博碩士論文 108327025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:18.119.132.24
姓名 徐子杰(Tzu-Chieh Hsu)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 微發光二極體於可撓式基板之電熱模擬研究
相關論文
★ 利用銦錫氧化物設計太陽能電池之電極對轉換效率之效益★ 側聚光型太陽能電池系統之聚光元件設計與製作
★ 結合繞射光柵與平凸透鏡之光束分頻元件於聚 光型太陽光電 / 太陽熱混合系統之應用★ 波前檢測應用於氣體折射率量測
★ 多重曲率之聚光元件應用於聚光型太陽能電池系統★ 太陽光模擬系統之設計與製作
★ 有機發光二極體熱特性模擬研究★ 有機發光二極體激子光電特性模擬研究
★ 太陽光與固態照明自動化混光技術研究★ 高分子光柵應用於太陽光分光元件
★ 利用色差分光之太陽能分光系統★ 有機發光二極體光熱電特性整合模擬之研究
★ 隨機奈米粒子模型應用於OLED 出光增益之研究★ 太陽選擇性塗層與熱平行堆疊運用於太陽熱電發電系統之實時模擬研究
★ 陰影疊紋式力-位移量測技術之研究★ 繞射分波元件於混合型太陽能系統之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 相較於傳統發光二極體(Light-emitting diode, LED),微型發光二極體(micro LED)因具有高解析度、高對比、高色彩飽和度、反應速度快及壽命長等特性,逐漸成為未來發展的重點項目之一,其相關研究也隨之備受關注。Micro LED屬於結合多領域的科技產品,為此,於元件製造前若能有效的模擬其溫度分佈與效能,將有助於後續元件整體規畫,而能降低製造成本。
本論文目的為建立一套完整的可撓式micro-LED半導體特性與電熱耦合模擬模型,並藉由模擬結果與文獻之分析比較,以驗證模型。在此使用COMSOL軟體建構三維micro-LED模型,藉由設置幾何尺寸、各層材料參數及邊界條件,模擬micro-LED元件效率及溫度分佈。
本論文除模擬單一micro-LED元件之效率及電特性外,亦使用三牆結構以探討牆寬大小、基板導熱係數、基板厚度等參數對元件量子阱溫度的影響。由模擬結果得知:透過提升基板導熱係數、增大晶粒間的牆寬,以及增加元件基板的厚度皆可降低元件量子阱的溫度。
摘要(英) Compared with traditional light-emitting diodes (LEDs), micro light-emitting diodes (micro-LEDs) have the higher resolution, higher color saturation, longer lifetime, and a higher contrast ratio. Hence, this study will focus on micro-LED for more analyses on the overall chip-design to reduce the manufacturing costs.
The purpose of this research is to establish a complete model simulating semiconductor characteristics and the electro-thermal coupling effects for the flexible micro LEDs. The model is constructed via the simulation software, COMSOL. Furthermore, a three-wall structure is investigated via three parameters, including wall-spacing, thermal conductivity, and thickness of the substrate, to know their effects on the quantum-well temperature. According to the simulation results, the quantum-well temperature can be reduced by increasing the thermal conductivity of the substrate, the thickness of the substrate, and the wall-spacing.
