參考文獻 |
1. Gupta, V.K., et al., Chemical treatment technologies for waste-water recycling—an overview. RSC Advances, 2012. 2(16): p. 6380-6388.
2. 中華民國內政部營建署公開資訊. Available from: https://www.cpami.gov.tw/filesys/file/EMMA/109final.pdf.
3. 廢(污)水處理廠節能規劃與改善以工研院中興院區為例. Available from: https://reurl.cc/9G8XEO.
4. Martínez-Huitle, C.A. and L.S. Andrade, Electrocatalysis in wastewater treatment: recent mechanism advances. Quimica Nova, 2011. 34(5): p. 850-858.
5. Panizza, M. and G. Cerisola, Electro-Fenton degradation of synthetic dyes. Water research, 2009. 43(2): p. 339-344.
6. Xie, P., et al., Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nature communications, 2019. 10(1): p. 1-12.
7. Miracle, D.B. and O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Materialia, 2017. 122: p. 448-511.
8. Jien-Wei, Y., Recent progress in high entropy alloys. Ann. Chim. Sci. Mat, 2006. 31(6): p. 633-648.
9. Cantor, B., et al., Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 2004. 375: p. 213-218.
10. Yeh, J.W., et al., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced engineering materials, 2004. 6(5): p. 299-303.
11. George, E.P., D. Raabe, and R.O. Ritchie, High-entropy alloys. Nature reviews materials, 2019. 4(8): p. 515-534.
12. Zhang, W., P.K. Liaw, and Y. Zhang, Science and technology in high-entropy alloys. Science China Materials, 2018. 61(1): p. 2-22.
13. Rodriguez, J., Physical and chemical properties of bimetallic surfaces. Surface Science Reports, 1996. 24(7-8): p. 223-287.
14. Ding, Z.-B., et al., Theoretical studies of the work functions of Pd-based bimetallic surfaces. The Journal of Chemical Physics, 2015. 142(21): p. 214706.
15. Yang, C., et al., Effect of composition and distribution on structural and surface electronic properties of palladium–gold bimetallic nanoparticles: a density functional theory investigation. Theoretical Chemistry Accounts, 2015. 134(10): p. 1-8.
16. Nørskov, J., Theory nof chemisorption and heterogeneous catalysis. Physica B+ C, 1984. 127(1-3): p. 193-202.
17. Hammer, B. and J.K. Nørskov, Electronic factors determining the reactivity of metal surfaces. Surface science, 1995. 343(3): p. 211-220.
18. Xin, H., et al., Effects of d-band shape on the surface reactivity of transition-metal alloys. Physical Review B, 2014. 89(11): p. 115114.
19. Long, R., et al., Isolation of Cu atoms in Pd lattice: forming highly selective sites for photocatalytic conversion of CO2 to CH4. Journal of the American Chemical Society, 2017. 139(12): p. 4486-4492.
20. Wang, Z., et al., The cooperation effect in the Au–Pd/LDH for promoting photocatalytic selective oxidation of benzyl alcohol. Catalysis Science & Technology, 2018. 8(1): p. 268-275.
21. Li, Z., et al., Higher gold atom efficiency over Au-Pd/TS-1 alloy catalysts for the direct propylene epoxidation with H2 and O2. Applied Surface Science, 2019. 497: p. 143749.
22. Stamenkovic, V.R., et al., Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability. science, 2007. 315(5811): p. 493-497.
23. Yao, Y., et al., Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts. Science advances, 2020. 6(11): p. eaaz0510.
24. Xin, Y., et al., High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities. ACS Catalysis, 2020. 10(19): p. 11280-11306.
25. Zhang, Y., et al., Microstructures and properties of high-entropy alloys. Progress in materials science, 2014. 61: p. 1-93.
26. Yeh, J.-W., Alloy design strategies and future trends in high-entropy alloys. Jom, 2013. 65(12): p. 1759-1771.
27. Wang, R., et al., Effect of lattice distortion on the diffusion behavior of high-entropy alloys. Journal of Alloys and Compounds, 2020. 825: p. 154099.
28. Tong, C.-J., et al., Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A, 2005. 36(4): p. 881-893.
29. Tsai, M.-H., J.-W. Yeh, and J.-Y. Gan, Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon. Thin Solid Films, 2008. 516(16): p. 5527-5530.
30. Tsai, K.-Y., M.-H. Tsai, and J.-W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 2013. 61(13): p. 4887-4897.
31. Chang, H.-W., et al., Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component(AlCrMoSiTi)N coatings. Surface and Coatings Technology, 2008. 202(14): p. 3360-3366.
