參考文獻 |
[1] D. F. Williams, “Implantable prostheses”, Physics in Medicine & Biology, Vol. 25,1980, pp. 611-636.
[2] M. P. Staiger, A. M. Pietak, J. Huadmai and G. Dias, “Magnesium and its alloy as orthopedic biomaterials: A review”, Biomaterials, Vol. 27, 2006, pp. 1728-1734.
[3] Y. Xin, K. Huo, H. Tao, G. Tang and Paul K. Chu, “Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment”, Acta Biomaterialia, Vol. 4, 2008, pp. 2008-2018.
[4] D. M. Miskovic, K. Pohl, N. Birbilis, K. J. Laws and M. Ferry, “Examining the elemental contribution towards the biodegradation of Mg-Zn-Ca ternary metallic glasses”, Journal of Materials Chemistry B, Vol. 4, 2016, pp. 2679-2690.
[5] P. C. Wong, “Development of biodegradable Mg-Zn-Ca metallic glass for the application of orthopedic implant”, unpublished doctoral dissertation, National Yang-Ming University, 2017, pp.9-19.
[6] Q. F. Li, H. R. Weng, Z. Y. Suo, Y. L. Ren, X. G. Yuan and K. Q. Qiu, “Microstructure and mechanical properties of bulk Mg-Zn-Ca amorphous alloys and amorphous matrix composites”, Materials Science and Engineering A, Vol. 487, 2008, pp. 301-308.
[7] S. Kujala, J. Ryhänen, A. Danilov, and J. Tuukkanen, "Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel–titanium bone graft substitute," Biomaterials, vol. 24, no. 25, 2003, pp. 4691-4697.
[8] T. B. Matias, V. Roche, R. P. Nogueira, G. H. Asato, C. S. Kiminami, C. Bolfarini, W. J. Botta and A. M. Jorge, “Mg-Zn-Ca amorphous alloys for application as temporary implant: Effect of Zn content of the mechanical and corrosion properties”, Materials and Design, Vol. 110, 2016, pp. 188-195.
[9] A. C. Lund and Christopher A. Schuh, “Topological and chemical arrangement of binary alloys during severe deformation”, Journal of Applied Physics, Vol. 95, 2004, pp. 4815-4822.
[10] 吳學陞,新興材料-塊狀金屬玻璃金屬材料,工業材料,第 149 期,1999年。
[11] A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Materialia, Vol. 48, 2000, pp. 279-306.
[12] J. Kramer, “Amorphous Ferromagnetic in Iron-Carbon-Phosphorus Alloys”, Journal of Applied Physics, vol. 19, 1934, pp. 37-39.
[13] A. Brenner, D. E. Couch, E. K. Williams, Journal of research of the National Bureau of Standards, vol. 44, 1950, pp. 109-111.
[14] W. Klement, R. Willens and P. Duwez, “Non-crystalline Structure in Solidified Gold-Silicon Alloys”, Nature Materials, vol. 187, 1960, pp. 869-870.
[15] D. Turnbull, “Phase Changes”, Solid State Physics, vol. 3, 1956, pp. 225-227.
[16] D. Turnbull, “Amorphous solid formation and interstitial solution behavior in metallic alloy system”, Journal of Physics, vol. 35, 1974, pp. 1-10.
[17] D. R. Uhlmann, J. F. Hays and Turnbull, “The effect of high pressure on crystallization kinetics with special reference to fused silica”, Physics and Chemistry of Glasses, vol. 7, 1966, pp. 159-161.
[18] H. A. Davies, “The formation of metallic glass”, Physics and Chemistry of Glasses, vol. 17, 1976, pp. 159-160.
[19] H. S. Chen and C. E. Miller, “A rapid quenching technique for the preparation of thin uniform films of amorphous solids”, Review of Scientific Instruments, Vol. 41, 1970, pp. 1237-1238.
[20] H. H. Liebermann and C. D. Graham, “Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions”, IEEE Transactions on Magnetics, Vol. 6, 1976, pp. 921-923.
[21] M. C. Narasimhan, “Continuous casting method for metallic strips”, 1980, pp. 142-146.
[22] A. Inoue, T. Zhang and T. Masumoto, “Al–La–Ni amorphous alloys with a wide supercooled liquid region”, Materials Transactions, JIM, Vol. 30, 1989, pp. 965-972.
[23] T. Zhang, A. Inoue and T. Masumoto, “Amorphous Zr-Al-TM (TM = Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K”, Materials Transactions, JIM, Vol. 32, 1991, pp. 1005-1010.
[24] A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, “Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method”, Materials Transactions, JIM, Vol. 32, 1991, pp. 609-616.
[25] A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates (overview)”, Materials Transactions, JIM, Vol. 36, 1995, pp. 866-875.
