博碩士論文 109329008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:78 、訪客IP:3.147.28.111
姓名 陳慶(Ching Chen)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 非等溫時效處理對AA7056合金之機械性質與抗應力腐蝕性質的影響
(Effect of non-isothermal aging on the mechanical properties and SCC resistance of AA7056)
相關論文
★ 元素揮發對Mg-Ni-Li合金儲放氫特性之影響★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響
★ LaNi5對Mg2Ni合金電極性質之影響★ 固溶處理之冷卻速率對SP-700鈦合金微結構與機械性質之影響
★ Pb含量與熱處理對AgPb18+xSbTe20合金熱電性質影響之探討★ 鈧對Al-7Si-0.6Mg合金機械性質影響
★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響★ 高壓氫壓縮機用之儲氫合金開發
★ 固溶處裡對SP-700鈦合金微結構及機械性質之影響★ 微量鋯與安定化退火對Al-4.7Mg-0.75Mn 合金腐蝕與機械性質之影響
★ 微量Ni對Al-4.5Cu-0.3Mg-0.15Ti合金熱穩定性之影響★ 微量Zr與冷加工對Al-4.7Zn-1.6Mg合金淬火敏感性之影響
★ 微量Zr和Sc與均質化對Al-4.5Zn-1.5Mg合金機械性質與再結晶之影響★ 高含量Ti、B對A201-T7鋁合金熱裂性、微結構與機械性質的影響
★ 改良劑(鍶、銻)與熱處理對Al-11Si-3Cu-0.5Mg合金微結構及磨耗性質之影響★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 藉由顯微結構的分析(OM、SEM、TEM、導電度等),探討連續升溫的非等溫時效(nonisothermal aging,NIA)處理,對Al-9Zn-2.3Mg-1.9Cu (AA7056)鍛造熱處理型合金之機械、耐(剝蝕、應力)腐蝕性質之影響。結果顯示,對於薄試片(2mm)合金,當施以回歸與再時效處理 (retrogression and re-aging, RRA,即T77)後,可獲得不連續的晶界平衡析出η-MgZn2相,及晶粒內細小的析出強化介穩η’-MgZn2相,強度僅略低於頂時效的T6態,但卻提升了合金之抗腐蝕性。但對於厚試片(120mm)時,於所設定之回歸(retrogression)處理時間(30min),合金並無法達到回歸處理溫度,因而限制了T77對厚試片的應用。
相較於T77處理,經非等溫時效(NIA)處理後之AA7056合金,可以在更短處理時間下,使合金晶界產生不連續之平衡η-MgZn2析出相,而晶粒內之介穩η’-MgZn2強化相析出更完全、緻密,不但強度與T77處理相近,且明顯的提升了合金之抗腐蝕性,且 NIA 時效處理較不受合金厚度影響,對於厚材試片在時效過程中,合金內外之實際溫度與所設定之溫度差異極微,因此,NIA 時效處理之 AA7056合金,其時效時間較T77處理短外,且可獲得更佳之強度與抗剝蝕、與抗應力腐蝕性質之組合,更可以克服T77無法處理厚材試片之困擾。
摘要(英) Utilizing the microstructure analysis instrument such as OM, SEM, TEM, etc., to explore the Influence of mechanical and (exfoliation, stress) corrosion resistance properties of Al-9Zn-2.3Mg-1.9Cu (AA7056) forged alloys by continuously heated non-isothermal aging. The results show that for the thin materials (2mm), discontinuous grain boundary equilibrium precipitates (η-MgZn2) and the fine grain precipitates (metastable η′-MgZn2) can be obtained through the regression and re-aging treatment (namely T77). The strength is only slightly lower than that of the T6 state, but it improves the corrosion resistance of the alloy. But for the thickt piece (120mm), the alloy could not reach the regression treatment temperature at the set time (30min), thus limiting the application of T77 to the thick alloys.
Compared with T77 treatment, non-isothermal aging (NIA) treatment can produce discontinuous equilibrium η-MgZn2 precipitates at the alloy grain boundaries under a shorter time, while the precipitates of the metastable η′-MgZn2 in grains are more finer, not only the strength is similar to that of T77, but also the corrosion resistance of the alloy is significantly improved, and the NIA is less affected by the thickness of the alloy. During the process, the difference between the actual temperature inside and outside the alloy and the set temperature is very small. Therefore, the aging time of AA7056 treated by NIA is shorter than that of T77, and better strength, anti-corrosion, can be obtained. The combination of properties can also overcome that T77 cannot handle thick materials.
