博碩士論文 109327008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.134.104.173
姓名 陳韋綸(Wei-Lun Chen)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 多步沉積技術進行脈衝直流濺射的微觀結構分析與光學發射光譜主成分分析分類氮化鋁(AlN)薄膜特性
(Multi-step deposition technique of DC pulsed sputtering with microstructural analysis and classification of aluminum nitride (AlN) film characteristics with principal component analysis of optical emission spectroscopy)
相關論文
★ 以磁場模擬法設計磁鐵排列改善濺鍍機台之填洞能力★ 高頻RF感應加熱器應用於MOCVD承載盤之均溫性探討分析
★ 局域性表面電漿效應應用於增益有機發光二極體發光強度之參數優化研究★ 最佳化設計金屬有機化學氣相沉積高溫加熱系統數值分析研究
★ 以濺鍍CIG三元靶調變硒化製程壓力製作CIGS太陽能電池之特性分析★ 最佳化OLED面型蒸鍍加熱器設計與腔體流場數值分析
★ 以電漿診斷探討電漿輔助化學氣相沉積系統之製程環境優化對氫化非晶矽鈍化品質之影響★ 電漿診斷系統輔助化學氣相沉積之鈍化層薄膜製程區間研究
★ 以數值分析法分析氮化鎵薄膜沉膜機制之探討暨實作驗證★ 電弧噴塗積層製造:Ta/TaN 薄膜物理氣相沉積中腔體襯套翻新與顆粒缺陷減少相關性研究
★ 以RTP硒化法探討CIS薄膜及元件特性之研究★ 局域性表面電漿共振效應應用於OLED出光增益之研究
★ TE模式電子迴旋共振化學氣相沉積之矽薄膜電漿光譜研究★ TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究
★ 自製蘭牟爾探針診斷TE微波模式電子迴旋共振電漿★ 以噴塗技術在不銹鋼基板上沉積氧化矽阻隔層應用於可撓式CIGS太陽電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-9-16以後開放)
摘要(中) 在此研究中,採用獨特的脈衝直流濺射多步沉積技術來獲得氮化鋁 (AlN) 薄膜中的殘餘應力及薄膜特徵趨勢。實驗以一步沉積及多步(兩步和四步)沉積製程分別濺鍍60分鐘和30分鐘進行對比。其中透過多步沉積進行比對的實驗總濺鍍時間相同,並且在每次中斷期間關閉電源10分鐘。通過一步沉積和多步沉積薄膜特性的比較,研究薄膜晶體取向、殘餘應力和薄膜特徵之間的相關性。
通過 X光繞射儀 (XRD)、傅立葉變換紅外光譜 (FT-IR)、掃描電子顯微鏡 (SEM) 和原子力顯微鏡 (AFM) 對氮化鋁薄膜的厚度、微觀結構、殘餘應力和晶態進行了檢測。結果表明,氮化鋁薄膜在相同的總濺鍍反應時間,不同的沉積層數下,具有不同的應力特性和微觀結構。此部分可以透過離子轟擊程度的增加和基板感應溫度升高導致對薄膜中不同微觀結構變化進行解釋。
在這項研究中,用於一步沉積的厚度約為 1300奈米的氮化鋁薄膜的均方根 (RMS) 表面粗糙度為 2.67奈米,晶粒尺寸為 65.1奈米,殘餘應力為 1575 MPa。但通過使用四步沉積,這些值降低到 2.46奈米的表面粗糙度、51.4奈米晶粒大小和841 MPa 殘餘應力。在研究中更詳細地描述了多步沉積製程下的更多對應量測值和趨勢。
光學發射光譜 (OES) 數據收集了180至850奈米波長的電漿沉積過程中的光波,並透過預處理篩選特定的主要波長(例如 N2 (315 和 336奈米)和 Al(394 和 396 奈米)),用於大規模數據分析。透過分析大規模 OES 數據,以查看 OES 數據、結晶狀態和薄膜質量之間是否存在聯繫。基於 OES 數據預處理執行的交叉驗證測試,採用主成分分析 (PCA) 和微觀結構特徵值 (VMC) 算法的方法表明,這種多步沉積技術可以從微觀結構分析中提供良好的應力梯度控制並且可以有效地對氮化鋁沉積的薄膜特性進行分類。
摘要(英) In this work, a unique multi-step deposition technique in a pulsed DC sputtering system was employed to obtain trends of residual stress and film characters in aluminum nitride (AlN) thin films. The experiments were carried out by the 60-minute and the 30-minute process in one-step deposition. A multi-step (two and four-step process) deposition was carried out with equally separate processing time of the overall processing time being the same and turn off the power for 10 minutes during each interruption. The comparison of film characteristics between one-step deposition and multi-step deposition was used to study the correlation among film crystal orientation (state), residual stress and film features. The thickness, microstructure, residual stress, and crystalline state of AlN thin films were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and