關鍵字(中) ★ 可撓式micro-LED
★ 溫度分佈
★ 三牆結構
關鍵字(英) ★ Flexible micro LEDs
★ Thermal distribution
★ Three-wall structure
論文目次 目錄
摘要 I
Abstract II
致謝 III
目錄 V
圖目錄 VII
表目錄 X
第一章、緒論 1
1-1 前言 1
1-2 文獻探討 3
1-3 研究動機 9
1-4 論文研究架構 10
第二章、基礎理論與原理 11
2-1 發光二極體發光原理 11
2-2 發光二極體發熱原理 13
2-2-1 蕭特基-瑞德-霍爾複合 16
2-2-2 歐傑複合 16
2-3 固體熱傳導理論 17
2-4 熱電耦合理論 19
2-5 小結 20
第三章、模擬設計與架構 21
3-1 Micro-LED半導體模擬方法 21
3-2 Micro-LED電模擬方法 28
3-3 Micro-LED熱模擬方法 33
3-3-1熱模擬主導公式 35
3-3-2 熱傳導係數量測原理 39
3-4 Micro-LED電熱模擬 41
3-5本章小結 43
第四章、模擬結果與討論 44
4-1 半導體模擬模型之驗證 44
4-1-1 IQE曲線之峰值(peak value) 44
4-1-2 峰值過後的效率驟降(Efficiency droop) 45
4-2 半導體模擬結果分析 48
4-2-1蕭特基-瑞德-霍爾(SRH)複合對內部量子效率之影響 48
4-2-2輻射複合對內部量子效率之影響 49
4-2-3歐傑複合對內部量子效率之影響 50
4-3 熱模擬結果分析 51
4-3-1基板導熱係數對量子阱溫度之影響 51
4-3-2熱介面材料對量子阱溫度之影響 52
4-3-3熱介面材料厚度對量子阱溫度之影響 54
4-3-4有無散熱板對量子阱溫度之影響 55
4-3-5散熱板厚度對量子阱溫度之影響 56
4-3-6散熱板材料對量子阱溫度之影響 57
4-3-7牆寬大小對量子阱溫度之影響 59
4-3-8基板厚度對量子阱溫度之影響 62
4-4 模擬結果與文獻之比較與分析 63
4-5 本結 64
第五章、結論與未來展望 65
5-1 結論 65
5-2 未來展望 66
參考資料 67
參考文獻 [1] H. X. Jiang, S. X. Jin, and J. Y. Lin “III-nitride blue microdisplays,” Applied Physics Letters, 78, 1303-1306, 2001
[2] Z. Y. Fan, J. Y. Lin, and H. X. Jiang “III-nitride micro-emitter arrays: development and applications,” IOP Science Journal of Physics D: Applied Physics, 41, 12-23, 2008
[3] T. Wu, C. W. Sher, and C. F. Lee “Mini-LED and Micro-LED: Promising Candidates for the Next Generation Display Technology,” Applied Physics Letters, 8, 1557-1573, 2018
[4] Web page from:Sony
https://www.sony.com.tw/zh/electronics/tv/t/oled-televisions
[5] Web page from:DIGITIMES
https://www.digitimes.com.tw/iot/article.asp?cat=158&id=0000513590_q0q6dtgx8r7wuh1rbm0nc
[6] Z. Chen, S. Yan, and C. Danesh, “Micro-LED technologies and applications: characteristics, fabrication, progress, and challenges,” IOP Science Journal of Physics D: Applied Physics, 54, 34-68, 2021


[7] L. Li, C. Liu, and J. Bai “Heterogeneous Integration of Microscale GaN Light-Emitting Diodes and Their Electrical, Optical, and Thermal Characteristics on Flexible Substrates,” Advanced Materials Technologies, 3, 9329-9338 ,2018
[8] X. Jia, Y. Zhou, and B. Liu “A simulation study on the enhancement of the efficiency of GaN-based blue light-emitting diodes at low current density for micro-LED applications,” Materials Research Express, 6, 150915-150925, 2019
[9] B. O. Jung, W. Lee, and J. Kim “Enhancement in external quantum efficiency of AlGaInP red μ-LED using chemical solution treatment process,” Scientifc Reports, 4, 11-19, 2021
[10] K. Baran, A. Rózowicz, and S. Rózowicz “Thermal Analysis of the Factors Influencing Junction Temperature of LED Panel Sources,” Energies, 12, 1-20, 2019
[11] Y. Feng, C. Liu, and Z. Liu “Study on Flip-Chip Structure of GaN-Based Micro-LED,” International Conference on Display Technology, 52, 132-135, 2020
[12] M. Asad, Q. Li , and W. S. Wong “Thermal and optical properties of high-density GaN micro-LED arrays on flexible substrates,” Nano Energy, 73, 104724-104731, 2020
[13] 李朱育,李敏鴻,李勝偉,柯文政,段生振,陳念波, “圖解光電半導體元件,” 五南出版社,台北市,33-35,2014
[14] S. M. Sze, M. K. Lee “Semiconductor Devices, Physics and Technology,” John Wiley & Sons, New Jersey, 26-29, 2012
[15] Web page from:
https://www.wikiwand.com/semiconductor
[16] 陳健中、蘇炎坤,「光子晶體發光二極體」,科儀新知,第二十八卷第二期,95年10月
[17] 林儒賢,「銻砷化銦鎵合金材料的光學特性研究」,國立交通大學電子物理學系碩士論文,27-31,民99
[18] S. Fang, W. Wang, and Z. Liang “Heat dissipation analysis of bendable AlGaInP micro-LED arrays,” Current optics and photonics, 1, 143-149, 2017
