博碩士論文 109329019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:3.12.155.183
姓名 沈朝昱(Chao-Yu Shen)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 多孔隙鎂基塊狀非晶質合金之製作及其性質之研究
(Fabrication and properties study of porous Mg-based bulk amorphous alloy)
相關論文
★ (Zr48Cu36Al8Ag8)99.25Si0.75複材高溫塑性行為之研究★ 具鉭顆粒散布強化之鐵基金屬玻璃複材的合成及其性質之研究
★ 鋯摻雜對SrCe1-xZrxO3-δ (0.0≦x≦0.5) 氫傳輸透膜微結構與性質影響之研究★ 適用於生物駐植物之無毒鈦基金屬玻璃之合金設計
★ 利用急冷旋鑄及真空熱壓製備Zn4Sb3奈米/微米晶塊材之熱電性質與機械性質研究★ 鐵顆粒添加對鎂鋅鈣非晶質合金熱性質及機械性質影響之研究
★ Ba0.8Sr0.2Ce0.8-x-yZryInxY0.2O3-δ(x=0.05,0.1 y=0,0.1)固態氧化物燃料電池電解質材料燒 結能力、微結構與其導電性質之研究★ 鋯基與鈦基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質改善之研究
★ 添加鉭對鋯鋁鈷塊狀非晶質合金機械性質影響之研究★ 鐵基塊狀金屬玻璃熱塑成形性之研究
★ 鋯基金屬玻璃薄膜對鎂基塊狀金屬玻璃複材之機械性質與抗腐蝕性提升之研究★ 微量鉭顆粒添加對鋯-銅-鋁-鈷塊狀非晶質合金鋯銅析出相的演變及機械性質之影響
★ 雷射積層製造用鐵基金屬玻璃粉末與其工件性質之研究★ 鐵基金屬玻璃破裂韌性提升 及其積層製造用粉體製作之研究
★ 質子傳輸型固態氧化物燃料電池之陽極支撐電解質材料製作及其性能之研究★ 生物相容性鈦基金屬玻璃合金粉末用於積層製造之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-31以後開放)
摘要(中) 本研究透過真空熱壓製程將鎂基非晶質合金粉體和空間支架顆粒的混合物
製作成具有開放孔隙的鎂基非晶質合金多孔材,藉由控制氯化鈉空間支架顆粒的體積分率,設計出真實孔隙率介於 2 % 到 32.2 % 之間的多孔隙鎂基非晶質合金熱壓試片,其孔隙孔徑落在 75 到 300µm 之間,與人體的骨骼結構相似。
利用 X 光繞射儀分析熱壓試片,顯示鎂基非晶質合金粉體經過真空熱壓製程
後仍保有其非晶質的結構。接著利用示差掃描熱分析儀(DSC)對熱壓試片進行分析,結果顯示空間支架顆粒並不影響其原本的熱性質。將多孔隙鎂基非晶質合金熱壓試片的橫截面利用掃描式電子顯微鏡(SEM)與光學顯微鏡(OM)觀察,發現孔隙大小落在 75 到 300µm 之間,與空間支架顆粒的孔徑大小相符合。當孔隙率從2%逐漸提高到 32.2%時,鎂基非晶質合金熱壓試片的楊氏係數由原本的 15.7GPa降至 4.1GPa,抗壓強度由原本的 406MPa 降至 87MPa,結果顯示可藉由孔隙率的多寡來調整鎂基非晶質合金多孔材的機械性質。電化學腐蝕試驗結果顯示,未含有空間支架顆粒的鎂基非晶質合金(2%)相較於多孔試樣具有較高的腐蝕電位 (-1.29 V)和較低的腐蝕電流密度(1.09×10-6 A/cm2
),具有較好的耐腐蝕性。
摘要(英) In this reaserch, a Mg-based bulk metallic glass foams (BMGFs) were fabricated by hot pressing process. The mixtures ratio of Mg-based amorphous powder and space holder, NaCl, particles were set from 2.0% to 32.2% volume fractions. The Mg-based BMGFs fabricated using the aforementioned space holders exhibited pore sizes ranging from 75 to 300 µm, which are similar to the pore sizes of human bones.
X-ray diffraction patterns revealed that the Mg-based BMGFs remained the amorphous after hot pressing. Mg-based BMGFs were analyzed by DSC and the results showed that the space holding particles did not affect their original thermal properties.