atomic force microscope (AFM). The results show that the AlN films have different stress characteristics in different microstructures when processed at the same amount of time in different deposition intervals. The increase in the degree of ion bombardment and induced substrate temperature raised leads to the interpretation for different microstructural changes in films. In this study, AlN films with thickness of about 1300 nm for the one-step deposition have a root mean square (RMS) surface roughness of 2.67 nm, a grain size of 65.1 nm, and residual stress of 1575 MPa. But by utilizing four-step deposition, these values were reduced to 2.46 nm RMS surface roughness, 51.4 nm grain size, and 841 MPa residual stress. More corresponding values and trends about the effect of multi-step deposition are described more details in the research. In-situ optical emission spectroscopy (OES) data were collected during plasma deposition of selected dominant wavelengths such as N2 (315 & 336 nm), and Al (394 & 396 nm) for large-scale data analysis. Residual stress data were analyzed to see if there is a link among OES data, crystalline state, and thin-film quality. Based on the cross-validation test executed from OES data preprocessing, the methodology with the principal component analysis (PCA) and value of microstructure characteristics (VMC) algorithm demonstrated that this multi-step deposition technique can provide a good stress gradient control from microstructural analysis and can be effectively classified for film characteristics of AlN deposition.
關鍵字(中) ★ 多步沉積
★ 氮化鋁
★ 脈衝直流濺鍍
★ 微觀結構分析
★ 主成分分析
★ 微觀結構特徵值
關鍵字(英)
論文目次 中文摘要 i
Abstract iii
目錄 vii
圖目錄 x
表目錄 xiii
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 論文架構 4
第二章 研究理論與背景介紹 5
2-1 物理氣相沉積(PVD) 5
2-2 薄膜沉積原理 7
2-3 脈衝頻率簡介 9
2-4 電漿簡介 11
2-5 多步沉積原理及對薄膜特性影響 13
2-6 光學放射光譜(OES) 16
2-7 主成分分析(PCA) 18
第三章 研究方法 20
3-1 實驗流程 20
3-2 實驗方法 21
3-2-1參數設定 21
3-2-2試片清洗步驟 23
3-3-3試片製作 23
3-2-4實驗步驟 25
3-3 實驗裝置與量測 26
3-3-1脈衝直流磁控濺鍍(Pulsed DC Magnetron Sputtering) 26
3-3-2光學放射光譜 (Optical Emission Spectroscopy,OES) 29
3-3-3掃描式電子顯微鏡 (Scanning Electron Microscope,SEM) 31
3-3-4傅立葉轉換紅外光譜(Fourier transform infrared spectroscopy,FT-IR) 33
3-3-5 X-射線繞射 (X-ray diffraction, XRD) 34
3-3-6 原子力顯微鏡 (Atomic Force Microscope, AFM) 37
第四章 實驗結果與討論 39
4-1 多步沉積及不同沉積時間對薄膜微觀結構及品質之影響 39
4-1-1掃描電子顯微鏡對氮化鋁薄膜分析 39
4-1-2原子力顯微鏡(AFM)對氮化鋁薄膜表面粗糙度分析 42
4-1-3傅立葉轉換紅外光譜對氮化鋁薄膜分析 43
4-1-4 X-射線繞射對氮化鋁薄膜分析 45
4-1-5 微結構特徵量測與多步沉積的影響 48
4-2 大量光放射光譜資料結合機器學習預測微觀結構特徵與驗證 52
第五章 結論 59
參考文獻 61
參考文獻 [1] Q. G. Q. Guo and A. Y. A. Yoshida, "Temperature dependence of band gap change in InN and AlN," Japanese Journal of Applied Physics, vol. 33, no. 5R, p. 2453, 1994.