[26] H. C. Yim, “Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites”, Scripta Materialia, vol.45, 2001, pp. 1039-1045.
[27] Y. K. Xu and J. Xu, “Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites”, Scripta Materialia, vol. 49, 2003, pp. 843-848.
[28] H. Ma, L. L. Shi, J. Xu, Y. Li and E. Ma, “Discovering inch-diameter metallic glasses in three-dimensional composition space”, Applied Physics Letters, Vol. 87, 2005, pp. 181915-1-4.
[29] D. G. Pan, H. F. Zhang, A. M. Wang and Z. Q. Hu, “Enhanced plasticity in Mg-based bulk metallic glass composite reinforced with ductile Nb particles”, Applied Physics Letters, Vol. 89, 2006, pp. 261904-1-4.
[30] B. Zberg, Peter J. Uggowitzer and Jorg F. Loffler, “MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants”, Nature Materials, Vol. 8, 2009, pp. 887-891.
[31] R. W. Cahn, P. Hassen and E.J. Kramer, Materials Science and Technology, Vol. 9, New York, USA, 1991, pp.90-92.
[32] W. Paul, G. A. N. Connell and R. J. Temkin, “Amorphous germanium I. A model for the structural and optical properties”, Advances in Physics, Vol. 22, 1973, pp. 531-580.
[33] K. L. Chapra, “Thin film phenomena”, McGraw-Hill, New York, 1969, pp.850-852.
[34] A. Peker and W. L. Johnson, “A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5”, Applied Physics Letters, Vol. 63, 1993, pp. 2342-2344.
[35] C. R. M. Afonso, C. Bolfarini, C. S. Kiminami, N. D. Bassim, M. J. Kaufman, M. F. Amateau, T. J. Eden and J. M. Galbraith, “Amorphous phase formation during spray forming of Al84Y3Ni8Co4Zr1 alloy”, Journal of Non-Crystalline Solids, Vol. 284, 2001, pp. 134-138.
[36] H. S. Chen and C. E. Miller, “A rapid quenching technique for the preparation of thin uniform films of amorphous solids”, Review of Scientific Instruments, Vol. 41, 1970, pp. 1237-1238.
[37] H. H. Liebermann and C. D. Graham, “Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions”, IEEE Transactions on Magnetics, Vol. 6, 1976, pp. 921-923.
[38] M. C. Narasimhan, “Continuous casting method for metallic strips”, 1980, pp.142.
[39] 許樹恩、吳泰伯著,X 光繞射原理與材料結構分析,中國材料科學學會,1996 年。
[40] A. S. Argon, “Plastic deformation in metallic glasses”, Acta Metallurgica, Vol. 27, 1979, pp. 47-58.
[41] F. Spaepen, “A microscopic mechanism for steady state inhomogeneous flow in metallic glasses”, Acta Metallurgica, Vol. 25, 1977, pp. 407-415.
[42] A. Inoue, “Bulk amorphous alloys practical characteristics and applications, institute for material research”, Tohoku University, Sendai, Japan, 1999, pp.307-314.
[43] 顧宜,複合材料,新文京開發出版公司,1992 年。
[44] C. W. Chu, J. S. C. Jang, S. M. Chiu and J. P. Chu, “Study of the characteristics and corrosion behavior for the Zr-based metallic glass thin film fabricated by pulse magnetron sputtering process”, Thin Solid Films, Vol. 517, 2009, pp. 4930-4933.
[45] P. G. Debenedetti and F. H. Stillinger, “Supercooled liquids and the glass transition”, Nature, Vol. 410, 2001, pp. 259-267.
[46] H. S. Chen and D. Turnbull, “Evidence of a glass–liquid transition in a Gold-Germanium-Silicon alloy”, The Journal of Chemical Physics, Vol. 48, 1968, pp. 2560-2571.
[47] Z. P. Lu and C. T. Liu, “A new glass-forming ability criterion for bulk metallic glasses”, Acta Materialia, Vol. 50, 2002, pp. 3501-3512.
[48] X. H. Du, C. Huang, C.T. Liu and Z.P. Liu, “New criterion of glass forming ability for bulk metallic glasses”, Journal of Applied Physics, Vol. 101, 2007, pp. 086108.
[49] L. J. Chang, J. S. C. Jang, B. C. Yang and J. C. Huang, “Crystallization and thermal stability of the Mg65Cu25−xGd10Agx (x = 0 - 10) amorphous alloys”, Journal of Alloys and Compounds, Vol. 434-435, 2007, pp. 221-224.
[50] L. J. Chang, G. R. Fang, J. S. C. Jang, I. S. Lee, J. C. Huang and C. Y. A. Tsao,Hot workability of the Mg65Cu20Y10Ag5 amorphous/ nano-ZrO2 composite alloy within supercooled temperature region”, Key Engineering Materials, Vol. 351, 2007, pp. 103-108.