SEM and OM were used to observe the cross section of the porous Mg-based metallic glass hot-pressing sample, and it was found that the pores sizes ranging from 75 to 300 µm, which are similar to the pore sizes of space holder particles. Furthermore, when the porosity of the fabricated Mg-based BMGFs was gradually increased from 2.0% to 32.2%, considerable reductions were observed in their Young’s modulus (from 15.7 to 4.1 GPa, compressive strength (from 406 to 87 MPa), the desired mechanical properties can be obtained by adjusting the porosity. The results of the electrochemical corrosion test show that high corrosion resistance can be obtained by fabricating sample without spacer particles in porosity of 2 % with Ecorr of -1.29 V and Icorr of 1.09×10-6 A/cm2.
關鍵字(中) ★ 真空熱壓
★ 鎂基非晶質合金多孔材
★ 空間支架顆粒
關鍵字(英) ★ hot-pressing
★ Mg-based bulk metallic glass (BMG) foams
★ space holder particles
論文目次 摘要 I
Abstract II
致謝 III
總目錄 V
表目錄 VII
圖目錄 VIII
第一章 前言 1
1-1 緒論 1
1-2 研究動機 2
第二章 理論基礎 4
2-1 非晶質合金之概述 4
2-2 非晶質合金之發展歷程 4
2-3 非晶質合金實驗歸納法則 6
2-4 非晶質合金之製程 7
2-5 非晶質合金之特性 10
2-5-1 機械性質 10
2-5-2 耐腐蝕性與抗菌性 11
2-5-3 其他性質 11
2-6 非晶質合金之熱力學 12
2-6-1 非晶質之介穩態平衡 12
2-6-2 玻璃轉換溫度(Tg) 12
2-6-3 簡化玻璃轉化溫度(Trg) 13
2-6-4 過冷液相區(ΔTx) 13
2-6-5 γ值與 γm值 13
2-7 鎂基非晶質合金及其複材之沿革 14
2-8 非晶質合金的熱塑性成型 14
2-8-1 非晶質合金的熱塑性 15
2-8-2 熱塑性成型能力評估 15
2-8-3 熱塑性成型技術 16
2-9 多孔非晶質合金 17

第三章 實驗方法 27
3-1 鎂基非晶質合金製作 27
3-1-1 鎂基金屬塊材原料配製 27
3-1-2 鎂基金屬塊材製作 27
3-1-3 鎂基非晶質合金棒材製作 28
3-1-4 鎂基非晶質合金薄帶製作 29
3-2 多孔隙鎂基非晶質合金熱壓縮試片製作 30
3-2-1 鎂基非晶質合金粉體製作 30
3-2-2 鎂基非晶質合金粉體與空間支架顆粒之混合 30
3-2-3 熱壓縮試片製作 30
3-2-4 真實孔隙率 31
3-3 微結構分析 31
3-3-1 掃描式電子顯微鏡與光學顯微鏡 31
3-3-2 X光繞射分析 32
3-4 熱性質分析 32
3-5 機械性質測試 32
3-6 電化學腐蝕試驗 33
第四章 結果與討論 45
4-1 熱壓條件參數對鎂基非晶質合金熱壓試片的影響 45
4-2 空間支架的去除 46
4-3 真實孔隙率 46
4-4 X光繞射分析 47
4-5 多孔隙鎂基非晶質合金試片之截面觀察 47
4-6 非恆溫熱性質分析 48
4-7 機械性質之分析 49
4-8 電化學腐蝕試驗 50
第五章 結論 69
第六章 參考文獻 70
參考文獻 [1] D. F. Williams, “Implantable prostheses”, Physics in Medicine & Biology, Vol. 25,1980, pp. 611-636.
[2] M. P. Staiger, A. M. Pietak, J. Huadmai and G. Dias, “Magnesium and its alloy as orthopedic biomaterials: A review”, Biomaterials, Vol. 27, 2006, pp. 1728-1734.
[3] Y. Xin, K. Huo, H. Tao, G. Tang and Paul K. Chu, “Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment”, Acta Biomaterialia, Vol. 4, 2008, pp. 2008-2018.
[4] D. M. Miskovic, K. Pohl, N. Birbilis, K. J. Laws and M. Ferry, “Examining the elemental contribution towards the biodegradation of Mg-Zn-Ca ternary metallic glasses”, Journal of Materials Chemistry B, Vol. 4, 2016, pp. 2679-2690.
[5] P. C. Wong, “Development of biodegradable Mg-Zn-Ca metallic glass for the application of orthopedic implant”, unpublished doctoral dissertation, National Yang-Ming University, 2017, pp.9-19.
