博碩士論文 109329016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:3.236.19.251
姓名 鄭世璟(Shi-Jing Zheng)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 接觸金屬種類及其沉積條件對單層二硫化鉬的影響
(Effects of contact metals on monolayer MoS2)
相關論文
★ 開發鎵奈米粒子沉浸於可拉伸聚合物之可調式電漿子結構★ 利用等效差分時域(FDTD)模擬分析自組裝鎵奈米顆粒嵌入可拉伸彈性材料光學性質探討
★ 無鉛銲料錫銀銦與銅基板的界面反應★ 高度反射性銀/鑭雙層p型氮化鎵歐姆接觸之性質研究
★ 以電子迴旋共振化學氣相沉積氫化非晶矽薄膜之熱處理結晶化研究★ 研究奈晶矽與非晶矽之多層結構經熱退火處理後之性質及其在PIN太陽能電池吸收層中之應用
★ 利用陽極氧化鋁模板製備銀奈米結構陣列於玻璃基板★ 利用電子迴旋共振化學氣相沉積法沉積氫化非晶矽薄膜探討其應力與結晶行為
★ 高反射低電阻銀鑭合金P型氮化鎵歐姆接觸之研究★ 陽極氧化鋁模板製備銀奈米粒子陣列及其表面增強拉曼散射效應之應用
★ 製備磷摻雜奈米矽晶氧化矽薄膜及其於太陽能電池之應用★ 陽極氧化鋁模板製備銀奈米粒子陣列及其光學性質
★ 以電流控制方式快速製備孔洞間距400至500奈米之陽極氧化鋁模板★ 利用濕式氧化法製備氧化矽薄膜應用於矽晶太陽能電池表面鈍化技術之研究
★ 磷摻雜矽奈米晶粒嵌入於氮化矽基材之材料成長與特性分析★ 利用電子迴旋共振化學氣相沉積法製備多層SiOxNy:H/SiCxNy:H抗反射薄膜及其於矽基太陽能電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-1以後開放)
摘要(中) 二維材料加速發展,過渡金屬硫族化合物(TMDs)被視為最有前瞻性的二維材料,且以二硫化鉬(MoS2)發展最為快速。對MoS2而言,接觸電阻是元件電性表現的關鍵因素,當金屬沉積於MoS2時,可能會產生應變或反應,甚至還有可能造成破壞,並且接觸時會引起費米能接釘札(Fermi-level pinning),使電性受到限制。為了觀察沉積金屬後的變化,我們將單層MoS2透過聚甲基丙烯酸甲酯(PMMA)以濕式轉印法移至二氧化矽(SiO2)上,並利用電子束蒸鍍(E-gun evaporation)與熱蒸鍍(Thermal evaporation)將金屬沉積於MoS2上,並透過拉曼光譜、X光光電子能譜、X光繞射儀、掃描式及穿透式電子顯微鏡進行分析。我們觀察到鈦、鎳、銀與金會對MoS2造成不同程度的損傷;銦、錫與鉍對MoS2僅造成微量應變,因此銦、錫與鉍較適合作為接觸金屬。另外,本研究發現鉍在MoS2上有不同的晶格取向,因為受MoS2缺陷所導致。
摘要(英) Recently, the development of two-dimensional materials has been accelerated. Among the two-dimensional materials, transition metal dichalocogenides(TMDs) are regarded as the most forward-looking ones, and of which molybdenum disulfide(MoS2) develops the fastest. For MoS2, the performances in electronics of its applications are limited by metal contacts, which may cause strains, chemical reactions, or even damages to MoS2. Moreover, metal contacts will cause Fermi-level pinning limiting the electrical properties. In order to observe the effects after depositing metals, we transfer MoS2 to silicon oxide(SiO2) using a polymethyl methacrylate(PMMA)-assisted wet transfer method, and then deposit metals on the monolayer MoS2 by the electron beam evaporation system and the thermal evaporation system. We analyze the properties of samples by Raman spectroscopy, X-ray photoelectron spectroscopy(XPS), X-ray diffraction(XRD), scanning electron microscope(SEM) and transmission electron microscopy(TEM). We uncover that Ti, Ni, Ag and Au cause different levels of damage to MoS2; In, Sn and Bi only produce a small amount of strain, so In, Sn, Bi are more suitable as contact metals. In addition, Bi has different lattice orientations on MoS2.
