參考文獻 |
[ASTM1] ASTM B918/B918M-17a, Standard Practice for Heat Treatment of Wrought Aluminum Alloy, (2017)
[ASTM2] ASTM G34-01, Standard Test Method for Exfoliation Corrosion Susceptibility in 2XXX and 7XXX Series Aluminum Alloys (EXCO Test) (2013)
[ASTM3] ASTM E8/E8M-16a, Standard Test Methods for Tension Testing of Metallic Materials, (2016)
[ASTM4] ASTM G129-00, Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking (2013)
[CHEN1] S. Chen, K. Chen, G. Peng, L. Jia, P. Dong, “Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy “, Materials & Design, Vol. 35, PP. 93-98, (2012)
[CHEN2] Z. Chen, Y. Mo, Z. Nie, “Effect of Zn Content on the Microstructure and Properties of Super-High Strength Al-Zn-Mg-Cu Alloys”, Metallurgical and Materials Transactions A, Vol. 44A, PP. 3910-3921 (2013)
[CHIU] Y. C. Chiu, K. T. Du, H. Y. Bor, G. H. Liu, S. L. Lee, “The effects of Cu, Zn and Zr on the solution temperature and quenching sensitivity of Al–Zn–Mg–Cu alloys”, Materials Chemistry and Physics, Vol. 247, PP. 5714-5723 (2020)
[DAV] J. R. Davis and Associates, “ASM Specialty Handbook: Aluminum and Aluminum Alloys”, ASM International Materials Park, pp.34-36(2007)
[DEI] R. Deiasi, P. N. Adler, “Calorimetric Studies of 7000 Series Aluminum Alloys:I”, Matrix Precipitate Characterization of 7075”, Metall. Trans. A, Vol.8A, PP.1177-1183 (1977)
[DEN] Y. L. Deng, L. Wan, Y. Y. Zhang, X. M. Zhang, “Influence of Mg content on quench sensitivity of Al–Zn–Mg–Cu aluminum alloys”, Journal of Alloys and Compounds, Vol. 509, PP.4636-4642 (2011)
[GAL]D. B. Gallardy, “Ballistic Evaluation of 7056 Aluminum”, US Army Research Laboratory (2017)
[GHO]K. S. Ghosh, K. Das and U. K. Chatterjee, Correlation of stress corrosion cracking behaviour with electrical conductivity and open circuit potential in Al-Li-Cu-Mg-Zr alloys, Materials and Corrosion, Vol. 58, No. 3, 2007
[GUY]Guyot, P., Cottignies, L. Precipitation kinetics, mechanical strength and electrical conductivity of AlZnMgCu alloys. Acta Mater. 1996, 44, 4161–4167.
[JIA1]J.T. Jiang, W.Q. Xiao, L. Yang, W.Z. Shao, S.J. Yuan, L. Zhen, Ageing behavior and stress corrosion cracking resistance of a non-isothermally aged Al–Zn–Mg–Cu alloy, Materials Science & Engineering A, Vol.605, pp.167-175(2014)
[JIA2]Jiang, J.T., Tang, Q.J., Zhang, K., Yuan, S.J., Zhen, L.,Non-isothermal ageing of an Al-8Zn-2Mg-2Cu alloy for enhanced properties, Journal of Materials Processing Technology (2015)
[KER]S. E. Kervee, P. Pourshayan, F. Nasrollahnezhad, S. K. Moghanaki, M. Kazeminezhad., R. E. Logé, S. Nobakht, Non-isothermal aging of a high-Zn-containing Al–Zn–Mg–Cu alloy: microstructure and mechanical properties, Material science and technology, Vol. 34, pp.688-697(2018)
[LEE]S.L.Lee, Engineering Materials Science Principles and Applications, pp. 279-281 (2016) (2016)
[LI1] H. Li, F. Cao, S. Guo, “Effects of Mg and Cu on microstructures and properties of spray-deposited Al-Zn-Mg-Cu alloys”, Journal of Alloys and Compounds, Vol. 719, PP.89-96 (2017)
[LI2] Z. Li, L. Chen, J. Tang, G. Zhao, C. Zhang, “Response of mechanical properties and corrosion behavior of Al–Zn–Mg alloy treated by aging and annealing: A comparative study”, Journal of Alloys and Compounds, Vol. 848 (2020)
[LIU1] L. Liu, Y. Y. Jia, J. T. Jiang, B. Zhang, G. A. Li, W. Z. Shao, L. Zhen, “The effect of Cu and Sc on the localized corrosion resistance of Al-Zn-Mg-X alloys”, Journal of Alloys and Compounds, Vol. 799, PP.1-14 (2019)
[LIU2]Liu, Y., Jiang, D., Li, B., Ying, T., & Hu, J. (2014). Heating aging behavior of Al–8.35Zn–2.5Mg–2.25Cu alloy. Materials & Design, 60, 116-124.