[2] P. Vissutipitukul and T. Aizawa, "Wear of plasma-nitrided aluminum alloys," Wear, vol. 259, no. 1-6, pp. 482-489, 2005.
[3] b. H. Morkoc, S. Strite, G. Gao, M. Lin, B. Sverdlov, and M. Burns, "Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies," Journal of Applied physics, vol. 76, no. 3, pp. 1363-1398, 1994.
[4] H. Altun and S. Sen, "The effect of DC magnetron sputtering AlN coatings on the corrosion behaviour of magnesium alloys," Surface and Coatings Technology, vol. 197, no. 2-3, pp. 193-200, 2005.
[5] J.-Y. Qiu, Y. Hotta, K. Watari, K. Mitsuishi, and M. Yamazaki, "Low-temperature sintering behavior of the nano-sized AlN powder achieved by super-fine grinding mill with Y2O3 and CaO additives," Journal of the European Ceramic Society, vol. 26, no. 4-5, pp. 385-390, 2006.
[6] M. Ishihara, K. Yamamoto, F. Kokai, and Y. Koga, "Effect of laser wavelength for surface morphology of aluminum nitride thin films by nitrogen radical-assisted pulsed laser deposition," Japanese Journal of Applied Physics, vol. 40, no. 4R, p. 2413, 2001.
[7] X. Wang and A. Yoshikawa, "Molecular beam epitaxy growth of GaN, AlN and InN," Progress in crystal growth and characterization of materials, vol. 48, pp. 42-103, 2004.
[8] H.-H. Lo, W.-L. Chen, P. J. Wang, W. Lai, Y.-K. Fuh, and T. T. Li, "Residual stress classification of pulsed DC reactive sputtered aluminum nitride film via large-scale data analysis of optical emission spectroscopy," The International Journal of Advanced Manufacturing Technology, vol. 119, no. 11, pp. 7449-7462, 2022.
[9] M. Auger, L. Vazquez, M. Jergel, O. Sanchez, and J. Albella, "Structure and morphology evolution of ALN films grown by DC sputtering," Surface and Coatings Technology, vol. 180, pp. 140-144, 2004.
[10] T.-Y. Lu et al., "Minimizing film residual stress with in situ OES big data using principal component analysis of deposited AlN films by pulsed DC reactive sputtering," The International Journal of Advanced Manufacturing Technology, vol. 114, no. 7, pp. 1975-1990, 2021.
[11] I. Oliveira, K. Grigorov, H. Maciel, M. Massi, and C. Otani, "High textured AlN thin films grown by RF magnetron sputtering; composition, structure, morphology and hardness," Vacuum, vol. 75, no. 4, pp. 331-338, 2004.
[12] P. J. Kelly and R. D. Arnell, "Magnetron sputtering: a review of recent developments and applications," Vacuum, vol. 56, no. 3, pp. 159-172, 2000.
[13] W. Sproul, "High-rate reactive DC magnetron sputtering of oxide and nitride superlattice coatings," Vacuum, vol. 51, no. 4, pp. 641-646, 1998.
[14] M.-H. Park and S.-H. Kim, "Thermal conductivity of AlN thin films deposited by RF magnetron sputtering," Materials Science in Semiconductor Processing, vol. 15, no. 1, pp. 6-10, 2012.
[15] H. Mehner, S. Leopold, and M. Hoffmann, "Variation of the intrinsic stress gradient in thin aluminum nitride films," Journal of Micromechanics and Microengineering, vol. 23, no. 9, p. 095030, 2013.
[16] K. E. Knisely, B. Hunt, B. Troelsen, E. Douglas, B. A. Griffin, and J. E. Stevens, "Method for controlling stress gradients in PVD aluminum nitride," Journal of Micromechanics and Microengineering, vol. 28, no. 11, p. 115009, 2018.
[17] B. Riah et al., "Hetero-Epitaxial Growth of AlN Deposited by DC Magnetron Sputtering on Si (111) Using a AlN Buffer Layer," Coatings, vol. 11, no. 9, p. 1063, 2021.
[18] P. Soussan, K. O′Donnell, J. D′Haen, G. Vanhoyland, E. Beyne, and H. A. Tilmans, "Pulsed dc sputtered aluminum nitride: A novel approach to control stress and c-axis orientation," MRS Online Proceedings Library (OPL), vol. 833, 2004.
