參考文獻 |
[1] C. A. Janeway等原著 ; 楊志元等編譯,免疫生物學,藝軒圖書發行,民國九十一年。
[2] 汪蕙蘭,護用微生物免疫學,五南圖書出版公司印行。
[3] 呂維哲,模路類神經網路為架構之遙測影像分類器設計,國立中央大學資訊工程研究所碩士論文,民國九十一年。
[4] 郭家豪,背光影像補償及色彩減量之研究國立中央大學資訊工程研究所碩士論文,民國九十二年。
[5] S. A. and M. S. Lan, “A method for fuzzy rules extraction directly from numerical data and its application to pattern classification,” IEEE Trans. on Fuzzy Systems, vol. 3, no.1, pp. 18–28, 1995.
[6] C. L. Blake and C. J. Merz, “UCI repository of machine learning databases,”http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998.
[7] J. C. Bezdek, Fuzzy mathematics in pattern classification, Ph.D Thesis, Cornell University, 1973.
[8] L. N. de Castro and F. J. Von Zuben, “Artificial immune systems: part I – basic theory and applications”, Technical Report – RT DCA 01/99, pp. 1-95, 1999.
[9] L. N. de Castro and F. J. Von Zuben, “Artificial immune systems: part II – a survey of applications”, Technical Report – RT DCA 02/00, pp. 1-65, 2000.
[10] G. A. Carpenter, S. Grossberg, N. Markuzon, J.H. Reynolds, and D.B. Rosen, “Fuzzy ARTMAP: a neural network architecture for incremental supervised learning of analog multidimensional maps,” IEEE Trans. on Neural Networks, vol. 3, pp. 698-713, 1992.
[11] J. Caeter, “The immune system as a model for pattern recognition and classification,” Journal of American Medical Informatics Association, vol. 7, no. 1, pp. 28-41, 2000.
[12] Y. Deng, B. S. Manjunath and Hyundoo Shin. Color image segmentation. IEEE Computer Society Conference on Computer Vision and Pattern, 2:446-451,1999
[13] D. Dasgupta, “Artificial neural networks and artificial immune systems: similarities and differences”, IEEE International Conference on Systems, Man, and Cybernetics, pp. 873-878, 1997.
[14] D. Dasgupta, “Immunity-based intrusion detection system: a general framework”, Proc .of the 22nd NISSC, 1999.
[15] D. Dasgupta, Artificial immune systems and their applications, Springer-Verlag, 1998.
[16] D. Dasgupta and S. Forrest, “Novelty detection in time series data using ideas from immunology,” The 5th International Conference on Intelligent Systems, pp. 82-87, 1996.
[17] J. E. Hunt and D. E. Cooke, “Learning using an artificial immune system”, Journal of Network and Computer Applications, vol. 19, pp. 189-212, 1996.
[18] R. A. Finan, A. T. Sapeluk, and R. I. Damper, “Comparison of multilayer and radial basis function neural networks for text-dependent speaker recognition” IEEE International Conference on Neural Networks, pp. 1992-1997, 1996
[19] B. Gabrys and A. Bargiela, " General fuzzy min-max neural network for clustering and classification," IEEE Trans. on Neural Networks, vol. 11, pp. 769-783, 2000.
[20] R. C. Gonazlez and R. E. woods, Digital image processing, 2nd. Addison-wesley, 1992.
[21] S. A. Hofmeyr and S. Forrest, “Architecture for an artificial immune system,” Evol. Comp., vol. 8, no. 4, pp. 443-473, 2000.
[22] S. Halgamuge and M. Glesner, “Neural networks in designing fuzzy systems for real world applications,” Fuzzy Sets and Systems, vol. 65, pp. 1-12, 1994.
[23] T. Haruki and K. Kikuchi, “Video camera system using fuzzy logic,” IEEE Transactions on Consumer Electronics,Vol.38, No.3 , pp.624-634, Aug. 1992.
[24] R. Hummel, “Image enhancement by histogram transformation,” Comp. Graph. Image Process., vol. 6, pp. 184-195, 1977.
[25] A. K. Jain, “Fundamentals of digital image processing,” Englewood Cliffs, NJ: Prentice-Hall, 1989.
[26] D. J. Ketcham, R. Lowe, and W. Weber, “Seminar on image processing,” in Real-Time Enhancement Techniques, 1976, pp. 1-6.Hughes Aircraft.
[27] Y. T. Kim, “Contrast enhancement using brightness preserving bi-his togram equalization,” IEEE Trans. Consumer Electron., vol. 43 , no. 1, pp. 1-8, Feb. 1997.
[28] T. K. Kim, J. K. Paik, and B. S. Kang, “ Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering,” IEEE Trans. on Consumer Electronics, vol. 44, no. 1, pp. 82-86, Feb. 1998.
[29] J. Y. Kim, L. S. Kim, and S. H. Hwang: “An advance contrast enhancement using partially overlapped sub-block histogram Equalization,” IEEE Tran. on Circuits and Systems for Video Technology, vol. 11, no. 4, pp. 475-484, April 2001.
[30] K. KrishnaKumar and J. Neidhoefer, “Immunized adaptive critics”, IEEE International Conference on Neural Networks, pp. 2283-2287, 1997.
[31] H. M. Kim and J. M. Mendel, “Fuzzy basis functions: comparisons with other basis functions,” IEEE Trans. on Fuzzy Systems, vol. 3, no. 2, pp. 158-168, 1995.
[32] N. Kasabov and B. Woodford, “Rule insertion and rule extraction from evolving fuzz neural networks: Algorithm and applications for building adaptive, intelligent expert systems,” Proc. of IEEE Int. Conf. Fuzzy Systems 9, vol. 3, Seoul, Korea, pp. 1406-1411, 1999.