[51] J. S. C. Jang and J. Y. Ciou, “Enhanced mechanical performance of Mg metallic glass with porous Mo particles”, Applied Physics Letters, Vol. 92, 2008, pp. 011930-1-4.
[52] P. C. Wong, “Mechanical properties of magnesium based bulk metallic glass composites with the Ti particles”, unpublished Master′s thesis, National Central University, 2012, pp.25-29.
[53] M. S. Suei, “Influences of Ta and Ti-6Al-V particle Additions on the Mechanical Properties of MgZnCa-Based Amorphous Alloy”, unpublished Master′s thesis, National Central University, 2015.
[54] R. Busch, J. Schroers, W. H. Wang, “Thermodynamics and kinetics of bulk metallic glass”, MRS Bulletin, Vol. 32, 2007, pp. 620-623.
[55] M. Takagi, Y. Kawamura, T. Imura, J. Nishigaki, H. Saka, “Mechanical properties of amorphous alloy compacts prepared by different consolidation techniques”, Metallic Glass, Journal of Materials Science, Vol. 27, 1992, pp. 817-824.
[56] A. Kato, T. Suganuma, H. Horikiri, Y. Kawamura, A. Inoue, T. Masumoto, “Consolidation and mechanical properties of atomized Mg-based amorphous powders”, Materials Science and Engineering A, Vol. 179 ,1994, pp. 112-117.
[57] Y. Kawamura, H. Kato, A. Inoue, T. Masumoto, “Full strength compacts by extrusion of glassy metal powder at the supercooled liquid state”, Applied Physics Letters, Vol. 67,1995, pp. 2008-2010.
[58] Y. Kawamura, H. Kato, A. Inoue, T. Masumoto, “Effects of extrusion conditions on mechanical properties in Zr-Al-Ni-Cu glassy powder compacts”, Materials Science and Engineering A, Vol. 219 ,1996, pp. 39-43.
[59] Y. Kawamura, H. Kato, A. Inoue, T. Masumoto, “Workability of the supercooled liquid in the Zr65Al10Ni10Cu15 bulk metallic glass”, Acta Materialia, Vol. 46 ,1998, pp. 253-263.
[60] D. Sordelet, E. Rozhkova, P. Huang, P. Wheelock, M. Besser, M. Kramer, M. Calvo-Dahlborg, U. Dahlborg, “Synthesis of Cu47Ti34Zr11Ni8 bulk metallic glass by warm extrusion of gas atomized powders”, Journal of Materials Research, Vol. 17 ,2002, pp. 186-198.
[61] S. Y. Lee, T. S. Kim, J. K. Lee, H. J. Kim, D. Kim, J. Bae, “Effect of powder size on the consolidation of gas atomized Cu54Ni6Zr22Ti18 amorphous powders”, Intermetallics, Vol. 14 ,2006, pp. 1000-1004.
[62] R. Martinez, G. Kumar, J. Schroers, “Hot rolling of bulk metallic glass in its supercooled liquid region”, Scripta Materialia, Vol. 59 ,2008, pp. 187-190.
[63] M. H. Lee, J. S. Park, J. H. Kim, W. T. Kim, D. H. Kim, “Synthesis of bulk amorphous alloy and composites by warm rolling process”, Materials Letters, Vol. 59 ,2005, pp. 1042-1045.
[64] H. J. Kim, J. K. Lee, T. S. Kim, J. C. Bae, E. S. Park, M. Y. Huh, D. H. Kim, “Mechanical behavior of Cu54Ni6Zr22Ti18 bulk amorphous alloy during multi-pass warm rolling”, Materials Science and Engineering A, Vol. 449-451 ,2007, pp. 929-933.
[65] J. Schroers, “Processing of bulk metallic glass, Advanced Materials”, Vol.22 ,2010, pp. 1566-1597.
[66] B. Świeczko-Żurek, “Porous Materials Used as Inserted Bone Implants”, Advanced Materials Science, vol. 9, no. 2, 2009.
[67] G. F. Ma et al., “Increased collagen degradation around loosened total hip replacement implants”, Arthritis & Rheumatology, vol. 54, no. 9 ,2006, pp. 2928–2933.
[68] L. Salvo, G. Martin, M. Suard, A. Marmottant, R. Dendievel, and J. J. Blandin, “Processing and structures of solids foams”, Comptes Rendus Physique, vol. 15, no. 8–9 ,2014, pp. 662–673.
[69] C. Huang et al., "Electrochemical and biocompatibility response of newly developed TiZr-based metallic glasses," Materials Science and Engineering: C, vol. 43 ,2014, pp. 343-349.
[70] M. Calin et al., "Designing biocompatible Ti-based metallic glasses for implant applications," Materials Science and Engineering: C, vol. 33, no. 2 ,2013, pp. 875-883. |