[19] Y. Zhang, S. Lu, and Y. Qiu “Experimental and Modeling Investigations of Miniaturization in InGaN/GaN Light-Emitting Diodes and Performance Enhancement by Micro-Wall Architecture,” Frontiers in chemistry January , 8, 630350-630356, 2021
[20] Webpage from COMSOL:
https://www.cpmsol.com/
[21] G. Lükens “Normally-off Transistor Topologies in Gallium Nitride Technology,” Applied Physics Letters, 25, 6-10, 2020

[22] 張嘉軒,「藉由非接觸式電場及光調制反射光譜探討氮化鎵表面能帶的彎曲現象」,國立中山大學物理研究所碩士論文,20-23,民94
[23] 陳芳名,「氮化銦鎵綠光發光二極體光輸出特性與優化之研究」,國立彰化師範大學光電科技研究所碩士論文,16-20,民102
[24] F. Bernardini, V. Fiorentini “Nonlinear Behavior of Spontaneous and Piezoelectric Polarization in III–V Nitride Alloys,” Physica Status Solidi, 190, 65–73, 2002
[25] J. R. Chen, C. H. Lee, and T. S. Ko “Effects of Built-In Polarization and Carrier Overflow on InGaN Quantum-Well Lasers With Electronic Blocking Layers,” Journal of Lightwave Technology, 26, 329-337, 2008
[26] H. Zhang, E. J. Miller, and E. T. Yu “Measurement of polarization charge and conduction-band offset at InxGa1-xN/GaN heterojunction interfaces,” Applied Physics Letters, 84, 4644-4647, 2004
[27] F. Renner, P. Kiesel, and G. H. Döhler “Quantitative analysis of the polarization fields and absorption changes in InGaN/GaN quantum wells with electroabsorption spectroscopy,” Applied Physics Letters, 81, 490-493, 2002
[28] F. S. Hwu, J. C. Chen, and S. H. Tu “A Numerical Study of Thermal and Electrical Effects in a Vertical LED Chip,” Journal of The Electrochemical Society, 157, 31-37, 2010

[29] 黃昭凱,「奈米等級PN接面二極體」,理學院 IC 製程化學產業研發碩士專班論文,3-7,民96
[30] V. K. Malyutenko, S. S. Bolgov, and A. D. Podoltsev “Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes,” Applied Physics Letters, 97, 3347-3340, 2010
[31] 王參豪,「砷化銦量子點在蕭基二極體與場效電晶體上之效應」,國立交通大學電子工程學系電子研究所碩士論文,27-32,民102
[32] S. H. Kim, S. Singh, and D. K. Lee, “Visible Flip-Chip Light-Emitting Diodes on Flexible Ceramic Substrate with Improved Thermal Management” IEEE Electron Device Letters, 37, 615-617, 2015
[33] W. Martienssen, H. Warlimont “HandBook of Condensed Matter and Materials Data,” Spinger Berlin Heidelberg, New York, 192-210, 2004
[34] A. Sztein, J. Haberstroh “Calculated thermoelectric properties of InxGa1-xN, InxAl1-xN, and AlxGa1-xN,” Applied Physics Letters, 113, 183707-183717, 2013
[35] S. Ammar, R. Belghouthi, and N. Aoun “COMSOL Simulation of Heat Distribution in InGaN Solar Cells: Coupled Optical-Electrical-Thermal 3-D
Analysis,” Defect and Diffusion Forum, 417, 273-284, 2022
[36] “S606 / TG-AS606 系列導熱膏”, T-Global Techonology Co., Ltd
https://www.tglobalcorp.com/s606c-thermal-grease
[37] “Polyethylenterephthalate sheets”, Professional Plastics
https://www.professionalplastics.com/professionalplastics/KaptonGeneral.pdf
[38] M. E. Levinshtein, S. L. Rumyantsev “Properties of advanced semiconductor materials, GaN, AlN, InN, BN, SiC, SiGe” John Wiley & Sons, New Jersey, 3-10, 2001
[39] D. J. Johnson, J. S. Ervin, and M. Hanchak “Graphite Foam Infused with Pentaglycerine for Solid-State Thermal Energy Storage,” Journal of Themophysics and Heat Transfer, 29, 55-64, 2015
[40] K. Belkacemi, and R. Hocine “Efficient 3D-TLM Modeling and Simulation for the Thermal Management of Microwave AlGaN/GaN HEMT Used in High Power Amplifiers SSPA,” Journal of Low Power Electronics and Applications, 8, 23-41, 2018
[41] J. Carvill “Materials of engineer’s data handbook,” Butterworth Heinemann, Oxford, 110-131, 1994
[42] J. Bilek, J. Atkinson “Thermal conductivity of molten lead free solders,” European Microelectronics and Packaging Symposium, 27, 192-202, 2006
