博碩士論文 108226034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.219.32.19
姓名 楊皓亘(Hao-Xuan Yang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 應用生命週期技術進行螢光與激發光分離
(Unmixing of fluorescence and excited light using fluorescence lifetime imaging microscopy)
相關論文
★ 非反掃描式平行接收之雙光子螢光超光譜顯微術★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數
★ LASER光源暨LED在老鼠毛生長的低能量光治療比較分析★ 應用線狀結構照明提升雙光子顯微鏡解析度
★ 以同調結構照明顯微術進行散射樣本解析度之提升★ 掃描式二倍頻結構照明顯微術
★ 小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究★ 鏡像輔助斷層掃描相位顯微鏡
★ 以數位全像術重建多波長環狀光束之研究★ 相位共軛反射鏡用於散射介質中光學聚焦之研究
★ 雙光子螢光超光譜顯微術於多螢光生物樣本之研究★ 倍頻非螢光基態耗損超解析之顯微成像方法
★ 葉綠素雙光子螢光超光譜影像於光合作用研究之應用★ 雙光子掃描結構照明顯微術
★ 微投影光學切片超光譜顯微術★ 使用結構照明顯微術觀察活體小鼠毛囊生長週期之變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-6-7以後開放)
摘要(中) 拉曼光譜經常會伴隨著大量的螢光干擾,為了減少螢光干擾,我們從螢光能量共振轉移技術(fluorescence resonance energy transfer, FRET)看到了解決方法,利用螢光生命週期的特性,將螢光與拉曼訊號進行分離,由於目前只是初步的系統開發,我們使用生命週期特性與拉曼光譜相似的激發光代替拉曼訊號進行量測,確認系統是否能準確分離螢光與激發光,後續便能拓展回拉曼訊號與螢光的分離。我們使用頻率域的螢光生命週期技術(FLIM)進行實驗,由於頻率域需要對於光源和偵測訊號進行弦波調制,我們會先進行電路設計,設計出可以調制雷射二極體的驅動電路,後續使用零差檢測的方法,使用類比乘法器將偵測訊號與調制雷射的參考訊號相乘,便能透過此系統量測其等效生命週期,將螢光和激發光進行線性分離,得到激發光與螢光的強度比。
摘要(英) Raman spectroscopy is often accompanied by a large amount of fluorescence. In order to reduce background fluorescence, we have seen a solution through Förster resonance energy transfer (FRET) technology, using the characteristics of the fluorescence lifetime, the fluorescence and raman signal can be separated. Since it is only a preliminary system development, we use excitation light with similar lifetime characteristics to Raman spectrum instead of Raman signal for measurement to confirm whether the system can accurately separate fluorescence and excitation light. Follow-up This can be extended back to the separation of Raman signal and fluorescence. We use the fluorescence lifetime microscopy (FLIM) in the frequency domain for experiments. Since the frequency domain requires sine wave modulation for the light source and detection signal, we will first design the circuit and design a driving circuit that can modulate the laser diode. Use the homodyne detection method to multiply the detection signal and the reference signal of the modulated laser by an analog multiplier, and then the equivalent lifetime can be measured through this system, and the fluorescence and excitation light can be separated. The intensity ratio of excitation light and fluorescence can be obtained.
關鍵字(中) ★ 生命週期
★ 螢光分離
關鍵字(英)
論文目次 中文摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 研究動機 1
1.2 拉曼光譜螢光抑制技術 2
1.3 螢光顯微技術介紹 4
1.4 螢光生命週期技術(FLIM)介紹 6
1.5 研究目標 8
第二章 實驗原理 10
2.1 螢光生命週期量測 10
2.2 生命週期極座標分析法 12
2.3 極座標之線性分離訊號法 14
第三章 實驗方法 16
3.1 系統架構 16
3.2 程式控制 20
3.3 雷射二極體驅動電路製作 21
3.4 系統校正 24
3.5 樣本製備及分析方法-羅丹明6G (R6G)、伊紅 Y (Eosin Y) 26
第四章 實驗結果 28
4.1 雷射與系統的調制深度分析 28
4.2 光電倍增管PMT校正平面量測 30
4.3 系統驗證及分析 33
4.4 以生命週期技術分離螢光及激發光 34
第五章 結論與展望 42
參考文獻 43
參考文獻 [1] R. R. Jones, D. C. Hooper, L. Zhang, D. Wolverson, and V. K. Valev, "Raman techniques: fundamentals and frontiers," Nanoscale research letters 14, 1-34 (2019).
