2013-MFPT 2013-10th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies, 2013.
[20] A. B. Tort, R. Komorowski, H. Eichenbaum, and N. Kopell, "Measuring phase-amplitude coupling between neuronal oscillations of different frequencies," Journal of neurophysiology, vol. 104, no. 2, pp. 1195-1210, 2010.
指導教授 林澂(Chen Lin) 審核日期 2022-9-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明