博碩士論文 108226050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.19.55.8
姓名 林志威(Chih-Wei Lin)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 基於光阻週期結構之可電控液晶光柵及其光電特性
(Electrically tunable liquid crystal gratings based on periodic photoresist structures and their electrooptical properties)
相關論文
★ 利用電控動態手紋結構製作雙穩態散射型液晶光閥之研究★ 液晶摻雜十二氫氧基硬酯酸於鍍有聚乙烯基咔唑薄膜液晶盒中之多穩態特性及其應用
★ 利用偶氮苯摻雜膽固醇液晶製作光控線性偏振旋轉器★ 利用扭轉型聚合物網絡液晶製作 偏振選擇性光散射之研究
★ 中孔洞奈米粒子摻雜液晶之光電特性及其應用之研究★ 藍相液晶摻雜旋性聚合物之表面穩定效應之研究
★ 層列C型/層列C*型液晶摻雜偶氮苯材料之光電特性研究★ 離子性材料對向列型液晶自發性配向及其應用之研究
★ 膽固醇液晶摻雜離子性層列型液晶之動態散射特性研究★ 膽固醇液晶及扭轉向列型液晶之線性偏振旋轉器
★ 低操作電壓高分子分散型液晶及其應用之研究★ 單面及雙面旋性聚合物穩固藍相液晶之光電特性
★ 利用液晶相位空間光調制器實現波長及焦距可調之反射式Fresnel光學透鏡★ 光控及電控散射型/吸收型液晶光閥之研究
★ 利用雙扭轉向列型液晶製作可電光調控之線性偏振光液晶光圈★ 電控及光控膽固醇液晶光閥特性與結構之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-6-30以後開放)
摘要(中) 本研究將負型光阻SU-8塗佈於鍍有氧化銦錫(Indium tin oxide,簡稱為ITO)之玻璃基板表面,經黃光微影(Photolithography)製程於基板上製作週期約為30 μm的光阻/ITO光柵結構,光阻線寬約為16.4 μm,此光柵為表面浮雕光柵(Surface-relief grating),並於結構上方塗佈PVA進行水平摩擦配向處理,搭配另一片塗佈PVA經水平摩擦配向處理之ITO玻璃基板組成可電控之光柵液晶盒。
首先,我們經由實驗得知負型光阻SU-8對外加直流電場有明顯的屏蔽效應(Shielding effect),而對外加交流電場的影響則較微弱,並嘗試以電雙層理論及RC電路模型解釋基板表面塗佈光阻薄膜對液晶盒內部電場的影響。由此推論在外加直流或交流電場作用下,液晶分子將於塗佈光阻區域經歷較弱的有效電場,於無塗佈光阻區域經歷較強的有效電場。其次,兩區域亦因表面電位(Potential)差異形成橫向電場(Transverse electric field),造成兩區域邊界之液晶分子於靠近光阻結構一側(但非基板表面處)有略為偏離摩擦配向方向之現象,由於液晶材料具有彈性體之物理性質,故液晶分子於兩區域邊界處之排列應為連續且漸變的,此現象亦造成該區域產生相位延遲及偏振特性的改變。最後,我們沿用Zhan He教授團隊量測光柵液晶盒偏振特性之方法及理論基礎,探討摩擦配向方向平行及垂直於光柵條紋結構方向之各階繞射光繞射效率及其偏振特性。
摘要(英) In this thesis, we report that the electro-optical properties of surface-relief gratings, having the period of about 30 μm and the width of the SU-8 structures of about 16.4 μm, based on periodic SU-8 structures onto an induim tin oxide (ITO) substrates by photolithography process. After photolithography process, the period structures are spin-coated with polyvinylalcohol (PVA) thin flim and treated with rubbing process. Another ITO-coated substrate is also coated with PVA thin film and treated with the same rubbing process. An empty cell is fabricated by assembling the two substrates, and then filled with nematic liquid crystals (LCs) to be electrically tunable LC gratings.
First, SU-8 possesses strong shielding effect for DC electric field, but weak for AC electric field according to our experimental results, and can be clearly understood by electrical double layer theory and RC circuit model. When a DC or AC electric field is applied, LCs in the region with SU-8 will be rotated by a weak effective electric field, and those in the other region will be rotated by a strong electric field. Furthermore, each region has its respective potential, which yields a transverse electric field due to the potential difference. Such transverse electric fields cause the LCs near the SU-8 structures but not on the surface of PVA thin film to be twisted from its initial alignment direction. Accorfing to the elastic continuum theory of LCs, the alignment of LCs should be continuously distributed, which changes the phase retardation and polarization state of the diffraction light. Finally, the methods of measurement and theory of electrically induced hybrid twisted nematic structure reported by He et al. is used for analyzing the diffraction efficiency and polarization state of diffraction light.