關鍵字(中) ★ 鋁鋅鎂銅合金
★ 非等溫時效處理
★ 回歸再時效處理
★ 腐蝕性
關鍵字(英)
論文目次 總目錄
摘要 II
Abstract VII
總目錄 IX
圖目錄 XII
表目錄 XV
壹、前言與文獻回顧 1
1.1鋁合金簡介 1
1.2 AA7056合金簡介 2
1.3析出強化機制與7000系鋁合金析出強化序列 3
1.4 高強度7000系鋁合金常用時效 8
1.4.1 T6頂時效處理 8
1.4.2 T7X時效處理 11
1.4.3 回歸與再時效(T77)時效處理 12
1.4.4 非等溫時效處理(Non-isothermal aging, NIA) 14
1.5研究目的與實驗規劃構思 16
貳、實驗步驟與方法 18
2.1合金融配 19
2.2均質化、熱輥軋與退火 20
2.3冷輥軋與時效熱處理(含固溶處理) 20
2.4微結構分析 21
2.4.1導電度量測 21
2.4.2光學顯微鏡(Optical Microscopy, OM) 22
2.4.3穿透式電子顯微鏡(Transmission electron microscope) 22
2.5機械性質分析 22
2.5.1硬度分析 22
2.5.2拉伸性質 23
2.6腐蝕性質分析 23
2.6.1剝落腐蝕試驗 23
2.6.2應力腐蝕性質分析(慢速拉伸實驗) 24
2.7厚材性質分析(機械性質、抗剝落腐蝕性與熱傳時效溫度曲線) 25
參、結果與討論 27
3.1微結構分析 27
3.1.1 OM微結構分析 27
3.1.2導電度分析 28
3.2機械性質分析 31
3.3 TEM微結構分析 33
3.4腐蝕性質分析 37
3.4.1剝落腐蝕試驗 38
3.4.2應力腐蝕性質分析(慢速拉伸試驗) 41
3.5厚材性質分析 43
3.5.1 ANSYS軟體模擬分析 44
3.5.2 厚材時效溫度分析 45
3.5.3 厚材機械性質分析 47
3.5.4厚材抗腐蝕性質分析 49
肆、結論 51
伍、參考資料 53















圖目錄
圖1.1鋁合金之分類[LEE] 2
圖1.2 Al-Zn-Mg-Cu合金經不同溫度之非等溫時效後沿[001]Al軸觀察的 SAED 圖形:(a)H120,(b) H160,(c)H210,(d) C160,(e )C120,(f)模擬SAED圖[ZHU]。 4
圖1.3材料的微觀結構演變示意圖,(a)固溶熱處理開始時,溶質集中在不同的相或溶液中,(b)固溶處理中,這些相開始溶入基地中,(c) 固溶處理完成[BAN]。 5
圖1.4 7000系鋁合金之T6時效方法示意圖 8
圖1.5 7000系鋁合金之T6時效方法示意圖[PEN2] 9
圖1.6 7000系鋁合金之T7X時效方法示意圖 11
圖1.7 7000系鋁合金之時效處理強度與抗腐蝕性關係[RIO] 12
圖1.8 在7050厚材表面、1/6、1/3、1/2與爐子進行溫度差異的量測(a)T74(b)NIA[JIA2] 14

圖2.1實驗流程圖 18
圖2.2實驗使用之Al-9.0Zn-2.3Mg-1.9Cu-0.05Zr合金鑄錠 20
圖2.3 合金冷輥(30%)後拉伸試片與剝落腐蝕試片取樣與尺寸(ND:normal direction, RD:rolling direction, TD:transverse direction) 21
圖2.4剝落腐蝕試驗規範之四種腐蝕表面腐蝕程度[ASTM3] 24
圖2.5美國材料試驗協會規範之標準板狀拉伸試片尺寸[ASTM4] 23
圖2.6厚材合金溫度量測示意圖(ND:輥軋面的法向, RD:輥軋方向, TD:輥軋面的橫向) 26
圖3.1 AA7056 (Al-9Zn-2.3Mg-1.9Cu-0.05Zr)合金之OM顯微結構:(a) 鑄態、與(b)均質化態(c)30%冷輥與固溶(附圖)態 28
圖3.2 AA7056 (Al-9Zn-2.3Mg-1.9Cu-0.05Zr)合金經時效處理後之TEM微結構: (a)T77-180、 (b)T77-200、(c) NIA40-190、(d)NIA20-190、(e)NIA40-200、(f)NIA20-200;附圖為晶粒析出物大小分布圖 35
圖3.3 AA7056 (Al-9Zn-2.3Mg-1.9Cu-0.05Zr)合金經T77時效處理之剝落腐蝕試片表面形貌與最大腐蝕深度:(a)T6、(b)T76、(c)T77-180、(d)T77-200、(e)NIA40-190、(f)NIA20-190 38
圖3.4 經ANSYS模擬軟體分析AA7056 (Al-9Zn-2.3Mg-1.9Cu-0.05Zr)合金持溫(180-200℃)*30min之熱傳示意圖,(a)厚材(120*120*120mm),(b)薄材(2*120*120mm) 45
圖3.5厚度對AA7056 (Al-9Zn-2.3Mg-1.9Cu-0.05Zr)合金時效處理之溫度影響:(a) T77-200厚材(120mm) (b) T77-200薄材(2mm)之T77-200 (c) 厚材(120mm)之NIA20-190 46
圖3.6 AA7056 厚材表面與中心經不同時效處理後施以剝落腐蝕48h之試片表面: (a)T77-200表面、(b)T77-200中心、(c)NIA20-190表面、(d)NIA20-190中心 49


表目錄


表1. 1 AA7056合金成分表(wt%) [GAL] 3