[19] S. Xiao, R. Suzuki, H. Miyake, S. Harada, and T. Ujihara, "Improvement mechanism of sputtered AlN films by high-temperature annealing," Journal of Crystal Growth, vol. 502, pp. 41-44, 2018.
[20] B. W. Sheldon, K. Lau, and A. Rajamani, "Intrinsic stress, island coalescence, and surface roughness during the growth of polycrystalline films," Journal of Applied Physics, vol. 90, no. 10, pp. 5097-5103, 2001.
[21] H.-Y. Shih et al., "Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing," Scientific reports, vol. 7, no. 1, pp. 1-8, 2017.
[22] S. Joe Qin, "Statistical process monitoring: basics and beyond," Journal of Chemometrics: A Journal of the Chemometrics Society, vol. 17, no. 8‐9, pp. 480-502, 2003.
[23] S. J. Hong, G. S. May, and D.-C. Park, "Neural network modeling of reactive ion etching using optical emission spectroscopy data," IEEE Transactions on Semiconductor Manufacturing, vol. 16, no. 4, pp. 598-608, 2003.
[24] X. Jia, C. Jin, M. Buzza, W. Wang, and J. Lee, "Wind turbine performance degradation assessment based on a novel similarity metric for machine performance curves," Renewable Energy, vol. 99, pp. 1191-1201, 2016.
[25] S.-H. Wang, H.-E. Chang, C.-C. Lee, Y.-K. Fuh, and T. T. Li, "Evolution of a-Si: H to nc-Si: H transition of hydrogenated silicon films deposited by trichlorosilane using principle component analysis of optical emission spectroscopy," Materials Chemistry and Physics, vol. 240, p. 122186, 2020.
[26] K. Tan and S. Chen, "Adaptively weighted sub-pattern PCA for face recognition," Neurocomputing, vol. 64, pp. 505-511, 2005.
[27] 蕭宏, 半導體製程技術導論. 新北市: 全華圖書, 2019.
[28] 莊達人, VLSI製造技術. 新北市: 高立圖書有限公司, 1996.
[29] H. Okano, N. Tanaka, Y. Takahashi, T. Tanaka, K. Shibata, and S. Nakano, "Preparation of aluminum nitride thin films by reactive sputtering and their applications to GHz‐band surface acoustic wave devices," Applied physics letters, vol. 64, no. 2, pp. 166-168, 1994.
[30] J. Lopez, W. Zhu, A. Freilich, A. Belkind, and K. Becker, "Time-resolved optical emission spectroscopy of pulsed DC magnetron sputtering plasmas," Journal of Physics D: Applied Physics, vol. 38, no. 11, p. 1769, 2005.
[31] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: a review and comparison to other plasma sources," IEEE transactions on plasma science, vol. 26, no. 6, pp. 1685-1694, 1998.
[32] P. Pobedinskas et al., "Thickness dependent residual stress in sputtered AlN thin films," Thin Solid Films, vol. 522, pp. 180-185, 2012.
[33] G. Abadias et al., "Stress in thin films and coatings: Current status, challenges, and prospects," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 36, no. 2, p. 020801, 2018.
[34] K. Pearson, "LIII. On lines and planes of closest fit to systems of points in space," The London, Edinburgh, and Dublin philosophical magazine and journal of science, vol. 2, no. 11, pp. 559-572, 1901.
[35] H. Hotelling, "Analysis of a complex of statistical variables into principal components," Journal of educational psychology, vol. 24, no. 6, p. 417, 1933.
[36] B. Chapman and J. Vossen, "Glow discharge processes: sputtering and plasma etching," Physics Today, vol. 34, no. 7, p. 62, 1981.
[37] Q. Luo and A. Jones, "High-precision determination of residual stress of polycrystalline coatings using optimised XRD-sin2ψ technique," Surface and Coatings Technology, vol. 205, no. 5, pp. 1403-1408, 2010.
[38] K. A. Aissa, A. Achour, J. Camus, L. Le Brizoual, P.-Y. Jouan, and M.-A. Djouadi, "Comparison of the structural properties and residual stress of AlN films deposited by dc magnetron sputtering and high power impulse magnetron sputtering at different working pressures," Thin Solid Films, vol. 550, pp. 264-267, 2014.