關鍵字(中) ★ 向列型液晶
★ 液晶光柵
★ 光阻
★ 電雙層理論
★ 屏蔽效應
★ 繞射
關鍵字(英) ★ Nematic Liquid Crystals
★ Liquid crystals grating
★ Photoresist
★ Electrical double layer theory
★ Shielding effect
★ Diffraction
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
符號說明 xiv
第一章 緒論 1
§1-1 前言 1
§1-2 研究動機 1
§1-3 文獻回顧 2
§1-4 論文架構 4
第二章 液晶簡介 5
§2-1 何謂液晶 5
§2-2 液晶的分類 6
§2-3 液晶的物理特性 13
§2-3-1 光學異向性 14
§2-3-2 介電異向性 16
§2-3-3 連續彈性體理論 18
§2-3-4 溫度對向列型液晶的影響 19
§2-3-5 Fréedericksz transition 19
第三章 實驗相關理論 21
§3-1 偏振(Polarization)[18] 21
§3-2 偏振態之向量表示及運算[19] 25
§3-2-1 史托克斯向量(Stokes vector) 25
§3-2-2 瓊斯運算(Jones calculus) 26
§3-3 繞射光柵(Diffraction grating) 29
§3-3-1 狹縫干涉原理[19] 29
§3-3-2 相位光柵之理論計算 30
§3-4 電雙層(Electrical double layer)理論[21] 33
第四章 實驗方法與過程 36
§4-1 樣品備製及液晶盒製作流程 36
§4-1-1 材料介紹 36
§4-1-2 液晶盒製作 39
§4-2 實驗架設 42
§4-2-1 液晶空盒厚度量測 42
§4-2-2 電壓-穿透率曲線量測 44
§4-2-3 液晶相位光柵之繞射效率量測 44
§4-2-4 液晶相位光柵各階繞射光之Stokes parameter量測 45
§4-2-5 偏光顯微鏡觀測樣品 46
第五章 實驗結果與討論 47
§5-1 光阻薄膜對液晶盒內部電場之影響 47
§5-1-1 施加直流電壓對液晶盒兩區域之液晶分子排列的影響 49
§5-1-2 施加1 kHz交流電壓對液晶盒兩區域之液晶分子排列的影響 52
§5-1-3 於定電壓下光阻薄膜對不同頻率外加電場之影響 54
§5-2 水平摩擦配向方向對光阻圖樣邊緣液晶分子排列之影響 61
§5-2-1 線條狀光阻圖樣夾於無塗佈區域間(A-B-A)之液晶分子排列情形 61
§5-2-2 線條狀無塗佈區域夾於塗佈光阻區域間(B-A-B)之液晶分子排列情形 65
§5-3 利用光阻製作相位光柵液晶盒及其光電特性量測 68
§5-3-1 基於光阻結構之液晶相位光柵繞射效率 70
§5-3-2 基於光阻週期性結構之液晶光柵繞射光偏振特性 86
第六章 結論與未來展望 99
§6-1 結論 99
§6-2 未來展望 102
參考文獻 103
參考文獻 [1]C.-W. Chiu, Y.-C. Lin, Paul. C.-P. Chao, and Andy Y.-G. Fuh, “Achieving high focusing power for a large-aperture liquid crystal lens with novel hole-and-ring electrodes,” Opt. Express 23, 19277-19284 (2008).
[2]C. J. Hsu, B. P. Singh, P. Selvaraj, M. Antony, R. Manohar, and C. Y. Huang, “Superior improvement in dynamic response of liquid crystal lens using organic and inorganic nanocomposite,” Sci. Rep. 11, 17349 (2021).
[3]A. Hassanfiroozi, Y. P. Huang, B. Javidi, and H. P. D. Shieh, “Dual layer electrode liquid crystal lens for 2D/3D tunable endoscopy imaging system,” Opt. Express 24, 8527-8538 (2016).
[4]G. Taton, D. Lagrange, V. Conedera, L. Renaud, and C. Rossi, “Micro-chip initiator realized by integrating Al/CuO multilayer nanothermite on polymeric membrane,” J. of Micromech. and Microeng. 23, 105009 (2013).
[5]Y. C. Chang, T. H. Jen, C. H. Ting, and Y. P. Huang, “High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display,” Opt. Express 22, 2714-2724 (2014).
[6]Y. P. Huang, L. Y. Liao, and C. W. Chen, “2-D/3-D switchable autostereoscopic display with multi-electrically driven liquid-crystal (MeD-LC) lenses,” J. Soc. Inf. Disp. 18, 642–646 (2010).