32. Rogachev, A., et al., Structure and properties of equiatomic CoCrFeNiMn alloy fabricated by high-energy ball milling and spark plasma sintering. Journal of Alloys and Compounds, 2019. 805: p. 1237-1245.
33. Zhou, Y., et al., Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Applied physics letters, 2007. 90(18): p. 181904.
34. Li, C., et al., Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys. Journal of Alloys and Compounds, 2009. 475(1-2): p. 752-757.
35. Rao, Z., et al., Unveiling the mechanism of abnormal magnetic behavior of FeNiCoMnCu high-entropy alloys through a joint experimental-theoretical study. Physical Review Materials, 2020. 4(1): p. 014402.
36. Zhao, R.-F., et al., CoCrxCuFeMnNi high-entropy alloy powders with superior soft magnetic properties. Journal of Magnetism and Magnetic Materials, 2019. 491: p. 165574.
37. Lv, Z., et al., Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions. Scientific reports, 2016. 6(1): p. 1-11.
38. Yang, Y., et al., Metal surface and interface energy electrocatalysis: fundamentals, performance engineering, and opportunities. Chem, 2018. 4(9): p. 2054-2083.
39. Shao, Q., P. Wang, and X. Huang, Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Advanced Functional Materials, 2019. 29(3): p. 1806419.
40. Zhang, G., et al., High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2018. 279: p. 19-23.
41. Yao, Y., et al., Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science, 2018. 359(6383): p. 1489-1494.
42. Chen, Y., et al., Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films. Nature communications, 2016. 7(1): p. 1-9.
43. Yao, Y., et al., High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery. Science, 2022. 376(6589): p. eabn3103.
44. Kube, S.A. and J. Schroers, Metastability in high entropy alloys. Scripta Materialia, 2020. 186: p. 392-400.
45. Cui, M., et al., Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition. Science advances, 2022. 8(4): p. eabm4322.
46. Feng, J., et al., Unconventional alloys confined in nanoparticles: building blocks for new matter. Matter, 2020. 3(5): p. 1646-1663.
47. Gao, S., et al., Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis. Nature communications, 2020. 11(1): p. 1-11.
48. Chen, Y., et al., Synthesis of monodisperse high entropy alloy nanocatalysts from core@shell nanoparticles. Nanoscale Horizons, 2021. 6(3): p. 231-237.
49. Yang, Y., et al., Aerosol synthesis of high entropy alloy nanoparticles. Langmuir, 2020. 36(8): p. 1985-1992.
50. Kusada, K., D. Wu, and H. Kitagawa, New Aspects of Platinum Group Metal‐Based Solid‐Solution Alloy Nanoparticles: Binary to High‐Entropy Alloys. Chemistry–A European Journal, 2020. 26(23): p. 5105-5130.
51. Wu, D., et al., Platinum-group-metal high-entropy-alloy nanoparticles. Journal of the American Chemical Society, 2020. 142(32): p. 13833-13838.
52. Glasscott, M.W., et al., Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nature communications, 2019. 10(1): p. 1-8.
53. Mori, K., et al., Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation. Nature Communications, 2021. 12(1): p. 1-11.
54. Löffler, T., et al., Discovery of a multinary noble metal–free oxygen reduction catalyst. Advanced Energy Materials, 2018. 8(34): p. 1802269.
55. Löffler, T., et al., Design of complex solid‐solution electrocatalysts by correlating configuration, adsorption energy distribution patterns, and activity curves. Angewandte Chemie International Edition, 2020. 59(14): p. 5844-5850.
56. Batchelor, T.A., et al., Complex‐Solid‐Solution Electrocatalyst Discovery by Computational Prediction and High‐Throughput Experimentation. Angewandte Chemie International Edition, 2021. 60(13): p. 6932-6937.
57. Ludwig, A., Discovery of new materials using combinatorial synthesis and high-throughput characterization of thin-film materials libraries combined with computational methods. NPJ Computational Materials, 2019. 5(1): p. 1-7.
58. Waag, F., et al., Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles. RSC advances, 2019. 9(32): p. 18547-18558.
59. Qiao, H., et al., Scalable Synthesis of High Entropy Alloy Nanoparticles by Microwave Heating. ACS nano, 2021. 15(9): p. 14928-14937.
60. Yao, Y., Q. Dong, and L. Hu, Overcoming immiscibility via a milliseconds-long “shock” synthesis toward alloyed nanoparticles. Matter, 2019. 1(6): p. 1451-1453.
61. Yao, Y., et al., Extreme mixing in nanoscale transition metal alloys. Matter, 2021. 4(7): p. 2340-2353.
62. Li, T., et al., Denary oxide nanoparticles as highly stable catalysts for methane combustion. Nature Catalysis, 2021. 4(1): p. 62-70.