[2] G. Turrell, and J. Corset, Raman microscopy: developments and applications (Academic Press, 1996).
[3] G. Placzek, The rayleigh and raman scattering (Lawrence Radiation Laboratory, 1959).
[4] M. J. Sanderson, I. Smith, I. Parker, and M. D. Bootman, "Fluorescence microscopy," Cold Spring Harbor Protocols 2014, pdb. top071795 (2014).
[5] L. Wu, C. Huang, B. P. Emery, A. C. Sedgwick, S. D. Bull, X.-P. He, H. Tian, J. Yoon, J. L. Sessler, and T. D. James, "Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents," Chemical Society Reviews 49, 5110-5139 (2020).
[6] "Fluorescence Resonance Energy Transfer (FRET) Microscopy," https://www.olympus-lifescience.com/en/microscope-resource/primer/techniques/confocal/applications/fretintro/.
[7] H. Wallrabe, and A. Periasamy, "Imaging protein molecules using FRET and FLIM microscopy," Current opinion in biotechnology 16, 19-27 (2005).
[8] N. Wattanavichean, I. Nishida, M. Ando, M. Kawamukai, T. Yamamoto, and H. o. Hamaguchi, "Organelle specific simultaneous Raman/green fluorescence protein microspectroscopy for living cell physicochemical studies," Journal of Biophotonics 13, e201960163 (2020).
[9] D. Wei, S. Chen, and Q. Liu, "Review of fluorescence suppression techniques in Raman spectroscopy," Applied Spectroscopy Reviews 50, 387-406 (2015).
[10] M. Wirth, and S. H. Chou, "Comparison of time and frequency domain methods for rejecting fluorescence from Raman spectra," Analytical Chemistry 60, 1882-1886 (1988).
[11] A. P. Shreve, N. J. Cherepy, and R. A. Mathies, "Effective rejection of fluorescence interference in Raman spectroscopy using a shifted excitation difference technique," Applied spectroscopy 46, 707-711 (1992).
[12] T. Hasegawa, J. Nishijo, and J. Umemura, "Separation of Raman spectra from fluorescence emission background by principal component analysis," Chemical Physics Letters 317, 642-646 (2000).
[13] A. Campion, and P. Kambhampati, "Surface-enhanced Raman scattering," Chemical society reviews 27, 241-250 (1998).
[14] B. Robert, "Resonance raman spectroscopy," Photosynthesis research 101, 147-155 (2009).
[15] C. L. Evans, and X. S. Xie, "Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine," Annual review of analytical chemistry 1, 883 (2008).
[16] P. Kukura, D. W. McCamant, and R. A. Mathies, "Femtosecond stimulated Raman spectroscopy," Annu. Rev. Phys. Chem. 58, 461-488 (2007).
[17] X. Su, S. Fang, D. Zhang, Q. Zhang, Y. He, X. Lu, S. Liu, and L. Zhong, "Quantitative Raman spectral changes of the differentiation of mesenchymal stem cells into islet-like cells by biochemical component analysis and multiple peak fitting," Journal of Biomedical Optics 20, 125002 (2015).
[18] J. R. Lakowicz, Principles of fluorescence spectroscopy (Springer, 2006).
[19] X. Zhu, Q. Su, W. Feng, and F. Li, "Anti-Stokes shift luminescent materials for bio-applications," Chemical Society Reviews 46, 1025-1039 (2017).
[20] H. Giloh, and J. W. Sedat, "Fluorescence microscopy: reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate," Science 217, 1252-1255 (1982).
[21] W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990).
[22] G. Vicidomini, P. Bianchini, and A. Diaspro, "STED super-resolved microscopy," Nature methods 15, 173-182 (2018).
[23] T. Ha, T. Enderle, D. Ogletree, D. S. Chemla, P. R. Selvin, and S. Weiss, "Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor," Proceedings of the National Academy of Sciences 93, 6264-6268 (1996).
[24] P. I. Bastiaens, and A. Squire, "Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell," Trends in cell biology 9, 48-52 (1999).
[25] R. Datta, T. M. Heaster, J. T. Sharick, A. A. Gillette, and M. C. Skala, "Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications," Journal of biomedical optics 25, 071203 (2020).
[26] M. Y. Berezin, and S. Achilefu, "Fluorescence lifetime measurements and biological imaging," Chemical reviews 110, 2641-2684 (2010).