[7]Andy Y.-G. Fuh, K.-N. Chen, and S.-T. Wu, “Smart electro-optical iris diaphragm based on liquid crystal films coating with photoconductive polymer of poly(N-vinylcarbazole),” Appl. Optics 55, 6034-6039 (2016).
[8]Z. He, T. Nose, and S. Sato, “Diffraction and polarization properties of a liquid crystal grating,” Jpn. J. Appl. Phys. 35, 3529-3530 (1996).
[9]Z. He, T. Nose and S. Sato, “Polarization properties of an amplitude nematic liquid crystal grating,” Opt. Eng. 37, 3885-3898 (1998).
[10]唐賓鴻,“圖樣與非圖樣光阻層對液晶透鏡陣列之不連續線改善研究”,國立成功大學,光電科學與工程學系(2015).
[11]David J. R. Cristaldi, S. Pennisi, and F. Pulvirenti, “Liquid Crystal Display Drivers,” Springer-Verlag, New York (2009).
[12]F. Reinitzer, “Beiträge zur kenntniss des cholesterins,” Monatsh. Chem. 9, 421 (1888).
[13]O. Lehmam, “On flowing crystals,” Z. Phys. Chem. 4, 462 (1889).
[14]羅丹,“液晶光子學”,電子工業出版社 (2018).
[15]松本正一、角田市良(劉瑞祥 譯),“液晶之基礎與應用”,國立編譯館出版 (1996).
[16]S. T. Lagerwall, “Ferroelectric and antiferroelectric liquid crystals,” Ferroelectrics 301, 15-45 (2004).
[17]V. Fréedericksz and A. Repiewa, “Theoretisches und Experimentelles zur Frage nach der Natur der anisotropen Flüssigkeiten,” Zeitschrift für Physik 45, 532 (1927).
[18]A. Yariv and P. Yeh, “Optical Waves in Crystals: Propagation and Control of Laser Radiation,” Wiley (2002).
[19]Hecht and Eugene, “Optics,” Person (2002).
[20]H. Gao, M. Ouyang, Y. Wang, Y. Shen, J. Zhou, and D. Liu, “Analysis on diffraction properties of the transmission phase grating,” Optik 118, 452-456 (2007).
[21]C. M. Ho, “Micro/Nano Technology Systems for Biomedical Applications: Microfluidics, Optics, and Surface Chemistry,” Oxford University Press, USA (2010).
[22]Myers and Drew, “Surfaces, Interfaces, and Colloids: Principles and Applications,” Wiley-VCH (1999).
[23]D. J. Shaw, “Introduction to colloid and surface chemistry,” Butterworth-Heinemann (1992).
[24]黃苡叡,“膠體晶體與反蛋白石結構之製作及工程應用”,國立交通大學,材料科學與工程學系(2010).
[25]Z. Z. Zhong, D. E. Schuele, W. L. Gordon, K. J. Adamic, and R. B. Akins, “Dielectric properties of a PMMA/E7 polymer-dispersed liquid crystal,” J. Polym. Sci. 30, 1443-1449 (1992).
[26]K. Qvortrup, K. M. Taveras, O. Thastrup, and T. E. Nielsen, “Chemical synthesis on SU-8,” Chem. Commun. 47, 1309–1311 (2011).
[27]https://kayakuam.com/wp-content/uploads/2019/09/SU-8-TF-6000.Data-Sheet.v2-3.18.pdf
[28]A. Olziersky, P. Barquinha, A. Vilà, L. Pereira, G. Gonçalves, E. Fortunato, R. Martins, and J. R. Morante1, “Insight on the SU-8 resist as passivation layer for transparent Ga2O3–In2O3–ZnO thin-film transistors,” J. Appl. Phys. 108, 64505 (2010).
[29]P. Golvari and S. M. Kuebler, “Fabrication of Functional Microdevices in SU-8 by Multi-Photon Lithography,” Micromachines 12, 472 (2021).
[30]F. Yakuphanoglu, M. Okutan, O. Koysal, S.-M. Ahn, and S. R. Keum, “Dielectric anisotropy, and diffraction efficiency properties of a doped nematic liquid crystal.” Dyes Pigm. 76, 721-725 (2008).
[31]C. J. Hsu, B. P. Singh, P. Selvaraj, M. Antony, R. Manohar, and C. Y. Huang, “Superior improvement in dynamic response of liquid crystal lens using organic and inorganic nanocomposite,” Sci. Rep. 11, 17349 (2021).
[32]C. J. Hsu, Paul C.-P. Chao, and Y. Y. Kao, “A thin multi-ring negative liquid crystal lens enabled by high-κ dielectric material,” Microsyst. Technol. 17, 923–929 (2011).
指導教授 鄭恪亭(Ko-Ting Cheng) 審核日期 2022-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明