[6] Q. F. Li, H. R. Weng, Z. Y. Suo, Y. L. Ren, X. G. Yuan and K. Q. Qiu, “Microstructure and mechanical properties of bulk Mg-Zn-Ca amorphous alloys and amorphous matrix composites”, Materials Science and Engineering A, Vol. 487, 2008, pp. 301-308.
[7] S. Kujala, J. Ryhänen, A. Danilov, and J. Tuukkanen, "Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel–titanium bone graft substitute," Biomaterials, vol. 24, no. 25, 2003, pp. 4691-4697.
[8] T. B. Matias, V. Roche, R. P. Nogueira, G. H. Asato, C. S. Kiminami, C. Bolfarini, W. J. Botta and A. M. Jorge, “Mg-Zn-Ca amorphous alloys for application as temporary implant: Effect of Zn content of the mechanical and corrosion properties”, Materials and Design, Vol. 110, 2016, pp. 188-195.
[9] A. C. Lund and Christopher A. Schuh, “Topological and chemical arrangement of binary alloys during severe deformation”, Journal of Applied Physics, Vol. 95, 2004, pp. 4815-4822.
[10] 吳學陞,新興材料-塊狀金屬玻璃金屬材料,工業材料,第 149 期,1999年。
[11] A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Materialia, Vol. 48, 2000, pp. 279-306.
[12] J. Kramer, “Amorphous Ferromagnetic in Iron-Carbon-Phosphorus Alloys”, Journal of Applied Physics, vol. 19, 1934, pp. 37-39.
[13] A. Brenner, D. E. Couch, E. K. Williams, Journal of research of the National Bureau of Standards, vol. 44, 1950, pp. 109-111.
[14] W. Klement, R. Willens and P. Duwez, “Non-crystalline Structure in Solidified Gold-Silicon Alloys”, Nature Materials, vol. 187, 1960, pp. 869-870.
[15] D. Turnbull, “Phase Changes”, Solid State Physics, vol. 3, 1956, pp. 225-227.
[16] D. Turnbull, “Amorphous solid formation and interstitial solution behavior in metallic alloy system”, Journal of Physics, vol. 35, 1974, pp. 1-10.
[17] D. R. Uhlmann, J. F. Hays and Turnbull, “The effect of high pressure on crystallization kinetics with special reference to fused silica”, Physics and Chemistry of Glasses, vol. 7, 1966, pp. 159-161.
[18] H. A. Davies, “The formation of metallic glass”, Physics and Chemistry of Glasses, vol. 17, 1976, pp. 159-160.
[19] H. S. Chen and C. E. Miller, “A rapid quenching technique for the preparation of thin uniform films of amorphous solids”, Review of Scientific Instruments, Vol. 41, 1970, pp. 1237-1238.
[20] H. H. Liebermann and C. D. Graham, “Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions”, IEEE Transactions on Magnetics, Vol. 6, 1976, pp. 921-923.
[21] M. C. Narasimhan, “Continuous casting method for metallic strips”, 1980, pp. 142-146.
[22] A. Inoue, T. Zhang and T. Masumoto, “Al–La–Ni amorphous alloys with a wide supercooled liquid region”, Materials Transactions, JIM, Vol. 30, 1989, pp. 965-972.
[23] T. Zhang, A. Inoue and T. Masumoto, “Amorphous Zr-Al-TM (TM = Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K”, Materials Transactions, JIM, Vol. 32, 1991, pp. 1005-1010.
[24] A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, “Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method”, Materials Transactions, JIM, Vol. 32, 1991, pp. 609-616.
[25] A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates (overview)”, Materials Transactions, JIM, Vol. 36, 1995, pp. 866-875.
[26] H. C. Yim, “Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites”, Scripta Materialia, vol.45, 2001, pp. 1039-1045.
[27] Y. K. Xu and J. Xu, “Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites”, Scripta Materialia, vol. 49, 2003, pp. 843-848.
[28] H. Ma, L. L. Shi, J. Xu, Y. Li and E. Ma, “Discovering inch-diameter metallic glasses in three-dimensional composition space”, Applied Physics Letters, Vol. 87, 2005, pp. 181915-1-4.
[29] D. G. Pan, H. F. Zhang, A. M. Wang and Z. Q. Hu, “Enhanced plasticity in Mg-based bulk metallic glass composite reinforced with ductile Nb particles”, Applied Physics Letters, Vol. 89, 2006, pp. 261904-1-4.