[27] J. Pawley, Handbook of biological confocal microscopy (Springer Science & Business Media, 2006).
[28] S. Dunst, and P. Tomancak, "Imaging flies by fluorescence microscopy: principles, technologies, and applications," Genetics 211, 15-34 (2019).
[29] M. Dickinson, G. Bearman, S. Tille, R. Lansford, and S. Fraser, "Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy," Biotechniques 31, 1272-1278 (2001).
[30] T. Zimmermann, "Spectral imaging and linear unmixing in light microscopy," Microscopy techniques, 245-265 (2005).
[31] B. Kraus, M. Ziegler, and H. Wolff, "Linear fluorescence unmixing in cell biological research," Modern research and educational topics in microscopy 2, 863-873 (2007).
[32] R.-S. Wu, and K. Aki, "Scattering characteristics of elastic waves by an elastic heterogeneity," Geophysics 50, 582-595 (1985).
[33] W. Becker, Advanced time-correlated single photon counting applications (Springer, 2015).
[34] W. Becker, "Fluorescence lifetime imaging–techniques and applications," Journal of microscopy 247, 119-136 (2012).
[35] C. De Grauw, and H. Gerritsen, "Multiple time-gate module for fluorescence lifetime imaging," Applied Spectroscopy 55, 670-678 (2001).
[36] C. Liu, X. Wang, Y. Zhou, and Y. Liu, "Timing and operating mode design for time-gated fluorescence lifetime imaging microscopy," The Scientific World Journal 2013 (2013).
[37] D. R. Yankelevich, D. Elson, and L. Marcu, "Pulse sampling technique," Fluorescence Lifetime Spectroscopy and Imaging, 87-102 (2014).
[38] J. R. Lakowicz, "Frequency-domain lifetime measurements," in Principles of Fluorescence Spectroscopy(Springer, 1999), pp. 141-184.
[39] M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, "The phasor approach to fluorescence lifetime imaging analysis," Biophysical journal 94, L14-L16 (2008).
[40] G. I. Redford, and R. M. Clegg, "Polar plot representation for frequency-domain analysis of fluorescence lifetimes," Journal of fluorescence 15, 805-815 (2005).
[41] S. Ranjit, R. Datta, A. Dvornikov, and E. Gratton, "Multicomponent analysis of phasor plot in a single pixel to calculate changes of metabolic trajectory in biological systems," The journal of physical chemistry A 123, 9865-9873 (2019).
[42] G. Weber, "Resolution of the fluorescence lifetimes in a heterogeneous system by phase and modulation measurements," The Journal of Physical Chemistry 85, 949-953 (1981).
[43] A. Esposito, H. C. Gerritsen, and F. S. Wouters, "Fluorescence lifetime heterogeneity resolution in the frequency domain by lifetime moments analysis," Biophysical journal 89, 4286-4299 (2005).
[44] P. J. Verveer, and Q. S. Hanley, "Frequency domain FLIM theory, instrumentation, and data analysis," Laboratory Techniques in Biochemistry and Molecular Biology 33, 59-94 (2009).
[45] P. C. Schneider, and R. M. Clegg, "Rapid Acquisition, Analysis, and Display of Fluorescence Lifetime-resolved Images for Real-time Applications," Review of Scientific Instruments 68, 4107-4119 (1997).
[46] D. Magde, R. Wong, and P. G. Seybold, "Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: Improved absolute standards for quantum yields¶," Photochemistry and photobiology 75, 327-334 (2002).
[47] Y. C. Chen, and R. Clegg, "Spectral resolution in conjunction with polar plots improves the accuracy and reliability of FLIM measurements and estimates of FRET efficiency," Journal of Microscopy 244, 21-37 (2011).
[48] "Diffraction Grating Specification Sheet (53-*-321R)," https://www.gratinglab.com/Products/Product_Tables/Efficiency/Efficiency.aspx?catalog=53-*-321R.
[49] "ORCA-Flash4.0 V2 Digital CMOS camera C11440-22CU for lifescience," http://www.hamamatsu.com.cn/UserFiles/DownFile/Product/SCAS0081E_C11440-22CU.pdf.
[50] "Photomultiplier Tube, 185-900 nm Range, UV Glass Window, MODEL: 77360," https://www.newport.com/p/77360.
指導教授 陳思妤(Szu-Yu Chen) 審核日期 2022-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明