關鍵字(中) ★ 二硫化鉬
★ 二維材料
★ 金屬接觸
★ 拉曼
★ 應變
關鍵字(英) ★ MoS2
★ 2D-materials
★ metal contacts
★ Raman
★ Strain
論文目次 中文摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
第二章 基礎理論及文獻回顧 4
2-1 過渡金屬硫族化合物 4
2-1-1 過渡金屬硫族化合物介紹 4
2-1-2 過渡金屬硫族化合物種類 5
2-1-3 二硫化鉬介紹 6
2-2 二硫化鉬光譜分析回顧 7
2-2-1 二硫化鉬與應變之光譜分析 10
2-2-2 二硫化鉬與摻雜之光譜分析 13
2-2-3 二硫化鉬與金屬接觸之光譜分析 16
2-3 二硫化鉬與金屬接觸之能譜分析回顧 20
第三章 研究方法 23
3-1 實驗流程 23
3-2 試片製備 24
3-3 薄膜特性分析設備 25
第四章 結果與討論 26
4-1 沉積金屬的鍍率選擇 26
4-2 不同金屬對二硫化鉬的影響 27
4-2-1 二硫化鉬光譜分析 27
4-2-2 金屬沉積於二硫化鉬之表面形貌 30
4-2-3 二硫化鉬能譜分析 33
4-3 低熔點金屬對二硫化鉬的影響 34
4-3-1 厚度變化對二硫化鉬拉曼光譜的影響 34
4-3-2 退火低熔點金屬之結構與光譜分析 37
第五章 結論 41
參考文獻 42
參考文獻 [1] Schaller, Robert R. "Moore′s law: past, present and future." IEEE spectrum 34.6 (1997): 52-59.
[2] Novoselov, Kostya S., et al. "Electric field effect in atomically thin carbon films." science 306.5696 (2004): 666-669.
[3] Li, Ming-Yang, et al. "Epitaxial growth of a monolayer WSe2-MoS2 lateral pn junction with an atomically sharp interface." Science 349.6247 (2015): 524-528.
[4] Geim, Andre K., et al. "Van der Waals heterostructures." Nature 499.7459 (2013): 419-425.
[5] Abraham, Michael, et al "Annealed Ag contacts to MoS2 field-effect transistors." Journal of Applied Physics 122.11 (2017): 115306.
[6] Yoon, Hyong Seo, et al. "Layer dependence and gas molecule absorption property in MoS2 Schottky diode with asymmetric metal contacts." Scientific reports 5.1 (2015): 1-10.
[7] Hu, Wennan, et al. "Ambipolar 2D semiconductors and emerging device applications." Small Methods 5.1 (2021): 2000837.
[8] Radisavljevic, Branimir, et al. "Single-layer MoS2 transistors." Nature nanotechnology 6.3 (2011): 147-150.
[9] Li, Hai, et al. "Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets." Accounts of chemical research 47.4 (2014): 1067-1075.
[10] Yu, Hua, et al. "Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films." ACS nano 11.12 (2017): 12001-12007.
[11] Choi, Wonbong, et al. "Recent development of two-dimensional transition metal dichalcogenides and their applications." Materials Today 20.3 (2017): 116-130.
[12] Schulman, Daniel S., et al. "Contact engineering for 2D materials and devices." Chemical Society Reviews 47.9 (2018): 3037-3058.
[13] Thomas, Nishanth, et al. "2D MoS2: structure, mechanisms, and photocatalytic applications." Materials Today Sustainability 13 (2021): 100073.
[14] Song, Intek, et al. "Synthesis and properties of molybdenum disulphide: from bulk to atomic layers." Rsc Advances 5.10 (2015): 7495-7514.
[15] Chhowalla, Manish, et al. "The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets." Nature chemistry 5.4 (2013): 263-275.

[16] Zheng, Jingying, et al. "High‐mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition." Advanced Materials 29.13 (2017): 1604540.
[17] Lee, Changgu, et al. "Anomalous lattice vibrations of single-and few-layer MoS2." ACS nano 4.5 (2010): 2695-2700.
[18] Conley, Hiram J., et al. "Bandgap engineering of strained monolayer and bilayer MoS2." Nano letters 13.8 (2013): 3626-3630.
[19] Hui, Yeung Yu, et al. "Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet." ACS nano 7.8 (2013): 7126-7131.
[20] Xu, Kang, et al. "Doping of two-dimensional MoS2 by high energy ion implantation." Semiconductor Science and Technology 32.12 (2017): 124002.
[21] Hu, Ce, et al. "Work function variation of monolayer MoS2 by nitrogen-doping." Applied Physics Letters 113.4 (2018): 041602.