[39] X. Shi, W. Qing, T. Marhaba, and W. Zhang, "Atomic force microscopy-Scanning electrochemical microscopy (AFM-SECM) for nanoscale topographical and electrochemical characterization: Principles, applications and perspectives," Electrochimica Acta, vol. 332, p. 135472, 2020.
[40] M. Noorprajuda, M. Ohtsuka, and H. Fukuyama, "Polarity inversion of AlN film grown on nitrided a-plane sapphire substrate with pulsed DC reactive sputtering," AIP Advances, vol. 8, no. 4, p. 045124, 2018.
[41] P. Kelly, P. Henderson, R. Arnell, G. Roche, and D. Carter, "Reactive pulsed magnetron sputtering process for alumina films," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 18, no. 6, pp. 2890-2896, 2000.
[42] H. Liu, G. Tang, F. Zeng, and F. Pan, "Influence of sputtering parameters on structures and residual stress of AlN films deposited by DC reactive magnetron sputtering at room temperature," Journal of crystal growth, vol. 363, pp. 80-85, 2013.
[43] J. Zhang et al., "Growth of AlN films on Si (100) and Si (111) substrates by reactive magnetron sputtering," Surface and Coatings Technology, vol. 198, no. 1-3, pp. 68-73, 2005.
[44] H.-C. Lee, J.-Y. Lee, and H.-J. Ahn, "Effect of the substrate bias voltage on the crystallographic orientation of reactively sputtered AlN thin films," Thin Solid Films, vol. 251, no. 2, pp. 136-140, 1994.
[45] Z. Xin, S. Xiao-Hui, and Z. Dian-Lin, "Thickness dependence of grain size and surface roughness for dc magnetron sputtered Au films," Chinese Physics B, vol. 19, no. 8, p. 086802, 2010.
[46] F. Martin, P. Muralt, M.-A. Dubois, and A. Pezous, "Thickness dependence of the properties of highly c-axis textured AlN thin films," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 22, no. 2, pp. 361-365, 2004.
[47] A. E. Giba, P. Pigeat, S. Bruyère, T. Easwarakhanthan, F. Mücklich, and D. Horwat, "Controlling refractive index in AlN films by texture and crystallinity manipulation," Thin Solid Films, vol. 636, pp. 537-545, 2017.
[48] J. Kar, G. Bose, and S. Tuli, "Influence of rapid thermal annealing on morphological and electrical properties of RF sputtered AlN films," Materials science in semiconductor processing, vol. 8, no. 6, pp. 646-651, 2005.
[49] Y.-P. Yang et al., "Machine Learning Assisted Classification of Aluminum Nitride Thin Film Stress via In-Situ Optical Emission Spectroscopy Data," Materials, vol. 14, no. 16, p. 4445, 2021.
[50] H. C. Barshilia, B. Deepthi, and K. Rajam, "Growth and characterization of aluminum nitride coatings prepared by pulsed-direct current reactive unbalanced magnetron sputtering," Thin Solid Films, vol. 516, no. 12, pp. 4168-4174, 2008.
[51] R. Chodun, K. Nowakowska-Langier, and K. Zdunek, "Methods of optimization of reactive sputtering conditions of Al target during AlN films deposition," Materials Science-Poland, vol. 33, no. 4, pp. 894-901, 2015.
[52] H.-C. Lee and J.-Y. Lee, "Effect of negative bias voltage on the microstructures of AlN thin films fabricated by reactive rf magnetron sputtering," Journal of Materials Science: Materials in Electronics, vol. 8, no. 6, pp. 385-390, 1997.
[53] J. Aveyard et al., "Linker-free covalent immobilization of nisin using atmospheric pressure plasma induced grafting," Journal of Materials Chemistry B, vol. 5, no. 13, pp. 2500-2510, 2017.
[54] J. Lee, "Measurement of machine performance degradation using a neural network model," Computers in Industry, vol. 30, no. 3, pp. 193-209, 1996.
[55] L. Puggini and S. McLoone, "An enhanced variable selection and Isolation Forest based methodology for anomaly detection with OES data," Engineering Applications of Artificial Intelligence, vol. 67, pp. 126-135, 2018.
指導教授 利定東(Ting-Tung Li) 審核日期 2022-9-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明