表1.2常見鋁合金析出強化熱處理方式與其代號[MOL] 7
表1.3 7000系合金析出相相關性質[SPE] 8
表2 .1實驗用Al-9.0Zn-2.3Mg-1.9Cu-0.05Zr合金成分(wt%) [GAL]。 19
表3.1時效處理對AA7056 (Al-9Zn-2.3Mg-1.9Cu-0.05Zr)合金導電度、機械性質、與剝落腐蝕測試結果彙整表 31
表3.2 AA7056 (Al-9Zn-2.3Mg-1.9Cu-0.05Zr)合金慢速拉伸性質彙整 42
表3 .3厚材(120mm)AA7056 (Al-9Zn-2.3Mg-1.9Cu-0.05Zr)合金表面與中心處之性質彙整 48
參考文獻 [ASTM1] ASTM B918/B918M-17a, Standard Practice for Heat Treatment of Wrought Aluminum Alloy, (2017)
[ASTM2] ASTM G34-01, Standard Test Method for Exfoliation Corrosion Susceptibility in 2XXX and 7XXX Series Aluminum Alloys (EXCO Test) (2013)
[ASTM3] ASTM E8/E8M-16a, Standard Test Methods for Tension Testing of Metallic Materials, (2016)
[ASTM4] ASTM G129-00, Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking (2013)
[CHEN1] S. Chen, K. Chen, G. Peng, L. Jia, P. Dong, “Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy “, Materials & Design, Vol. 35, PP. 93-98, (2012)
[CHEN2] Z. Chen, Y. Mo, Z. Nie, “Effect of Zn Content on the Microstructure and Properties of Super-High Strength Al-Zn-Mg-Cu Alloys”, Metallurgical and Materials Transactions A, Vol. 44A, PP. 3910-3921 (2013)
[CHIU] Y. C. Chiu, K. T. Du, H. Y. Bor, G. H. Liu, S. L. Lee, “The effects of Cu, Zn and Zr on the solution temperature and quenching sensitivity of Al–Zn–Mg–Cu alloys”, Materials Chemistry and Physics, Vol. 247, PP. 5714-5723 (2020)
[DAV] J. R. Davis and Associates, “ASM Specialty Handbook: Aluminum and Aluminum Alloys”, ASM International Materials Park, pp.34-36(2007)
[DEI] R. Deiasi, P. N. Adler, “Calorimetric Studies of 7000 Series Aluminum Alloys:I”, Matrix Precipitate Characterization of 7075”, Metall. Trans. A, Vol.8A, PP.1177-1183 (1977)
[DEN] Y. L. Deng, L. Wan, Y. Y. Zhang, X. M. Zhang, “Influence of Mg content on quench sensitivity of Al–Zn–Mg–Cu aluminum alloys”, Journal of Alloys and Compounds, Vol. 509, PP.4636-4642 (2011)
[GAL]D. B. Gallardy, “Ballistic Evaluation of 7056 Aluminum”, US Army Research Laboratory (2017)
[GHO]K. S. Ghosh, K. Das and U. K. Chatterjee, Correlation of stress corrosion cracking behaviour with electrical conductivity and open circuit potential in Al-Li-Cu-Mg-Zr alloys, Materials and Corrosion, Vol. 58, No. 3, 2007
[GUY]Guyot, P., Cottignies, L. Precipitation kinetics, mechanical strength and electrical conductivity of AlZnMgCu alloys. Acta Mater. 1996, 44, 4161–4167.
