博碩士論文 109329001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.12.161.77
姓名 陳威霖(Wei-Lin Chen)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 旋轉塗佈擴散製程應用於製作poly-Si/SiOx鈍化接觸結構
(Spin-on-doped poly-Si/SiOx for passivation contact structur醫)
相關論文
★ 開發鎵奈米粒子沉浸於可拉伸聚合物之可調式電漿子結構★ 利用等效差分時域(FDTD)模擬分析自組裝鎵奈米顆粒嵌入可拉伸彈性材料光學性質探討
★ 無鉛銲料錫銀銦與銅基板的界面反應★ 高度反射性銀/鑭雙層p型氮化鎵歐姆接觸之性質研究
★ 以電子迴旋共振化學氣相沉積氫化非晶矽薄膜之熱處理結晶化研究★ 研究奈晶矽與非晶矽之多層結構經熱退火處理後之性質及其在PIN太陽能電池吸收層中之應用
★ 利用陽極氧化鋁模板製備銀奈米結構陣列於玻璃基板★ 利用電子迴旋共振化學氣相沉積法沉積氫化非晶矽薄膜探討其應力與結晶行為
★ 高反射低電阻銀鑭合金P型氮化鎵歐姆接觸之研究★ 陽極氧化鋁模板製備銀奈米粒子陣列及其表面增強拉曼散射效應之應用
★ 製備磷摻雜奈米矽晶氧化矽薄膜及其於太陽能電池之應用★ 陽極氧化鋁模板製備銀奈米粒子陣列及其光學性質
★ 以電流控制方式快速製備孔洞間距400至500奈米之陽極氧化鋁模板★ 利用濕式氧化法製備氧化矽薄膜應用於矽晶太陽能電池表面鈍化技術之研究
★ 磷摻雜矽奈米晶粒嵌入於氮化矽基材之材料成長與特性分析★ 利用電子迴旋共振化學氣相沉積法製備多層SiOxNy:H/SiCxNy:H抗反射薄膜及其於矽基太陽能電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-1以後開放)
摘要(中) 本研究是以塗佈擴散的方式進行多晶矽與氧化層堆疊結構後退火處理,此方法相較於傳統退火製程中通入有毒且易自燃的氣體(POCl3及BBr3)更為安全且廉價。結構中的多晶矽是以磁控濺鍍的方式製備,剛沉積之矽薄膜為本質且非晶的結構,接著使用後退火摻雜磷的方式使本質非晶矽轉為n型多晶矽。在退火的製程上針對退火溫度、退火時間、磷供給溶液量去探討,分析退火後的薄膜表面形貌、結構、電性及鈍化能力,以求得最低的複合電流(J0)為目標找尋最佳退火條件。由結果得知,以9.86 W/cm2的電漿瓦數密度沉積之50 nm的多晶矽,在退火後有最好的複合電流306 fA/cm2、片電阻20 Ω/□及接觸電阻7.46 mΩ cm2。
這種後退火擴散的方式可以在很短的時間提供大量的摻雜載子,藉由在退火參數上的調整產生多晶矽的能帶彎曲效應及場效應鈍化來降低電子電洞複合,是一個可運用於TOPCon結構電池之有潛力的退火方式。
摘要(英) Among common methods to anneal silicon films, the method of spin-on-doped is the safest one as it does not require any toxic gaseous and is cheaper compared to traditional furnace annealing. In this study, we use magnetron sputtering to deposit polysilicon. The as-deposited silicon films are intrinsic and amorphous structures, and will be converted into n-type polysilicon by the phosphorus diffusion with post-annealing. The annealing temperature, annealing time, and the amount of dopant solution are investigated in the process, and the surface morphologies, structures, electrical properties, and the passivated ability of the annealed films are analyzed. The optimization of the annealing conditions depends on the lowest recombination current (J0). According to the results, passivation contacts at the plasma power density of 9.86 W/cm2 and poly-Si thickness of 50 nm achieve the lowest recombination current of 306 fA/cm2 and sheet resistance of 20 Ω/□, whereas their contact resistivity is still low at 7.46 mΩ cm2. This method can provide a large number of doping carriers in a very short time. The band bending effect and the field passivation of polysilicon are produced by optimal post-annealing treatment to reduce electron-hole recombination. This is a potential way to anneal polysilicon of TOPCon solar cells.