[MOL] H. Möller, “Optimisation of the heat treatment cycles of CSIR semi-solid metal processed Al-7Si-Mg alloys A356/7”, Materials Science and Metallurgical Engineering of University of Pretoria (2011)
[NAN] M. S. Nandana1, K. U. Bhat C. M. Manjunatha, S. B. Arya, “Electrochemical and Exfoliation Corrosion Behavior of Reversion-Treated High-Strength Aluminum Alloy”, Transactions of the Indian Institute of Metals, Vol. 73, PP. 1489-1495 (2020)
[NIE] M. Niedzinski, “Advanced Aluminum Armor Alloys“, light metal age, PP.31 (2016)
[PEN1] X.Y. Peng, Q. Guo, X.P. Liang, Y. Deng, Y. Gu, G.F. Xu, Z.M. Yin, Mechanical properties, corrosion behavior and microstructures of a non-isothermal ageing treated Al-Zn-Mg-Cu alloy, Mater. Sci. Eng., A 688 (2017) 146e154.
[PEN2] Peng, X., Li, Y., Xu, G. et al. Effect of Precipitate State on Mechanical Properties, Corrosion Behavior, and Microstructures of Al–Zn–Mg–Cu Alloy. Met. Mater. Int. 24, 1046–1057 (2018).
[RAO] A. C. U. Rao, V. Vasu, M. Govindaraju, K. V. S. Srinadh, “Stress corrosion cracking behaviour of 7xxx aluminum alloys: A literature review “Transactions of Nonferrous Metals Society of China”, Vol. 26, Issue 6, PP. 1447-1471 (2016)
[RIO] R. M. Niedzinski, C. Rioja, “Development of ALCOA 7085 Aluminum for Ballistic and Blast Applications”, International Nordmetall Colliquium (2012)
[SAR] B. Sarkar, M. Marek, E. A. Starke, “The effect of copper content and heat treatment on the stress corrosion characteristics of Ai-6Zn-2Mg-X Cu alloys”, Metallurgical Transactions A, Vol. 12, PP. 1939–1943 (1981)
[SPE] M. O. Speidel, M. V. Htatt, “Advances in Corrosion Science and Technology”, Vol.2, Plenum Press, PP.115-127 (1972)
[STA] E. A. Starke, Jr and J. T. Staley, “Application of modern aluminium alloys to aircraft”, Aerospace Sic., Vol.32, pp.131-172 (1996)
[WANG1] Y. Wang, L. Cao, “ Effect of retrogression treatments on microstructure, hardness and corrosion behaviors of aluminum alloy 7085“ Journal of Alloys and Compounds, NO.814, pp.1-10 (2020)
[WANG2] W. Wang, Q. Pan, X. Wang, Y. Sun, J. Ye, G. Lin, S. Liu, Z. Huang, S. Xiang, X. Wang, Y. Liu, “Non-isothermal aging: A heat treatment method that simultaneously improves the mechanical properties and corrosion resistance of ultrahigh strength Al-Zn-Mg-Cu alloy”, Journal of Alloys and Compounds, Vol.735, PP. 964-974 (2018)
[WAR] T. Warner, “Recently-developed aluminium solutions for aerospace applications”, Materials Science Forum, Vol.519-521, pp.1271-1278 (2006)
[WLO]J. Wloka, T. Hack, S. Virtanen, Influence of temper and surface condition on the exfoliation behaviour of high strength Al–Zn–Mg–Cu alloys, Corrosion Science, Vol. 49, pp. 1437–1449 (2007)
[XU1] D. K. Xu, P. A. Rometsch, “Effect of S-Phase Dissolution on the Corrosion and Stress Corrosion Cracking of an As-Rolled Al-Zn-Mg-Cu Alloy”, Corrosion Science, Vol. 68 (2012)
[XU2] D. K. Xu, P. A. Rometsch, N. Birbilis, “Improved solution treatment for an as-rolled Al–Zn–Mg–Cu alloy. Part II. Microstructure and mechanical properties”, Materials Science and Engineering: A, Vol. 534, PP. 244-252 (2012)
[ZHO] L. Zhou, K. Chen, S. Chen, Y. Ding, S. Fan, “Correlation between stress corrosion cracking resistance and grainboundary precipitates of a new generation high Zn-containing 7056 aluminum alloy by non-isothermal aging and re-aging heat treatment”, Journal of Alloys and Compounds, Vol.850 (2021)
[ZHU]J. Zhu, B. Jiang, D. Yi, H. Wang, G. Wu, Precipitate Behavior, Mechanical Properties and Corrosion Behavior of an Al-Zn-Mg-Cu Alloy during Non-Isothermal Creep Aging with Axial Tension Stress, metals, Vol.10, 378(2020)
[ZOU]Y. Zou, L. Cao, X. Wu, Y. Wang, X. Sun, H. Song, M. J. Couper, Effect of ageing temperature on microstructure, mechanical property and corrosion behavior of aluminum alloy 7085, Journal of Alloys and Compounds, Vol.823, 153792(2020) |