[30] B. Zberg, Peter J. Uggowitzer and Jorg F. Loffler, “MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants”, Nature Materials, Vol. 8, 2009, pp. 887-891.
[31] R. W. Cahn, P. Hassen and E.J. Kramer, Materials Science and Technology, Vol. 9, New York, USA, 1991, pp.90-92.
[32] W. Paul, G. A. N. Connell and R. J. Temkin, “Amorphous germanium I. A model for the structural and optical properties”, Advances in Physics, Vol. 22, 1973, pp. 531-580.
[33] K. L. Chapra, “Thin film phenomena”, McGraw-Hill, New York, 1969, pp.850-852.
[34] A. Peker and W. L. Johnson, “A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5”, Applied Physics Letters, Vol. 63, 1993, pp. 2342-2344.
[35] C. R. M. Afonso, C. Bolfarini, C. S. Kiminami, N. D. Bassim, M. J. Kaufman, M. F. Amateau, T. J. Eden and J. M. Galbraith, “Amorphous phase formation during spray forming of Al84Y3Ni8Co4Zr1 alloy”, Journal of Non-Crystalline Solids, Vol. 284, 2001, pp. 134-138.
[36] H. S. Chen and C. E. Miller, “A rapid quenching technique for the preparation of thin uniform films of amorphous solids”, Review of Scientific Instruments, Vol. 41, 1970, pp. 1237-1238.
[37] H. H. Liebermann and C. D. Graham, “Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions”, IEEE Transactions on Magnetics, Vol. 6, 1976, pp. 921-923.
[38] M. C. Narasimhan, “Continuous casting method for metallic strips”, 1980, pp.142.
[39] 許樹恩、吳泰伯著,X 光繞射原理與材料結構分析,中國材料科學學會,1996 年。
[40] A. S. Argon, “Plastic deformation in metallic glasses”, Acta Metallurgica, Vol. 27, 1979, pp. 47-58.
[41] F. Spaepen, “A microscopic mechanism for steady state inhomogeneous flow in metallic glasses”, Acta Metallurgica, Vol. 25, 1977, pp. 407-415.
[42] A. Inoue, “Bulk amorphous alloys practical characteristics and applications, institute for material research”, Tohoku University, Sendai, Japan, 1999, pp.307-314.
[43] 顧宜,複合材料,新文京開發出版公司,1992 年。
[44] C. W. Chu, J. S. C. Jang, S. M. Chiu and J. P. Chu, “Study of the characteristics and corrosion behavior for the Zr-based metallic glass thin film fabricated by pulse magnetron sputtering process”, Thin Solid Films, Vol. 517, 2009, pp. 4930-4933.
[45] P. G. Debenedetti and F. H. Stillinger, “Supercooled liquids and the glass transition”, Nature, Vol. 410, 2001, pp. 259-267.
[46] H. S. Chen and D. Turnbull, “Evidence of a glass–liquid transition in a Gold-Germanium-Silicon alloy”, The Journal of Chemical Physics, Vol. 48, 1968, pp. 2560-2571.
[47] Z. P. Lu and C. T. Liu, “A new glass-forming ability criterion for bulk metallic glasses”, Acta Materialia, Vol. 50, 2002, pp. 3501-3512.
[48] X. H. Du, C. Huang, C.T. Liu and Z.P. Liu, “New criterion of glass forming ability for bulk metallic glasses”, Journal of Applied Physics, Vol. 101, 2007, pp. 086108.
[49] L. J. Chang, J. S. C. Jang, B. C. Yang and J. C. Huang, “Crystallization and thermal stability of the Mg65Cu25−xGd10Agx (x = 0 - 10) amorphous alloys”, Journal of Alloys and Compounds, Vol. 434-435, 2007, pp. 221-224.
[50] L. J. Chang, G. R. Fang, J. S. C. Jang, I. S. Lee, J. C. Huang and C. Y. A. Tsao,Hot workability of the Mg65Cu20Y10Ag5 amorphous/ nano-ZrO2 composite alloy within supercooled temperature region”, Key Engineering Materials, Vol. 351, 2007, pp. 103-108.
[51] J. S. C. Jang and J. Y. Ciou, “Enhanced mechanical performance of Mg metallic glass with porous Mo particles”, Applied Physics Letters, Vol. 92, 2008, pp. 011930-1-4.
[52] P. C. Wong, “Mechanical properties of magnesium based bulk metallic glass composites with the Ti particles”, unpublished Master′s thesis, National Central University, 2012, pp.25-29.