[43] F. P. Incropera, D. P. Dewitt, and A. S. Lavine “Fundamentals of Heat and Mass Transfer(six edition) ,” John Wiley & Sons, New Jersey, 569-575, 2008

[44] Webpage from 科邁斯集團
https://www.techmaxasia.com/catalog-detail/THW-L2/
[45] INTERNATIONAL STANDARD, ISO 22007-2, Plastics Determination of thermal conductivity and thermal diffusivity, Part 2: Transient plane heat source (hot disc) method
[46] Q. H. Pham, J. C. Chen, and H. B. Nguyen “Three-Dimensional Numerical Study on the Efficiency Droop in InGaN/GaN Light-Emitting Diodes,” IEEE Photonics Journal, 11, 1-17, 2019
[47] S. Y. Karpov “Effect of Carrier Localization on Recombination Processes and Efficiency of InGaN-Based LEDs,” Applied Physics Letters, 8, 818-832, 2018
[48] M. L. Grassa, M. Meneghini, and C. D. Santi , M.Mandurrinob “Ageing of InGaN-based LEDs: Effects on internal quantum efficiency and role of defects,” Microelectronics Reliability, 55, 1775-1778, 2015
[49] Y. Yang, X. A. Cao, and C. H. Yan “Rapid efficiency roll-off in high-quality green light-emitting diodes on freestanding GaN substrates,” Applied Physics Letters, 94, 041117-041120, 2009
[50] J. Xie, X. Ni, and R. Shimada “On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers,” Applied Physics Letters, 93, 121017-121020, 2008
[51] M.H. Kim, M. F. Schubert, and J. K. Kim “Origin of efficiency droop in GaN-based light-emitting diodes,” Applied Physics Letters, 91, 183507-183510, 2007
[52] Y. C. Shena, G. O. Mueller, and S. Watanabe, N. F. Gardner “Auger recombination in InGaN measured by photoluminescence,” Applied Physics Letters, 91, 141101-141104, 2007
[53] E. Kioupakisa, P. Rinke, and K. T. Delaney “Indirect Auger recombination as a cause of efficiency droop in nitride light emitting diodes,” Applied Physics Letters, 98, 161107 -161110, 2011
[54] M. Zhang, P. Bhattacharya, and J. Hinckley “Direct measurement of auger recombination in In0.1Ga0.9N/GaN quantum wells and its impact on the efficiency of In0.1Ga0.9N/GaN multiple quantum well light emitting diodes,” Applied Physics Letters, 95, 201108-201110, 2009
[55] J. Piprek, F. Römer, and B. Witzigmann “On the uncertainty of the Auger recombination coefficient extracted from InGaN/GaN light-emitting diode efficiency droop measurements,” Applied Physics Letters, 106, 101101-101105, 2015
[56] 黃隆健,「聚醯亞胺薄膜於微發光二極體撓曲背板之應用」,國立交通大學
理學院應用科技學程碩士論文,民109

[57] Standard Practice for Evaluating Thermal Conductivity of Gasket Materials
Designation: F433 − 02 (Reapproved 2020)
[58] X. Zhang, L. Qi, and W. C. Chong “Active matrix monolithic micro-LED full-color microdisplay,” Journal of the Society for Information Display, 29, 47-56, 2020
[59] K. Rae, P. P. Manousiadis, and J. CARREIRA “Transfer-printed micro-LED and polymer-based transceiver for visible light communications,” Optics Express, 26, 31474-31483, 2018
[60] C. Goßler, C. Bierbrauer, and R. Moser “GaN-based micro-LED arrays on flexible substrates for optical cochlear implants,” Journal of Physics D: Applied Physics, 47, 205401-205407, 2014
[61] C. K. Li, C. K. Wu, and Y. R. Wu, “3D numerical modeling of the carrier transport and radiative efficiency for InGaN/GaN light emitting diodes with V-shaped pits,” AIP Advances, 6, 055208-055218, 2016
[62] C. K. LEONG, D. D. L. CHUNG, “Factors That Govern the Performance of Thermal Interface Materials,” Journal of Electronic Materials, 38, 175-192, 2009
指導教授 韋安琪(An-ChiWei) 審核日期 2022-9-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明