關鍵字(中) ★ 磷摻雜矽薄膜
★ 磁控濺鍍
★ 退火製程
★ 鈍化接觸
★ 特性分析
關鍵字(英) ★ phosphorus doped silicon
★ magnetron sputter
★ post-annealing
★ passivation contact
★ characteristic analysis
論文目次 中文摘要 I
英文摘要 II
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1-1 前言 1
1-2 研究動機及背景 2
第二章 基礎理論及文獻回顧 4
2-1 矽晶太陽能電池理論 4
2-2 太陽能電池之基礎參數 5
2-3 不同類型的矽基太陽能電池 11
2-3-1 背表面鈍化射極太陽能電池(Passivated Emitter Rear Contact, PERC) 11
2-3-2 異質接面太陽能電池(Heterojunction with Intrinsic Thin-layer ,HIT) 13
2-3-3 指叉狀背接觸太陽能電池(Interdigitated Back Contact 14
Cell, IBC) 14
2-3-4 穿隧氧化層鈍化接觸太陽能電池(Tunnel Oxide Passivation Contact cell, TOPCon) 15
2-4 TOPCon結構文獻回顧 19
2-4-1 TOPCon多晶矽製備 19
2-4-2 TOPCon退火製程介紹 20
第三章 研究方法 27
3-1 實驗概述 27
3-2 實驗流程 28
3-2-1 薄膜電性實驗 28
3-2-2 結構鈍化分析 29
第四章、結果與討論 31
4-1多晶矽的電性分析 31
4-1-1沉積條件的影響 31
4-1-2退火條件的影響 33
4-2薄膜表面形貌 37
4-2-1表面起泡現象 37
4-2-2退火溫度的影響 38
4-3多晶矽鈍化能力分析 39
4-3-1濺鍍條件的影響 39
4-3-2退火條件的影響 41
4-3-3多晶矽/穿隧氧化層結構的鈍化能力 44
第五章 結論 45
參考文獻 46
參考文獻 [1] Asmelash, E., FUTURE OF SOLAR PHOTOVOLTAIC Deployment, investment,technology, grid integration and socio-economic aspects. 2019: International Renewable Energy Agency.
[2] Smets, A., et al., The physics and engineering of photovoltaic conversion, technologies and systems. 1 ed. 2016: UIT Cambridge Limited. 462.
[3] Markvart, T., et al., Principles of Solar Cell Operation, in McEvoy′s Handbook of Photovoltaics. 2018. p. 3-28.
[4] Sidi, P., et al., Solar Cell, in Solar Cells - Silicon Wafer-Based Technologies. 2011.
[5] C.B.Honsberg, et al. Photovoltaics Education Website. Available from: www.pveducation.org.
[6] Brendel, R., et al., Internal quantum efficiency of thin epitaxial silicon solar cells. Applied Physics Letters, 1995. 66(10): p. 1261-1263.
[7] Basore, P.A., EXTENDED SPECTRAL ANALYSIS OF INTERNAL QUANTUM EFFICIENCY. IEEE Electron Device Letters, 1993.
[8] A, G.M., et al., Characterization of 23 -Percent Efficient Silicon Solar Cells. IEEE Electron Device Letters, 1990.
[9] Dullweber, T., et al., Inductively coupled plasma chemical vapour deposited AlOx/SiNy layer stacks for applications in high-efficiency industrial-type silicon solar cells. Solar Energy Materials and Solar Cells, 2013. 112: p. 196-201.
[10] Blakers, A.W., et al., 22.8% efficient silicon solar cell. Applied Physics Letters, 1989. 55(13): p. 1363-1365.
[11] Gassenbauer, Y., et al., Rear-Surface Passivation Technology for Crystalline Silicon Solar Cells: A Versatile Process for Mass Production. IEEE Journal of Photovoltaics, 2013. 3(1): p. 125-130.
[12] Zhao, S., et al., Rear passivation of commercial multi-crystalline PERC solar cell by PECVD Al2O3. Applied Surface Science, 2014. 290: p. 66-70.
[13] Liu, J., et al., Review of status developments of high-efficiency crystalline silicon solar cells. Journal of Physics D: Applied Physics, 2018. 51(12).
[14] Sawada, T., et al., HIGH-EFFICIENCY a-Si/c-Si HETEROJUNCTION SOLAR CELL. IEEE Electron Device Letters, 1994.
[15] Yang, G., et al., IBC c-Si solar cells based on ion-implanted poly-silicon passivating contacts. Solar Energy Materials and Solar Cells, 2016. 158: p. 84-90.
[16] Ingenito, A., et al., Simplified process for high efficiency, self-aligned IBC c-Si solar cells combining ion implantation and epitaxial growth: Design and fabrication. Solar Energy Materials and Solar Cells, 2016. 157: p. 354-365.
[17] Smith, D.D., et al., Silicon Solar Cells with total area efficiency above 25 %. IEEE Electron Device Letters, 2016.
[18] Adachi, D., et al., Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency. Applied Physics Letters, 2015. 107(23).
[19] Feldmann, F., et al., Efficient carrier-selective p- and n-contacts for Si solar cells. Solar Energy Materials and Solar Cells, 2014. 131: p. 100-104.
[20] Feldmann, F., et al., Tunnel oxide passivated contacts as an alternative to partial rear contacts. Solar Energy Materials and Solar Cells, 2014. 131: p. 46-50.
[21] Chandra Mandal, N., et al., Study of the properties of SiOx layers prepared by different techniques for rear side passivation in TOPCon solar cells. Materials Science in Semiconductor Processing, 2020. 119.