[22] Kang, Kyungnam, et al. "The effects of substitutional Fe-doping on magnetism in MoS2 and WS2 monolayers." Nanotechnology 32.9 (2020): 095708.
[23] Zhang, Kehao, et al. "Manganese doping of monolayer MoS2: the substrate is critical." Nano letters 15.10 (2015): 6586-6591.
[24] Sun, Yinghui, et al. "Probing local strain at MX2–metal boundaries with surface plasmon-enhanced Raman scattering." Nano letters 14.9 (2014): 5329-5334.
[25] Chou, Ang-Sheng, et al. "High on-state current in chemical vapor deposited monolayer MoS2 nFETs with Sn ohmic contacts." IEEE Electron Device Letters 42.2 (2020): 272-275.
[26] Yuan, Hui, et al. "Influence of metal–MoS2 interface on MoS2 transistor performance: Comparison of Ag and Ti contacts." ACS applied materials & interfaces 7.2 (2015): 1180-1187.
[27] Gong, Cheng, et al. "Metal contacts on physical vapor deposited monolayer MoS2." ACS nano 7.12 (2013): 11350-11357.
[28] Shen, Pin-Chun, et al. "Ultralow contact resistance between semimetal and monolayer semiconductors." Nature 593.7858 (2021): 211-217.
[29] Hao, Song, et al. "Unravelling merging behaviors and electrostatic properties of CVD-grown monolayer MoS2 domains." The Journal of Chemical Physics 145.8 (2016): 084704.
[30] Wang, Xinglu, et al. "Interface Chemistry and Band Alignment Study of Ni and Ag Contacts on MoS2." ACS Applied Materials & Interfaces 13.13 (2021): 15802-15810.
[31] Smyth, Christopher M., et al. "Contact metal–MoS2 interfacial reactions and potential implications on MoS2-based device performance." The Journal of Physical Chemistry C 120.27 (2016): 14719-14729.
[32] McDonnell, Stephen, et al. "MoS2–titanium contact interface reactions." ACS applied materials & interfaces 8.12 (2016): 8289-8294.
[33] Sun, Yinghui, et al. "Evolution of local strain in Ag-deposited monolayer MoS 2 modulated by interface interactions." Nanoscale 11.46 (2019): 22432-22439.
[34] Moe, Yan Aung, et al. "Probing evolution of local strain at MoS2-metal boundaries by surface-enhanced Raman scattering." ACS applied materials & interfaces 10.46 (2018): 40246-40254.
[35] Wu, Ryan J., et al. "Visualizing the metal-MoS2 contacts in two-dimensional field-effect transistors with atomic resolution." Physical Review Materials 3.11 (2019): 111001.
[36] Liu, Yuan, et al. "Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions." Nature 557.7707 (2018): 696-700.
[37] Datye, Isha M., et al. "Strain-Enhanced Mobility of Monolayer MoS2." arXiv preprint arXiv:2205.03950 (2022).
[38] Christopher, Jason W., et al. "Monolayer MoS2 strained to 1.3% with a microelectromechanical system." Journal of Microelectromechanical Systems 28.2 (2019): 254-263.
[39] Schauble, Kirstin, et al. "Uncovering the effects of metal contacts on monolayer MoS2." ACS nano 14.11 (2020): 14798-14808.
[40] Li, Ziling, et al. "High rectification ratio metal-insulator-semiconductor tunnel diode based on single-layer MoS2." Nanotechnology 31.7 (2019): 075202.
[41] Le Thi, Hai Yen, et al. "High-performance ambipolar MoS2 transistor enabled by indium edge contacts." Nanotechnology 32.21 (2021): 215701.
[42] Andrews, Kraig, et al. "Improved contacts and device performance in MoS2 transistors using a 2D semiconductor interlayer." ACS nano 14.5 (2020): 6232-6241.
[43] Cao, Zhonghan, et al. "Low Schottky barrier contacts to 2H-MoS2 by Sn electrodes." Applied Physics Letters 116.2 (2020): 022101.
[44] Rodil, S. E., et al. "Preferential orientation in bismuth thin films as a function of growth conditions." Thin Solid Films 636 (2017): 384-391.
[45] Bizhani, Maryam, et al. "Thermal Annealing Effects on Naturally Contacted Monolayer MoS2." physica status solidi (b) 258.9 (2021): 2000426.
指導教授 陳一塵(I-Chen Chen) 審核日期 2022-9-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明