[JIA1]J.T. Jiang, W.Q. Xiao, L. Yang, W.Z. Shao, S.J. Yuan, L. Zhen, Ageing behavior and stress corrosion cracking resistance of a non-isothermally aged Al–Zn–Mg–Cu alloy, Materials Science & Engineering A, Vol.605, pp.167-175(2014)
[JIA2]Jiang, J.T., Tang, Q.J., Zhang, K., Yuan, S.J., Zhen, L.,Non-isothermal ageing of an Al-8Zn-2Mg-2Cu alloy for enhanced properties, Journal of Materials Processing Technology (2015)
[KER]S. E. Kervee, P. Pourshayan, F. Nasrollahnezhad, S. K. Moghanaki, M. Kazeminezhad., R. E. Logé, S. Nobakht, Non-isothermal aging of a high-Zn-containing Al–Zn–Mg–Cu alloy: microstructure and mechanical properties, Material science and technology, Vol. 34, pp.688-697(2018)
[LEE]S.L.Lee, Engineering Materials Science Principles and Applications, pp. 279-281 (2016) (2016)
[LI1] H. Li, F. Cao, S. Guo, “Effects of Mg and Cu on microstructures and properties of spray-deposited Al-Zn-Mg-Cu alloys”, Journal of Alloys and Compounds, Vol. 719, PP.89-96 (2017)
[LI2] Z. Li, L. Chen, J. Tang, G. Zhao, C. Zhang, “Response of mechanical properties and corrosion behavior of Al–Zn–Mg alloy treated by aging and annealing: A comparative study”, Journal of Alloys and Compounds, Vol. 848 (2020)
[LIU1] L. Liu, Y. Y. Jia, J. T. Jiang, B. Zhang, G. A. Li, W. Z. Shao, L. Zhen, “The effect of Cu and Sc on the localized corrosion resistance of Al-Zn-Mg-X alloys”, Journal of Alloys and Compounds, Vol. 799, PP.1-14 (2019)
[LIU2]Liu, Y., Jiang, D., Li, B., Ying, T., & Hu, J. (2014). Heating aging behavior of Al–8.35Zn–2.5Mg–2.25Cu alloy. Materials & Design, 60, 116-124.
[MOL] H. Möller, “Optimisation of the heat treatment cycles of CSIR semi-solid metal processed Al-7Si-Mg alloys A356/7”, Materials Science and Metallurgical Engineering of University of Pretoria (2011)

[NAN] M. S. Nandana1, K. U. Bhat C. M. Manjunatha, S. B. Arya, “Electrochemical and Exfoliation Corrosion Behavior of Reversion-Treated High-Strength Aluminum Alloy”, Transactions of the Indian Institute of Metals, Vol. 73, PP. 1489-1495 (2020)
[NIE] M. Niedzinski, “Advanced Aluminum Armor Alloys“, light metal age, PP.31 (2016)
[PEN1] X.Y. Peng, Q. Guo, X.P. Liang, Y. Deng, Y. Gu, G.F. Xu, Z.M. Yin, Mechanical properties, corrosion behavior and microstructures of a non-isothermal ageing treated Al-Zn-Mg-Cu alloy, Mater. Sci. Eng., A 688 (2017) 146e154.