[53] M. S. Suei, “Influences of Ta and Ti-6Al-V particle Additions on the Mechanical Properties of MgZnCa-Based Amorphous Alloy”, unpublished Master′s thesis, National Central University, 2015.
[54] R. Busch, J. Schroers, W. H. Wang, “Thermodynamics and kinetics of bulk metallic glass”, MRS Bulletin, Vol. 32, 2007, pp. 620-623.
[55] M. Takagi, Y. Kawamura, T. Imura, J. Nishigaki, H. Saka, “Mechanical properties of amorphous alloy compacts prepared by different consolidation techniques”, Metallic Glass, Journal of Materials Science, Vol. 27, 1992, pp. 817-824.
[56] A. Kato, T. Suganuma, H. Horikiri, Y. Kawamura, A. Inoue, T. Masumoto, “Consolidation and mechanical properties of atomized Mg-based amorphous powders”, Materials Science and Engineering A, Vol. 179 ,1994, pp. 112-117.
[57] Y. Kawamura, H. Kato, A. Inoue, T. Masumoto, “Full strength compacts by extrusion of glassy metal powder at the supercooled liquid state”, Applied Physics Letters, Vol. 67,1995, pp. 2008-2010.
[58] Y. Kawamura, H. Kato, A. Inoue, T. Masumoto, “Effects of extrusion conditions on mechanical properties in Zr-Al-Ni-Cu glassy powder compacts”, Materials Science and Engineering A, Vol. 219 ,1996, pp. 39-43.
[59] Y. Kawamura, H. Kato, A. Inoue, T. Masumoto, “Workability of the supercooled liquid in the Zr65Al10Ni10Cu15 bulk metallic glass”, Acta Materialia, Vol. 46 ,1998, pp. 253-263.
[60] D. Sordelet, E. Rozhkova, P. Huang, P. Wheelock, M. Besser, M. Kramer, M. Calvo-Dahlborg, U. Dahlborg, “Synthesis of Cu47Ti34Zr11Ni8 bulk metallic glass by warm extrusion of gas atomized powders”, Journal of Materials Research, Vol. 17 ,2002, pp. 186-198.
[61] S. Y. Lee, T. S. Kim, J. K. Lee, H. J. Kim, D. Kim, J. Bae, “Effect of powder size on the consolidation of gas atomized Cu54Ni6Zr22Ti18 amorphous powders”, Intermetallics, Vol. 14 ,2006, pp. 1000-1004.
[62] R. Martinez, G. Kumar, J. Schroers, “Hot rolling of bulk metallic glass in its supercooled liquid region”, Scripta Materialia, Vol. 59 ,2008, pp. 187-190.
[63] M. H. Lee, J. S. Park, J. H. Kim, W. T. Kim, D. H. Kim, “Synthesis of bulk amorphous alloy and composites by warm rolling process”, Materials Letters, Vol. 59 ,2005, pp. 1042-1045.
[64] H. J. Kim, J. K. Lee, T. S. Kim, J. C. Bae, E. S. Park, M. Y. Huh, D. H. Kim, “Mechanical behavior of Cu54Ni6Zr22Ti18 bulk amorphous alloy during multi-pass warm rolling”, Materials Science and Engineering A, Vol. 449-451 ,2007, pp. 929-933.
[65] J. Schroers, “Processing of bulk metallic glass, Advanced Materials”, Vol.22 ,2010, pp. 1566-1597.
[66] B. Świeczko-Żurek, “Porous Materials Used as Inserted Bone Implants”, Advanced Materials Science, vol. 9, no. 2, 2009.
[67] G. F. Ma et al., “Increased collagen degradation around loosened total hip replacement implants”, Arthritis & Rheumatology, vol. 54, no. 9 ,2006, pp. 2928–2933.
[68] L. Salvo, G. Martin, M. Suard, A. Marmottant, R. Dendievel, and J. J. Blandin, “Processing and structures of solids foams”, Comptes Rendus Physique, vol. 15, no. 8–9 ,2014, pp. 662–673.
[69] C. Huang et al., "Electrochemical and biocompatibility response of newly developed TiZr-based metallic glasses," Materials Science and Engineering: C, vol. 43 ,2014, pp. 343-349.
[70] M. Calin et al., "Designing biocompatible Ti-based metallic glasses for implant applications," Materials Science and Engineering: C, vol. 33, no. 2 ,2013, pp. 875-883.
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2022-8-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明