63. Seo, D.H., et al., Single-step ambient-air synthesis of graphene from renewable precursors as electrochemical genosensor. Nature communications, 2017. 8(1): p. 1-9.
64. Wang, J. and S. Wang, Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism. Chemical Engineering Journal, 2020. 401: p. 126158.
65. Barbusiński, K., Fenton reaction-controversy concerning the chemistry. Ecological Chemistry and Engineering. S, 2009. 16(3): p. 347-358.
66. Huston, P.L. and J.J. Pignatello, Degradation of selected pesticide active ingredients and commercial formulations in water by the photo-assisted Fenton reaction. Water Research, 1999. 33(5): p. 1238-1246.
67. Cui, L., et al., Cu/CuFe2O4 integrated graphite felt as a stable bifunctional cathode for high-performance heterogeneous electro-Fenton oxidation. Chemical Engineering Journal, 2021. 420: p. 127666.
68. Krumova, K. and G. Cosa, Overview of reactive oxygen species. 2016.
69. Kim, D.-h., et al., Arsenite oxidation initiated by the UV photolysis of nitrite and nitrate. Environmental science & technology, 2014. 48(7): p. 4030-4037.
70. Lian, L., et al., Kinetic study of hydroxyl and sulfate radical-mediated oxidation of pharmaceuticals in wastewater effluents. Environmental science & technology, 2017. 51(5): p. 2954-2962.
71. Lee, W., et al., Mechanistic and kinetic understanding of the UV254 photolysis of chlorine and bromine species in water and formation of oxyhalides. Environmental Science & Technology, 2020. 54(18): p. 11546-11555.
72. Liu, Y., et al., Role of the propagation reactions on the hydroxyl radical formation in ozonation and peroxone (ozone/hydrogen peroxide) processes. water research, 2015. 68: p. 750-758.
73. Yang, J., et al., Degradation of p-nitrophenol on biochars: role of persistent free radicals. Environmental science & technology, 2016. 50(2): p. 694-700.
74. Kozmér, Z., et al., The influence of radical transfer and scavenger materials in various concentrations on the gamma radiolysis of phenol. Radiation Physics and Chemistry, 2016. 124: p. 52-57.
75. Li, X., et al., The inhibition effect of tert-butyl alcohol on the TiO2 nano assays photoelectrocatalytic degradation of different organics and its mechanism. Nano-Micro Letters, 2016. 8(3): p. 221-231.
76. Ruan, M., et al., Electrochemical two-electron oxygen reduction reaction (ORR) induced aerobic oxidation of α-diazoesters. Chemical Communications, 2022.
77. Zhu, M., et al., Photochemical reactions between 1, 4-benzoquinone and O2•−. Environmental Science and Pollution Research, 2020. 27(25): p. 31289-31299.
78. Mathew, K., et al., High-throughput computational X-ray absorption spectroscopy. Scientific data, 2018. 5(1): p. 1-8.
79. Yang, J.X., et al., Rapid fabrication of high-entropy ceramic nanomaterials for catalytic reactions. ACS nano, 2021. 15(7): p. 12324-12333.
80. Mikheev, Y.A., L. Guseva, and Y.A. Ershov, Transformations of methyl orange dimers in aqueous–acid solutions, according to UV–Vis spectroscopy data. Russian Journal of Physical Chemistry A, 2017. 91(10): p. 1896-1906.
81. Cao, P., et al., Selective electrochemical H2O2 generation and activation on a bifunctional catalyst for heterogeneous electro-Fenton catalysis. Journal of hazardous materials, 2020. 382: p. 121102.
82. Cui, L., et al., Cogeneration of H2O2 and OH via a novel Fe3O4/MWCNTs composite cathode in a dual-compartment electro-Fenton membrane reactor. Separation and Purification Technology, 2020. 237: p. 116380.
83. Zhou, X., et al., Enhanced degradation of triclosan in heterogeneous E-Fenton process with MOF-derived hierarchical Mn/Fe@PC modified cathode. Chemical Engineering Journal, 2020. 384: p. 123324.
84. Zhao, H., et al., Electro-Fenton oxidation of pesticides with a novel Fe3O4@ Fe2O3/activated carbon aerogel cathode: high activity, wide pH range and catalytic mechanism. Applied Catalysis B: Environmental, 2012. 125: p. 120-127.
85. Sheng, H., et al., Stable and selective electrosynthesis of hydrogen peroxide and the electro-Fenton process on CoSe2 polymorph catalysts. Energy & Environmental Science, 2020. 13(11): p. 4189-4203. |