[22] Zeng, Y., et al., Theoretical exploration towards high-efficiency tunnel oxide passivated carrier-selective contacts (TOPCon) solar cells. Solar Energy, 2017. 155: p. 654-660.
[23] Lee, W.-C., et al., Modeling CMOS tunneling currents through ultrathin gate oxide due to conduction- and valence-band electron and hole tunneling,. IEEE Transactions on Electron Devices, 2001.
[24] Tao, Y., et al., Carrier selective tunnel oxide passivated contact enabling 21.4% efficient large-area N-type silicon solar cells, in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). 2016. p. 2531-2535.
[25] Matsushita, T., et al., Highly reliable high-voltage transistors by use of the SIPOS process. IEEE Transactions on Electron Devices, 1976. 23: p. 826-830.
[26] Lindholm, F.A., et al., Heavily doped polysilicon-contact solar cells. IEEE Electron Device Letters, 1985. 6(7): p. 363-365.
[27] Feldmann, F., et al., Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics. Solar Energy Materials and Solar Cells, 2014. 120: p. 270-274.
[28] Tao, Y., et al. 730 mV implied Voc enabled by tunnel oxide passivated contact with PECVD grown and crystallized n+ polycrystalline Si. in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC). 2015.
[29] Chen, Y., et al., Mass production of industrial tunnel oxide passivated contacts (i‐TOPCon) silicon solar cells with average efficiency over 23% and modules over 345 W. Progress in Photovoltaics: Research and Applications, 2019. 27(10): p. 827-834.
[30] Yan, D., et al., 23% efficient p-type crystalline silicon solar cells with hole-selective passivating contacts based on physical vapor deposition of doped silicon films. Applied Physics Letters, 2018. 113(6).
[31] Yang, Q., et al., In-situ phosphorus-doped polysilicon prepared using rapid-thermal anneal (RTA) and its application for polysilicon passivated-contact solar cells. Solar Energy Materials and Solar Cells, 2020. 210.
[32] Yan, D., et al., High efficiency n-type silicon solar cells with passivating contacts based on PECVD silicon films doped by phosphorus diffusion. Solar Energy Materials and Solar Cells, 2019. 193: p. 80-84.
[33] Ding, Z., et al., Phosphorus-doped polycrystalline silicon passivating contacts via spin-on doping. Solar Energy Materials and Solar Cells, 2021. 221.
[34] Rajan, G., et al., Influence of Deposition Parameters on Silicon Thin Films Deposited by Magnetron Sputtering. IEEE, 2017.
[35] Liu, K., et al., A study of intrinsic amorphous silicon thin film deposited on flexible polymer substrates by magnetron sputtering. Journal of Non-Crystalline Solids, 2016. 449: p. 125-132.
[36] Asgary, S., et al., Magnetron sputtering technique for analyzing the influence of RF sputtering power on microstructural surface morphology of aluminum thin films deposited on SiO2/Si substrates. Applied Physics A, 2021. 127(10).
[37] Truong, T.N., et al., Deposition pressure dependent structural and optoelectronic properties of ex-situ boron-doped poly-Si/SiOx passivating contacts based on sputtered silicon. Solar Energy Materials and Solar Cells, 2020. 215.
[38] Hashim, S.B., et al., Low-temperature direct deposition of polycrystalline silicon thin film on glass substrate by RF magnetron sputtering with applied substrate bias. IEEE Electron Device Letters, 2012.
[39] Kamoshida, K., Argon entrapment in magnetron-sputtered Al alloy films. Thin Solid Films, 1996.
[40] Bras, P., et al., Investigation of blister formation in sputtered Cu2ZnSnS4 absorbers for thin film solar cells. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2015. 33(6).
[41] Padhamnath, P., et al., Development of thin polysilicon layers for application in monoPoly™ cells with screen-printed and fired metallization. Solar Energy Materials and Solar Cells, 2020. 207.
[42] Yan, D., et al., Passivating contacts for silicon solar cells based on boron-diffused recrystallized amorphous silicon and thin dielectric interlayers. Solar Energy Materials and Solar Cells, 2016. 152: p. 73-79.
[43] Li, Q., et al., Replacing the amorphous silicon thin layer with microcrystalline silicon thin layer in TOPCon solar cells. Solar Energy, 2016. 135: p. 487-492.
[44] Park, H., et al., Passivation quality control in poly-Si/SiO /c-Si passivated contact solar cells with 734 mV implied open circuit voltage. Solar Energy Materials and Solar Cells, 2019. 189: p. 21-26.
[45] Rohatgi, A., et al., Fabrication and Modeling of High-Efficiency Front Junction N-Type Silicon Solar Cells With Tunnel Oxide Passivating Back Contact. IEEE Journal of Photovoltaics, 2017. 7(5): p. 1236-1243.
指導教授 陳一塵(I-Chen Chen) 審核日期 2022-9-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明