[PEN2] Peng, X., Li, Y., Xu, G. et al. Effect of Precipitate State on Mechanical Properties, Corrosion Behavior, and Microstructures of Al–Zn–Mg–Cu Alloy. Met. Mater. Int. 24, 1046–1057 (2018).
[RAO] A. C. U. Rao, V. Vasu, M. Govindaraju, K. V. S. Srinadh, “Stress corrosion cracking behaviour of 7xxx aluminum alloys: A literature review “Transactions of Nonferrous Metals Society of China”, Vol. 26, Issue 6, PP. 1447-1471 (2016)
[RIO] R. M. Niedzinski, C. Rioja, “Development of ALCOA 7085 Aluminum for Ballistic and Blast Applications”, International Nordmetall Colliquium (2012)
[SAR] B. Sarkar, M. Marek, E. A. Starke, “The effect of copper content and heat treatment on the stress corrosion characteristics of Ai-6Zn-2Mg-X Cu alloys”, Metallurgical Transactions A, Vol. 12, PP. 1939–1943 (1981)
[SPE] M. O. Speidel, M. V. Htatt, “Advances in Corrosion Science and Technology”, Vol.2, Plenum Press, PP.115-127 (1972)
[STA] E. A. Starke, Jr and J. T. Staley, “Application of modern aluminium alloys to aircraft”, Aerospace Sic., Vol.32, pp.131-172 (1996)
[WANG1] Y. Wang, L. Cao, “ Effect of retrogression treatments on microstructure, hardness and corrosion behaviors of aluminum alloy 7085“ Journal of Alloys and Compounds, NO.814, pp.1-10 (2020)
[WANG2] W. Wang, Q. Pan, X. Wang, Y. Sun, J. Ye, G. Lin, S. Liu, Z. Huang, S. Xiang, X. Wang, Y. Liu, “Non-isothermal aging: A heat treatment method that simultaneously improves the mechanical properties and corrosion resistance of ultrahigh strength Al-Zn-Mg-Cu alloy”, Journal of Alloys and Compounds, Vol.735, PP. 964-974 (2018)
[WAR] T. Warner, “Recently-developed aluminium solutions for aerospace applications”, Materials Science Forum, Vol.519-521, pp.1271-1278 (2006)
[WLO]J. Wloka, T. Hack, S. Virtanen, Influence of temper and surface condition on the exfoliation behaviour of high strength Al–Zn–Mg–Cu alloys, Corrosion Science, Vol. 49, pp. 1437–1449 (2007)
[XU1] D. K. Xu, P. A. Rometsch, “Effect of S-Phase Dissolution on the Corrosion and Stress Corrosion Cracking of an As-Rolled Al-Zn-Mg-Cu Alloy”, Corrosion Science, Vol. 68 (2012)
[XU2] D. K. Xu, P. A. Rometsch, N. Birbilis, “Improved solution treatment for an as-rolled Al–Zn–Mg–Cu alloy. Part II. Microstructure and mechanical properties”, Materials Science and Engineering: A, Vol. 534, PP. 244-252 (2012)
[ZHO] L. Zhou, K. Chen, S. Chen, Y. Ding, S. Fan, “Correlation between stress corrosion cracking resistance and grainboundary precipitates of a new generation high Zn-containing 7056 aluminum alloy by non-isothermal aging and re-aging heat treatment”, Journal of Alloys and Compounds, Vol.850 (2021)
[ZHU]J. Zhu, B. Jiang, D. Yi, H. Wang, G. Wu, Precipitate Behavior, Mechanical Properties and Corrosion Behavior of an Al-Zn-Mg-Cu Alloy during Non-Isothermal Creep Aging with Axial Tension Stress, metals, Vol.10, 378(2020)
[ZOU]Y. Zou, L. Cao, X. Wu, Y. Wang, X. Sun, H. Song, M. J. Couper, Effect of ageing temperature on microstructure, mechanical property and corrosion behavior of aluminum alloy 7085, Journal of Alloys and Compounds, Vol.823, 153792(2020)
指導教授 李勝隆 審核日期 2022-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明