[33] T. Kasuba, “Simplified Fuzzy Adaptive Resonance Theory Map”, AI Expert, pp. 18-25, Nov 1993.
[34] Y. W. Lin and S. U. Lee, “On the color image segmentation algorithm based on the thresholding and the fuzzy C-means techniques,” Pattern Recognition, vol. 23, no. 9, pp. 935-952, 1990.
[35] C. W. Le and Y. C. Shin, “Construction of fuzzy basis function networks using adaptive least squares method,” IFSA World Congress and 20th NAFIPS Int. Conf., pp. 2630-2635, 2001.
[36] T. S. Lim, W. Y. Loh, and Y. S. Shih, “Comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms,” Machine Learning, vol. 40, pp. 203-229, 2000.
[37] Y. Lin and G. A. Cunningham III, “A new approach to fuzzy-neural system modeling,” IEEE Trans. on Fuzzy Systems, vol. 3, pp. 190–197, 1995.
[38] K. J. Lang, and M. J. Witbrock, “Learning to tell two spirals apart,” in Proc. 1998 Connectionist Models Summer School, pp. 52-59, 1989.
[39] D. F. McCoy and V. Devarajan, “Artificial immune systems and aerial image segmentation,” IEEE International Conference on Systems, Man, and Cybernetics, pp. 867-872, 1997
[40] A. Morimura, K. Uomori, Y. Kitamura, A. Fujioka, J.Harada, S. Iwamura and M.Hirota, “A digital video camera system,” IEEE Transactions on Consumer Electronics, Vol. 36, No.4, pp.866-875, Nov. 1990
[41] M. Murakami and N. Honda, “An exposure control system of video cameras based on fuzzy logic using color information,” Proceedings of the Fifth IEEE International Conference on Fuzzy Systems, Vol. 3, 1996
[42] H. Meshref and H. VanLandingham, “Artificial immune systems: application to autonomous agents” IEEE International Conference on Systems, Man, and Cybernetics, pp. 61-66, 2000.
[43] J. Moody and C. J. Darken, “Fast learning in networks of locally tuned processing units,” Neural Computation, vol. 1, pp. 181-194, 1989.
[44] M. W. Mak, W. G. Allen and G.C. Sexton, “Speaker identification using radial basis functions”, Third International Conference on Artificial Neural Networks, pp. 138-142, 1993.
[45] V. Moonasar and G. K. Venayagamoorthy, “Speaker identification using a combination of different parameters as feature inputs to an artificial neural network classifier,” AFRICON999 IEEE, pp. 189-194, 1999.
[46] D. Nauck and R. Kruse, “A neuro-fuzzy method to learn fuzzy classification rules from data,” Fuzzy Sets Syst., vol. 89, no. 3, pp. 277–288, 1997.
[47] H. Narazaki and A. Ralescu, “An improved synthesis method for multilayered neural networks using qualitative knowledge,” IEEE Trans. on Fuzzy Systems, vol. 1, pp. 125–137, 1993.
[48] M. Russo, “Genetic fuzzy learning,” IEEE Trans. on Evol. Comput., vol. 4, pp. 259–273, Sept. 2000.
[49] M. Russo, “FuGeNeSys—a fuzzy genetic neural system for fuzzy modeling,” IEEE Trans. on Fuzzy Systems, vol. 6, pp. 373–388, 1998.
[50] A. Rizzi, F. M. F. Mascioli, and G. Martinelli, "Generalized min-max classifier," Proc. FUZZ-IEEE 2000, vol. 1, pp. 36-41, San Antonio, TX, May 2000.
[51] S. Shimizu, T. Kondo, T. Kohashi, M. Tsurata, and T. Komuro, “A new algorithm for exposure control based on fuzzy logic for video cameras,” IEEE Transactions on Consumer Electronics, Vol.38, No.3, pp.617-623, Aug. 1992.
[52] J. A. Stark, “Adaptive image contrast enhancement using generalizations of histogram equalization,” IEEE Tran. on Image Processing, vol. 9, no. 5, pp. 889-896, May 2000.
[53] P. K Simpson, “Fuzzy min-max neural networks,” in Proc. 1991 Int. Joint Conf. Neural Networks, pp. 1658-1669, Singapore, Nov. 18-21, 1991.
[54] P. K Simpson, “Fuzzy min-max neural networks─Part 1: Classification,” IEEE Trans. on Neural Networks, vol. 3, no. 5, pp.776-786, Sept. 1992.
[55] P. K Simpson, “Fuzzy min-max neural networks─Part 2: Clustering,” IEEE Trams. Fuzzy System, vol. 1, no. 32-45, Feb. 1993.
[56] V. T. Tom and G. J. Wolfe, “ Adaptive histogram equalization and its applications,” SPIE Applicat. Dig. Image Process., vol. 359, pp. 204-209, 1982.
[57] J. Timmis, M. Neal, and J. Hunt, “An artificial immune system for data analysis”, Biosystems, vol. 55, pp. 143-150, 2000.
[58] S. Paul and S. Kumar, “Subsethood-product fuzzy neural inference system (SuPFuNIS),” IEEE Trans. on Neural Networks, vol. 13, no. 3, pp. 578–599, 2002.
[59] A. Watkins and L. Boggess, “A new classifier based on resource limited artificial immune systems”, Proceedings of the 2002 Congress on Evolutionary Computation, vol. 2, pp. 1546–1551, 2002.
[60] L. X. Wang and J. M. Mendel, “Fuzzy basis functions, universal approximation, and orthogonal least-squares learning”, IEEE Trans. on Neural Networks vol. 3, no. 5, pp. 807-814, 1992.
[61] D. X. Zhong and H. Yan. “Color image segmentation using color space analysis and fuzzy clustering,” IEEE Signal Processing Society Workshop, 2:624-633. |